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A systematic study is made of theories in which supergravity is spontaneously broken in a
"hidden" sector of superfields that interact with ordinary matter only through supergravity.

General rules are given for calculating the low-energy effective potential in such theories.

This potential is given as the sum of ordinary supersymmetric terms involving a low-energy

effective superpotential whose mass terms arise from integrating out the heavy particles as-

sociated with grand unification, plus supersymmetry-breaking terms that depend on the de-

tails of the hidden sector and the Kahler potential only through the values of four small

complex mass parameters. The result is not the same as would be obtained by ignoring

grand unification and inserting small mass parameters into the superpotential from the be-

ginning. The general results are applied to a class of models with a pair of Higgs doublets.

I. INTRODUCTION

It was widely hoped that supersymmetry would
turn out to be spontaneously broken at energies no
higher than a few hundred GeV, both in order to
help in understanding gauge hierarchies and also to
allow some chance of confirming supersymmetry ex-
perimentally. Unhappily, it has proved difficult to
construct satisfactory theories along these lines. ' We
are led to the conclusion that supersymmetry if
valid at all is spontaneously broken at energies very
much greater than those of SU(2)XU(1) breaking.
But then if any vestige of supersymmetry is to sur-
vive at ordinary energies to help establish a gauge
hierarchy, the source of supersymmetry breaking
must somehow be partly isolated from ordinary par-
ticles and interactions.

Recently attention has been drawn to a class of in-
teresting models of this sort. ' In these models,
unextended (N=1) supersymmetry is broken by
very large scalar-field vacuum expectation values
(VEV's) of order 10' GeV, but the scalars that have

these large VEV's form a "hidden sector, " that does

not interact directly with the ordinary fields (quarks,
leptons, gauge and Higgs bosons, and their super-

partners) of the "observable sector." That is, the su-

perpotential of the theory breaks up into a sum of
two terms '

fToTAi (S,S)=f(S)+f(S),
where S' and S"are the left-chiral superfields of the

observable and hidden sectors, respectively. With a
minimal kinetic term and no other interactions, the
potential of the scalar (nonauxiliary) components

z,z "of S',S"would take the form

y( ) y fTOTALBf

all s

2 2
c)f(z) ~ t')f(z )

e Bz h Qz

and the spontaneous breakdown of supersymmetry
in the hidden sector could have no effect on the ob-
servable sector. In the models of Refs. 3—12 the
news that supersymmetry is broken by the z "VEV's
is carried over to the observable superfields by gravi-

ty and its superpartners, which interact with both
sectors.

In the papers of Ref. 3, a thorough study is
presented of a model with a specific linear hidden-
sector superpotential f, and a specific grand-unified
observable sector. Their results exhibit some re-
markable features; in particular, the VEV's of the
light Higgs scalars are of order of the gravitino mass

mg, and do not depend in any way on the grand-
unified mass scale MGU, but do depend on coupling

parameters of heavy fields whose masses are of or-
der MGU. However, because the model studied was
so specific, and the results were expressed in terms
of values for scalar VEV's, it was difficult to see
how the decoupling of heavy from light degrees of
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freedom works in these models, and it was difficult
to know what aspects of the results would apply in
general. '

The papers of Refs. 4 and 6 dealt with models
that were in various respects more general. Refer-
ence 4 considered the same linear superpotential for
the hidden sector, but put no restrictions on the
form of the superpotential for the observable sector.
Reference 6 considered a general superpotential for
the hidden sector, and restricted the form of the ob-
servable sector only by requiring that its superpoten-
tial be purely trilinear. However, neither of these
groups considered grand-unified models, in which
the observable-sector superpotential involves mass
scales MoU »mz. As shown by the work of Ref. 3
(and more generally in Sec. III below), the existence
of a class of superheavy particles which have to be
"integrated out" to construct the low-energy effec-
tive potential changes the way that the
supersymmetry-breaking corrections appear in this
effective potential, in a manner that (except for
purely trilinear superpotentials like that of Ref. 6}
cannot be simulated by inserting mass terms in an
observable-sector superpotential involving only light
fields.

It seemed to us that it would be useful to present
a study of this class of models, with general super-
potentials for both the hidden and observable sec-
tors, and with full attention to the complications

I

caused by the presence of heavy particles with
masses of order MGU ~&mg. Our assumptions are
spelled out in Sec. II, and in Sec. III we present our
main result, a general formula [Eq. (3.11)] for the
effective superpotential of the light scalars. In this
formula the unknown properties of the hidden sec-
tor enter in the values of just two comparable mass

parameters, ms and ms, one of them the gravitino
mass, and all aspects of the full grand-unified theory
enter only in the parameters of an effective superpo-
tential. Section IV generalizes this result to a large
class of Kahler metrics, and shows that this intro-
duces just two more unknown mass parameters, mg'

and mg". In Sec. V we show how our results can be
used to derive phenomenologically interesting pre-
dictions, even without having to make any specific
assumptions about the grand-unified theory or the
hidden sector.

II. ASSUMPTIONS

We assume a total superpotential of the form' 's

fTOTAL(S S) f(S)+f(S) . (2.1)

Here f(S) and f(S) are the superpotentials for the
chiral superflelds S' and S"of the observed and hid-
den sectors, respectively. The potential for the sca-
lar field components z' and z" is then'

V(z,z)=exp 8mG g ~z'~ + g (z" ['
a h

+8m Gz' [f(z)+ f(z)]
BZ

2

„+8~Gz" [f(z)+f(z)]
BZ

24~G
~
f(z)+—f(z) ~' + gD, '. (22)

This is for a quadratic d function (i.e., a flat Kahler
metric}; we will return to the general case later, in
Sec. IV. The gauge auxiliary scalar Dk in (2.2) takes
the usual form

gauge fields that interact only with the hidden sec-
tor.

Our assumptions regarding the observable and
hidden superpotentials are as follows.

D„=g(tk)'bz'z
e,b

(2.3)
A. Observable sector

where tk is the Hermitian matrix representing the
kth gauge generator, including coupling-constant
factors. We assume that there are no Fayet-
Iliopoulos terms, and that the hidden-sector fields
are neutral with regard to all gauge symmetries, but
it would be easy to include the effects of additional Bf(z)/Bz'=0, at z =zo, (2.4)

It is assumed that there is a set of scalar field
VEV's, zo, for which, in the absence of the hidden
sector, supersymmetry would be unbroken and
spacetime would be Aat:



SUPERGRAVITY AS THE MESSENGER OF SUPERSYMMETRY. . . 2361

Dk ——0, atz=zp,

f(zp)=0.
(2.5)

(2.6)

M'ab = gfaafb (2.7)

with subscripts denoting differentiation with respect
to z', z, etc., at z =zp.a b

T

[Of course, we can always make f (z) vanish at the
zp defined by (2.4} and (2.5) by shifting a constant
term from f(z) to f(z).] The tree-approximation
scalar spectrum in the absence of the hidden sector
then consists of a complex scalar of mass M for
each eigenvalue M of the Hermitian matrix

Correspondingly, the fields z' are classified as fol-
lows:

z: light complex scalars, corresponding to non-
Goldstone eigenvectors of M,b with eigenvalue zero
(Higgs bosons, s-quarks, s-leptons).

z": superheavy complex scalars, corresponding to
nonzero eigenvalues of M,b.z: superheavy real scalars, degenerate with su-
perheavy gauge bosons, corresponding to indepen-
dent Goldstone eigenvectors (tttzp) of M,b, one for
each nonzero eigenvalue of p ttL, . (The z are real
because the imaginary part of the coefficients of
tKzp are Goldstone bosons, eliminated by the Higgs
mechanism. )

Because z and z" are orthogonal to z, we have
8 f(z)b= a bBz Bz

(txzo) =(txzo)"=0 . (2.14)

g ag bg a

plus a real scalar with mass p for each nonzero
eigenvalue p of the vector-boson mass matrix:

. p ki='( p[tk&tl lzp)=2((tkzp) (ttzp)) . (2.8)

[The second version of this formula follows from
the first and Eq. (2.5).] The gauge symmetries of
f(z} [plus (2.4)] imply that

g fb, (tkzo) = g M,b(tkzo) =0 .
b b

(2.9)

2 = 2
I zL I ~g 0 ~

M AB ~ABMA
2 — 2

M ~B =M ~P=M ~K=M KB =M KL =o
~

2 - 2 2 2

(2.11)

(2.12)

(2.13)

with pK and MA nonzero and of order M GU.

These are the "Goldstone" eigenvectors of M ab, for
which the corresponding scalars are eliminated by
the Higgs mechanism. We assume for reasons of
naturalness that f(z) depends on only a single
grand-unified mass scale MoU (presumably
MGU-10' GeV), so that aside from coupling-
constant factors, we have zp-MoU, fab-MoU,
f,b, —1, and the eigenvalues of M,b and p kt are ei-
ther of order MoU or zero. ' We adopt a basis in
which these matrices are diagonal, with the zero and
nonzero eigenvalues of p k~ labeled a', A,, . . . and
K,L . . , respectiv. ely (one nonzero eigenvalue for
each linearly independent Goldstone vector tkzp),
and the Goldstone, zero non-Goldstone, and nonzero
eigenvalues of M,b labeled K,L, . . ; a,P, . . . ; a. nd
A,B,. . . , respectively. That is

P KL ~KLI K (2.10)

Also, because the z correspond to nonzero eigen-
values pL, of p kt, we have

(txzp) =IJL,5' nonsingular .

Further, (2.9), (2.12},and (2.13) yield

f tt=f~=f sc=ftct =fxL, =0

fez nonsingular -MoU .

(2.15)

(2.16)

(2.17)

We will not need to assume that f(z) is a cubic poly-
nomial, as it would be if we started with a renormal-
izable theory. Finally, our results will turn out to
depend critically on the assumption that the light
scalars do not get nonvanishing VEV's from the
breakdown of the grand gauge group

=0. (2.18)

This is an automatic consequence of symmetries like
SU(3)XSU(2}XU(1}for Higgs bosons and scalar
quarks and leptons, but may require fine tuning for
light SU(3)XSU(2)XU(1)-neutral scalars. Also, it
is an automatic consequence of the supersymmetry
condition (2.5) that the scalar superpartners of the
superheavy gauge bosons have zero VEV':

K
zp ——0. (2.19)

The superpotential f(z) is assumed to be propor-
tional to a relatively small factor p, but otherwise
to depend only on z" and on a mass scale of order
Mpt ——1/~G:

f(z)=p X function of z~G . (2.20)

In the absence of the observable sector, the potential
would take the form

Some of the zp may also vanish, but they are gen-
erally of order MGU.

B. Hidden sector
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2

V(z)=exp SwGQ ~Z
~ g ~f +g 6—h f 24 6 ~f ~2 (2.21)

h a.—

We assume that there is at least a local minimum of V(z) at a point zo, and that the additive constant in f can
be adjusted so that V vanishes at this point

V(z)=aV(z)/az =oatz=z, . (2.22)

Since V(z) equals p G times a function of z~G, this condition yields a p-independent value of order
I /V 6 = Mpt, for z 0.

The supergravitational coupling between the hidden and observable sectors will introduce what appears as
intrinsic supersymmetry-breaking terms in the effective Lagrangian of the observable sector. As we shall see
below, the magnitude of these terms is characterized by a mass parameter

r

mz ——Sm.Gf(zo)exp 4mGQ ~zo
~

exp 4~6+ ~zo
~

(2.23)
h

III. RESULTS

In order to characterize the breaking of supersym-
metry in the observable sector in theories of the sort
described in Sec. II, it seems to us most useful to
calculate the complete effective potential of the light
observable scalars z, from which we can obtain
whatever information we want about scalar VEV's
and masses. We do this by "integrating out" the
heavy scalars z" and z, expressing them as func-
tions of z and z "by imposing the condition that

BV/Bz"=BV/Bz =0 at z"=z"(z,z"),
z =z (z ,z ") . (3.1)

Leaving the hidden fields for the moment as free
parameters, the effective potential of the light sca-
lars is then

V, (z,z")=V(z,z"(z,z"),z (z,z"),z") . (3.2)

It so happens that
~
mz

~

is the gravitino mass, but
for us the important thing about mg is that it sets
the mass scale of particles like the IV+-and Z . We
therefore assume that

~

rng
~

&&MGU and mg
~

&&MpL =—1/v 6
(2.24)

and for orientation we may think of mg as roughly
of order 100 GeV. '

From now on we will use mg rather than p to
characterize the smallness of the hidden-sector su-
perpotential. That is, p in (2.20) is taken to be of or-
der (mz/6)'~ (or 10' «V for mz-100 «V) so
that f is of order mg/6, as required by (2.16). Of
course, we do not at present know why p should
take this particular value, so for now mz is simply a
parameter put in by hand.

To render this calculation tractable, it is necessary
at every point to use a power-series expansion in mg.
We take the light fields z to be of order mz and the
hidden fields z" to be of order MPL, because that is

where experience teaches us to look for the
minimum of V. The mass mg also enters as the
"smallness" parameter in f. Apart from mz, the

o»y masses in the problem are MG„(perhaps 10'7
«&) and Mpt, ——1.2 X 10"«V. These are not very
different, so our expansion parameter will be taken
as mg/M, with MGU and Mpt. regarded as roughly
of the same order of magnitude M. The expansion
for the heavy fields then takes the form

z =zp+z& +z2+ ' ' '

—zp +z& +z2 +
(3.3)

with z„" and z„of order M(rng/M)". To repeat, M
now stands for the grand-unification mass and/or
the Planck mass.

The details of this calculation are presented in
Appendix A. A crucial result is that the potential
V ff turns out to be independent of the light scalars
z not only in orders M and mgM, but also in or-
ders mg M and mz M. It is therefore possible to
choose a z -independent value of the hidden fields
z where the potential Vd~ to this order is stationary
in z, and adjust an additive constant in the superpo-
tential f to make the potential vanish to this order.
The values of the hidden scalars and the additive
constant in f turn out to be just those that we would
calculate according to Eq. (2.22) in the absence of
the observable sector, plus small corrections of order
rng in z " and of order mz M in f. With z" and the
constant term in f fixed in this way, the leading
terms in V,ff are of order mg . As long as we are
not interested in higher terms (of order mg /M, etc.)

it is an adequate approximation then to neglect the
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corrections to z" and to the constant term in f, and
simply take them to have the values given by (2.22),
which will be indicated with a subscript 0.

Our result for the 0 (ms ) terms in V,ff can most
conveniently be expressed in terms of a low-energy
effective superpotential

f(&)+f(2)+f( i)+f(o) (3.4)

Here f' ' is proportional to the part of the original
superpotential that is trilinear in /ight scalars

f(3) i E i/2 gf zazPzy (3.5)
~Pr

while f' ', f'", and f' ' result from the first-order
shift in the heavy scalars

f(2) 'E i/2 yf zazt)z~ (3.6)
aPA

f(1) )El/2 yf a A B

nAB

(p)f'"= ,Eo'" —g—f~Bcziz(zi . (3.8)

(3.7)

Also Ep is the constant factor

Eo=exp 8irGQ Izo I
exp 8irGQ Izo I (3.9}

A h

+4Re(ms f' ))+2Re[(4ms —ms )af'"]

+ Im, I'g Iz I'+ , g(z't„z)'—+V,.

(3.11)

and z i is the first-order shift in the heavy scalars

Z ] — ABZp mg (3.10)
B

Note that f&B and zp are both of order MoU and in-

dependent of G, so z i is of order ms, and otherwise
independent of both Moi) and MpL as well as of z .
It turns out that z~ ——0, so only z~ appears in
(3.6)-(3.8).

Our main result is the formula for the O(ms )

terms in the effective potential of the light scalars:
2

V,ff= g +2Re(ms f' ')
Bz

Here ms is the gravitino mass (2.23), which we can
write as

ms ——8m GEp'/ f() (3.12)

and mg is a comparable mass parameter

ms 8nG——Eo'/ gzp „+8irGfog Iz() I

li

Z p h

(3.13)

while t„are the SU(3}XSU(2) XU(1) gauge genera-
tors, and Vp is a constant of order ms . (It is impor-
tant to note that f' ' and f"' are, respectively, pro-
portional to ms and ms, and do not involve ms. )

We can arrange to cancel the vacuum expectation
value of V,ff, including Vp and all radiative correc-
tions, by a shift in the hidden-sector superpotential f
by a constant term of order mg2. The first term in
(3.11) is just what we would expect in a globally su-
persymmetric theory with superpotential jeff while
the other terms explicitly break supersymmetry.

Several features of our result are worth special
mention:

(a} It is amazing how little we need to know in or-
der to calculate the effective potential. All the un-
known features of the hidden sector are embodied in
just two complex mass parameters ms and ms, of
comparable magnitude. Also, all aspects of the
grand unified theory have been boiled down to the
parameters in the effective superpotential. In partic-
ular, and somewhat surprisingly, there are no terms
in V,ff of order mg (GMoU ), so to order ms the
effective potential does not even depend on the
grand-unification mass scale MoU.

(b) Despite the fact that (3.11) does not depend on
MoU, the supernormalizable terms in the effective
potential that arise here from the shifts in the heavy
scalars z" are very different from those that would
arise directly from linear and quadratic terms in the
original superpotential in a theory without heavy
scalars. In the latter case, the potential of the light
scalars to order ms would be (as in Ref. 4)

2

V= g +2Re(ms f' ))+2Re[(ms —ms )f' )]+2Re[(ms 2ms )f'"—]
8

+ Im, I'g Iz I'+ —, g(z, t„zo)+Vo. (3.14)
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[See Appendix C. Here f,ff is simply the constant
Eo' times the original superpotential, with any
terms of fourth or higher orders in the light fields
deleted, and f'"' is defined as in Eqs. (3.5)—(3.8).]
Comparison of (3.14) with (3.11) shows that these
results are not the same, and cannot be brought into
the same form by any redefinition of the constants

mg and mg.
(c) The bilinear and linear terms f' ' and f"' in

the potential (3.11), which distinguish our result
from (3.14), may be of importance in developing
realistic models. The appearance of such terms in
order mz in the effective superpotential is governed
in part by the mechanism that is responsible for
their nonappearance in order mg M&U or mg M~U
in theories with a superheavy mass scale MGU. As
indicated in Ref. 18, there are several possibilities
for this mechanism. If the breakdown of the
grand-unified gauge group leaves some scalars mass-
less and with zero VEV because of an unbroken
symmetry of the whole theory, then f'" and f' '

will not appear even in order mg, and there will be
no difference between (3.11) and (3.14). If these sca-
lar masses and VEV's vanish because of a fine tun-

ing of the theory then f'" and f' ' terms will in gen-
eral appear in order mg, but they will be unstable to
tiny changes in the fine tuning. We wish to stress
that it is also possible for scalar masses and VEV's
to vanish in the limit mg~0 automatically, but not
because of an unbroken symmetry of the whole
theory, and in this case we generally expect f"' and
f' ' terms to arise naturally in order mz . One way
that this can happen is for masses and VEV's of the
light scalars to be kept zero in the limit mg~0 by
an R symmetry of the whole theory, ' which is
spontaneously broken in the hidden sector. The
news of R-invariance breaking would then be carried
to observable fields by supergravity. For instance,
suppose that the chiral superfields of the observable
sector comprise a set Y" with R =0 plus one X with
R =2. The observable-sector superpotential then
must take the form

f (X, F) =Xg ( I') .

The conditions for a supersymmetric vacuum solu-
tion are then

g(y)=0, xBg(y)/By"=0 (all n)

with lower-case letters denoting scalar components
of superfields. It is natural to expect that there
should be a nonzero scalar field value yo at which
g(y} vanishes, but with Bg(y)/By"&0 for at least
some y", and in this case there is a supersymmetric
vacuum solution with

y=yo i

By a linear transformation we can choose the Y"
fields so that Bg(y)/By" is nonzero at yp for only
one of the scalars, say y '. That is

[Bg (y)/By ']p ——M,
[Bg(y)/By ]p=0,

with a running over values of n p 1, and M nonzero
and of order MzU. The y are the light scalars
whose masses vanish for ms —+0. With suitable ad-
ditional symmetries, it can also be natural for their
VEV's yo to vanish, while yo' is nonzero and of or-
der MoU. The matrix f&z of second derivatives of
the superpotential with respect to heavy scalars then
has elements

(B'f/BxBx), =(B'f/By'By') =0,

(B f/By'Bx)p ——M .

Equation (3.10) then gives the shift in the heavy sca-
lars x and y

' as

xi ———M 'yp' mz ——0(ms),
1

and (3.4)—(3.8) give the effective low-energy super-
potential as

ap ~y ~y o

This means that we can encounter bilinear mass
terms in the low-energy effective superpotential
without fine tuning. In a realistic model the y
would be the Higgs doublets; we would also have to
add quark and lepton superfields with R =+1 and
perhaps additional light singlets with R =2.

(d) The only mass scale appearing in (3.11) is mz
(recall that ZA1 and mg are of order mg} so apart
from coupling-constant factors, all light scalar
masses and VEV's will be of order mz. It is for this
reason that we have considered the potential for z
values of order ms, and have taken mz to be of or-
der mar.

(e) It was crucial in the calculation of V,rf that the
terms of order mg M and mg M turned out to be
independent of light scalars, and could therefore be
eliminated by an adjustment of the additive constant
in the hidden-sector superpotential. The third-order
terms are larger than those of order mg by a factor
MGU/ms=10', so even very tiny z~-dependent
corrections to these terms could completely invali-
date our results for V,ff. Our calculation here shows
that there are no z -dependent corrections of higher
order in GM&U to the mg and mg terms in the
tree approximation, but it is necessary also to check
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both ordinary and gravitational radiative corrections
to at least fifth order in a and GMaU . We have not
done this, but in Appendix B we analyze what prop-
erties of a general potential are needed in order that
the leading terms that depend on light scalars should
be of fourth order in a perturbation. We anticipate
that the no-renormalization theorems of supersym-

metry can be used to show that the terms in the po-
tential due to radiative corrections actually have
these properties in theories with a natural hierar-
chy."

Even accepting that there are no z -dependent ra-
diative corrections to V,ff of order ms and ms,
there certainly are such corrections in order ms . If
we were to use V,~~ to carry out calculations of
quantities measured at energies of order ms, these

I

radiative corrections would be of order
aln(M&U/ms}, and so could not be considered
small. Instead we must interpret our results as giv-
ing the effective potential for energies of order
MaU, and use (3.11) as the input to a
renormalization-group calculation that would in-
tegrate the equations for the parameters in V,ff
dawn to energies of order mg, and only then use the
results as our low-energy effective potential. ' '

IV. GENERAL KAHLER POTENTIALS

Up to now, our results have been based on Eq.
(2.2) far the potential, corresponding to a flat
Kahler metric. In general, the potential would be
given by a formula'

V=exp(gmGd) g (g }M z +SAG z fro~
~frar Bd

ttM Bz BZ

—24~G
I fTQT I

' + gang«erms (4.1)

where Z here runs over all chiral scalars z', z, and

M 8 d
~ZN~ZM

(4.2)

where d, the Kahler potential, is a function of both
Z and Z, while fran ——f+f is still a function of
Z alone. Equation (4.1) reduces to (2.2) in the spe-
cial case

d g [Ziv (4 3)

It does not seem reasonable to expect that the
Kihler potential will oblige us by taking a form as
simple as (4.3). For one thing, this is not what we
find if we start with a renormalizable theory of
chiral superfields and then turn on supergravity; the
Weyl rescaling that is necessary in this case yields

(4.4)

(This is the case P = —3+Sn.G g ~

Z
~

in the nota-

tion of Cremmer et al. '
) Another argument against

(4.3) arises from the presence of gravitational radia-
tive corrections, which could not be expected to
preserve a simple formula like (4.3).

On the other hand, if we do not limit the form of
the Kahler potential in any way, we can derive hard-

ly any conclusions from (4.1). We may in the end be
driven to such a pessimistic conclusion, but for the
present it seems reasonable at least to explore the

I

possibility that d belongs to a class of functions that
is wide enough to be plausible and yet narrow
enough to allow us to draw interesting conclusions.

We shall assume here that the Kahler potential
takes the form

SmGd(z, z~) =P Sn6 g i
Z

N

(4.5)

g~ =P'(u)5'+ SmGP"(u)z Z

where

u—:SnGQ ~z
N

This has inverse

(4.6)

(4.7)

where P(u) is a power series with coefficients of or-
der unity. This includes (4.3) and (4.4) as special
cases. Also, it is reasonable to expect that gravita-
tional radiation corrections will at least approxi-
mately respect the form of (4.5), because in the ab-
sence of a superpotential these corrections possess a
U(n) symmetry among the n chiral superfields that
would require the Kahler potential to take the form
(4.5). We would expect any violations of this U(n)
symmetry in d(u) due to gravitational radiative
corrections to be suppressed by whatever small fac-
tors (ms/Mpi or Yukawa couplings) appear in the
superpotential.

From (4.5), we obtain the Kahler metric
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(g ')N P—— '(u)5&+8m GQ(u)Z Z

where

(4 8) Q(u) =—P"(u)/[P (u)+uP'(u)P"(u)] . (4.9)

Using (4.8) in (4.1) yields

8
2

+ mGP'(u)Z froT +Q(u) gZ N +up'(u)fTor
BZ N

—24~G
~ fmT ~

+ gauge terms . (4.10)

For a superpotential of the form (2.1), Eq. (4.10) takes the form

2

(u)g +8mGP'(u)z (f+f) +p' '(u)g +8 Gp'(„)-h'(f+f)
g Bz zh

2

+Q(") +" + X'" +up'(u)(f+f) —24~G ~f+f ~' + gage terms,
az I, az"

(4.11)

where now

u =8mG g fz'f'+ g /zh/z
a h

(4.12)

We follow the same procedure as in Sec. III, integrating out the heavy scalars by setting them at values where
V is stationary with respect to them. Again, we find that terms of order m 2~2 and m 3~ are independent of
light scalars, and can be made to be stationary with respect to the hidden-sector scalars and vanish by adjustin
the value of the hidden-sector scalars and the additive constant in f. By a lengthy calculation just like that of
Appendix A, the terms of order mg are found to take the form

2

V ff = g +2 Re(ms f' ')+4 Re(ms f ' ') +2 Re[(4mg —mg )f"']
Bz

+ ~ms'~ g ~z
~

+Vo+ gauge terms.

Z ] — mg QBZO
B

(4.14)

so that f' ' and f'" are proportional to ms", and
(ms" ), respectively. The constants ms, ms, ms",
and m" are given by complicated formulas in terms
of the hidden-sector

su~ erpotential
and P and

its derivatives at z'=0, z =z 0, but they are all of

Here feff is an effective superpotential and f' ', f' ',

and f'" are its trilinear, bilinear, and linear parts,
given by Eqs. (A20) or (3.4)—(3.8), but with Eo re-
placed with e at z'=0, z"=zo. (An additional
factor 1/P' would appear here, but we absorb it into
the normalization of z' in order to avoid P' factors
in the kinematic and gauge parts of the Lagrangian. )
The first-order shift z~ in the heavy scalars is given
here by

I

the same order of magnitude, roughly that of the
gravitino mass. The only substantial difference be-
tween these results and those of Sec. III is that the
properties of the hidden sector are now represented

by four independent mass parameters mg, mg, m~",

and mg"', rather than just mg and mg.

V. APPLICATIONS

We now take up some examples. Much of this
analysis is already present in the articles of Refs.
3—11;we go into it here in order to illustrate the use
of our results when the mass scale in the low-energy
effective superpotential arises from a more funda-
mental theory involving superheavy particles about
which nothing is explicitly known.

Consider an SU(2) &( U(1) low-energy effective
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H =(H,H ), H'=(H+, H ) . (5.1}

gauge theory with a pair of doublet Higgs left-chiral
superfields:

We see that SU(2) XU(1) is unbroken if

Img Ir+ Im" I'&2Im
I Im (5.&)

Additional chiral superfields will be added later.
The most general effective superpotential is

jeff =mg(H eH') (5.2)

V,rr = (
I mg I +

I
mg"

I
)(M P +A 4 '}

+4Re(mgmgA eA ')

+ —,g'(4 t t ~+A t t m')'

+ ,g ( 2
—A tP 2A —tA ')' . (5.4)

We here use script letters for the (first) scalar com-
ponents of left-chiral superfields; t denotes the elec-
troweak isospin generator, and g and g' are the usual

gauge-coupling constants.
This cannot yield a satisfactory picture of

SU(2)XU(1) breaking. For charge-conserving sca-
lar VEV's, both the gauge and A 4 terms in (5.4}
are minimized on the surface of constant

I
(A o}

I
+

I
(A }I

along the direction

where e is the usual antisymmetric 2p 2 matrix, and

mg is a coefficient of the order of the gravitino

mass, given by (3.6) and (4.14) as

mg ,'m—g"—e—' gf '~rr&ofarrrr .
AB

We know almost nothing about m", which depends
on the hidden-sector superpotential and the Kahler
potential, or about the quantities appearing in the
sums over heavy scalars, which depend on the
underlying grand-unified model. Never mind —all
these uncertainties appear here only in the value of a
single unknown complex constant m, which will

have to be taken from experiment.
From (5.2) and (4.13},we obtain the effective po-

tential

and otherwise it can be broken only at a scale very
much greater than mg, where nonperturbative ef-
fects may halt the decrease of V,rr. It is easy to
show that this undesired conclusion obtains also
when we add quark and lepton superfluids, or in-
clude arbitrary numbers of Higgs doublet super-
fields.

In Refs. 5, 7, and 10 it is noted that the symmetry
between A and 4 that is responsible for the un-

satisfactory features of this model is actually broken
by the different Yukawa couplings of 4 and A "to
quarks and leptons, which enter in the
renormalization-group equations used to integrate
the parameters in V,ir down from grand-unification
energies to ordinary energies. However, as they
point out, this solves the problem only if there exist
some extraordinarily heavy quarks or leptons, with
masses above about 100 GeV.

An alternative possibility that has been explored
by most of the authors of Refs. 3—11 is to include in
the low-energy theory an SU(3) XSU(2) XU(1)-
neutral left-chiral superfield Jwhich allows trilinear
terms JH eH' in the superpotential. Usually J is
identified as the "sliding singlet, " needed to keep the
Higgs doublets from getting very large masses like
its SU(5) partners. This runs into severe difficulties,
either through J mixing with the hidden sector or
through its scalar component picking up a large
VEV, either of which would wreck the hierarchy of
mass scales. However, for us J is simply one more
chiral superfield that happens like H and H' to
remain massless (and with zero VEV) in the break-
down of some grand-unified symmetry, for reasons
into which we do not here inquire.

With J included, the most general effective super-
potential is

f,rr= mg (H eH')+(mg ) J+mg J2

(mo) =—e' (m'o}' (5.5)
+A(H EH')J+I, 'J (5.9)

I

with phase a chosen to minimize the A A term

a=Arg(mgmg ) . (5.6)

V.rr=2(
I mg I

'+
I
mg'

I

'—2
I mg I I mg I

)
I

~' I'.
(5.7)

Along this direction, the effective potential is a qua-
dratic

We would here have to regard m~"' as three mass
parameters of the order of the gravitino mass, which
are given by formulas like (5.3), but which for prac-
tical purposes must be regarded as unknown. The
constants A, and A,

' are to be taken directly from the
trilinear terms in the superpotential of the grand-
unified theory, but for our present purposes are also

just unknown dimensionless coupling constants.
The effective potential for (5.9) is
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v«= I, +A/ I'(4 tA+MtA")+ I(, )'+2, g+3iL'g'+A(m ~'}I'
+2Re[ms (A,P eA '++A, 'g )]

+4Re[ms(ms P' eA '+ms + )]+2Re[(4ms —ms)~(ms ) g]
+ lm,"I'(Ig I'+~'~+~'~ )

+ —,g'(~t tA+A t t~')'+ —,g'( —,A tA ——,A ~~')'. (5.10)

(m-IM'I~-)=(m+'IM'I~+ )

= —,(mg 2+6, )

with

(5.11}

6 /2=
I
ms"'+A, (g )

I +
I

m "I ) 0 . (5.12)

By the Goldstone theorem or direct calculation, we
then also have

(~- Im'I~'+') =(m'+'Im'I~-)
= —,(m p +b, )e' . (5.13)

I

For charge-conserving scalar VEV's, the minimum
of (5.10) is again in the direction (5.5) (but with dif-
ferent phase a). It is well known that (5.10) has an
SU(2) XU(1)-breaking minimum along this direction
with (4 )&0 for a variety of special cases. For
instance, if all terms in (5.9) are absent except
A,(H eH')J, then (5.10) has an absolute minimum
along the direction (5.5) with (A )&0, provided
that

I ms I
)3

I
ms'

I
.

We will not specialize by choosing any specific
values for the parameters in (5.9), but will just as-
sume that they fall in the range where SU(2) XU(1)
is broken, and consider those consequences of (5.10)
that do not depend on the values of the parameters
in this range.

Charged scalars: Inspection of (5.10) shows that
the mass matrix of the charge-1 scalar boson has di-
agonal elements

The eigenvalues are then 0, corresponding to the
Goldstone boson eliminated by the Higgs mecha-

nism, together with

m+' ——mw'+b, '. (5.14)
Thus there is a physical charged Higgs boson
heavier than the 8'.

neutral scalars: There are six real scalar fields
here, of which one real field is eliminated by the
Higgs mechanism, leaving five real physical neutral
scalars. The complete mass spectrum is quite com-
plicated, but one of the masses is easily calculated by
using the symmetry of (5.10) with A =M+=0
under the interchange of A and P . By a U(1)
gauge transformation we can always choose the
phase of (4 ) to be (n.+a)/2, so that (S.S) gives

and A equal VEV's, thus preserving this sym-
metry. The scalars of definite mass can therefore be
classified as even or odd under the symmetry

four real scalars are even, and two are
odd. The Goldstone boson eliminated by the Higgs
mechanism is odd (because 4 and M have oppo-
site t3 and weak hypercharge) so there is just one
physical odd neutral scalar, which does not mix with
any of the other neutral scalars. Its mass is easily
calculated to be

~o,odd ~Z +~ (5.15)
This scalar is heavier than the Z, and by the same
amount (counting squared masses) as the charged
Higgs boson is heavier than the 8'.

5-quarks and s-leptons: In order to account for
the quark and lepton masses, we must add terms in
the superpotential of the form

(m„/(4 ) )(QL eHt. )U~+(m~/(4 ) )(QLE'HL, )Dg +(m, /(A ) )(LL EHL )Eg, (5.16)

where QL = [ UL, DL j and Lt. = [Nt. ,Et. j are left-chiral quark and lepton doublets; UR, Dz, and Ez are left-
chiral antiquark and antilepton singlets; and we assume one generation for notational simplicity. With vanish-
ing VEV's for the scalar counterparts of the quarks and leptons (s-quarks and s-leptons) there is no change in
our previous discussion of Higgs and singlet masses and VEV's. Setting the neutral scalars equal to their
VEV s, the terms in the effective potential that are quadratic in the s-quarks and s-leptons are

m. '(
I
+i

I

'+
I
+~

I
')+ma( I&L I

'+ lx)z I

')+m. '(
I
&~

I

'+
I

@'~
I

'}
+2Re[ [ms —e' (ms '+&(g ) )]'[m, +L, +g+mg&rtt +m, @'L, @'g] j

+ lmg'I'(I +i I'+
I +~ I'+ l&i I'+ l&z I'+

I
&i I'+ I@'~ I'+ l~i I'+ l~~ I'}
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The up —s-quark masses are then

m @+——
I
ms'

I +m„

+m„ lm' —e' (m +A,(g ))
I

(5.18)

and likewise for the down s-quarks and s-electrons,
while the s-neutrinos have mass

Fb =—„+S~G(f+f)z"z"

Dk= g—z z (tk)b,
a, b

(A3)

(A4)

m~ = mg (5.19)

We note that for small quark and lepton masses, the
s-quarks and s-leptons are nearly degenerate, and in
any case the average mass of each s-quark or s-2

lepton pair exceeds the corresponding quark or lep-
ton mass by the same amount, an amount less than
the difference 5 of A +-and W+-masses .

Most of these results [except perhaps for Eq.
(5.18)] have been obtained before in more specific
models. " Our derivation here serves to em-
phasize that these results apply independently of the
parameters of the low-energy superpotential or the
details of the grand unified theory or even the de-
tails of the Kahler potential.

where f and f are the superpotentials of the observ-
able and hidden sectors; z' and z" are the complex
scalar fields on which they, respectively, depend;
and tk are the gauge generator matrices. The scalar
indices a, b, . . . run over values A,B,. . . labeling
complex superheavy chiral scalars; a,P, . . . labeling
complex light scalars; and K,L, . . . labeling real sca-
lars that would be degenerate with the superheavy
gauge bosons in the limit f~0. Also, the gauge in-
dices k, l, . . . run over values K,L, . . . labeling su-
perheavy gauge bosons, and values a, A,, . . . labeling
gauge bosons [of SU(3) &&SU(2))&U(1)] that do not
get masses from the breakdown of the grand-unified
gauge group. These different index values are dis-
tinguished by the conditions
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APPENDIX A: CALCULATION OF
THE EFFECTIVE POTENTIAL

f~tt =f~ =fax =f~ =fxc =o,

fqs nonsingular,

(txzo) =(txzo)"=0,

(tzzo) =pttL, nonsingular,

a K
ZO —ZO —0 ~

(A5)

(A6)

(A7)

(A8)

(A9)

with

+ —,
' &Dk',

k
(A 1)

F, = +Sn.G(f +f)z'
Bz

(A2)

Under the assumptions and in the notation of Sec.
II, the potential is

V(zz)=exp SirG g lz'I +g lz"
I

a h
r

&& Q IF. I'+X IFb I' —24~G If+f 1'
a h

where zo is the stationary point of f(z). Recall also
that f,b, . . . denotes the partial derivative of f(z)
with respect to z',z,z', . . . at z =z0.

We will write the observable scalar fields as

z'=zo+P' (A 10)

and take P' to be like f of order ms. We are in-
terested in calculating the potential to fourth order
in mg.

For heavy scalars, the leading term in F„ is of or-
der ms (recall that f as well as df/'dz' vanishes at
z =zo), so we need terms in Fz up to order ms'.
Grouping terms by order in mg, we have to third or-
der

r

Fz- g fzsp +SaGzo f + i g faabp'p +4rtGzo g facp p +SAG/" f
B ab BC

+ , gf,.b,p'p'p'+ , S—~Gzo gf.b, p'p'p-'+4~Gp" g f„p'p' .
abc abc BC

(Al 1)
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(A13)

Similarly, for the hidden sector the leading terms in Fb are of first order in ms, so here we need to keep terms
up to third order

Qn the other hand, for light scalars and scalars degenerate with superheavy gauge bosons the leading terms in
F and Fz are of order mz, so we need only keep these terms:

F =~ gf .b0'0'+8~GP f (A12)
ab

Fx- , g—fxobp p +8m gp f .
ab

„+8mgz"'f + 4mgz" .g f»p"p + —, )&8mgz" g f,b, p'pbp'
Z" AB abc

(A14)

Also, for superheavy gauge bosons there are terms in Dx of first and second order

Dx-2+Vxi P +(P ting) (A15)

while for light gauge bosons D„ is entirely of second order in mg

D„=(P t„P) .

Finally, the leading term in f+f is of first order in ms, so we need to keep terms up to third order

f+f=[f]j+ , g0"0—' + , Xf.b,4'D-' .
AB abc

(A16)

(A17)

(A18)

Using these approximations in (Al), and discarding terms of fifth or sixth order in ms, we find for the terms
in V of order ms M, ms M, and ms the following expressions:

2 '2
V~=NV+Eg gf»P +8ngzo f +2. g gp~i. g

A B E L

V3 —16nGRe gzo I(I" Vz+2ERe g gf»P +8wgzo f
A A B

&& —, gf~.b4'0'+4~gzo gfac0'0 +8~GO" f
ab BC

+8~GERe g z +8~g~z~~f~' *gf»y"y'
BZ AB

r

24~GERe f*g—f»f P +2+(P &xg)@xi.g
AB KL

(A19)

'2P

V4 —— —128m G Regzo p" +8m.gg ~
p'~ Vz+16~GRe gzo'p"

2

+Eg —, g fq,bp'p +4mgzo g fscp~pc+8ngfp"
ab

r

+2ERe g g f»p ygrrgz" f 8ngzo , g f,b, p'y y'+—4~gy 'gf»y~y&+ ', gf„, ,y yby—
A B abc AB. abc
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a ab h AB

2 2

+EX , X—f,s4'0'+8~gf f +64~'g'Eg ~z" ~' ,
' g—f»y"y'

+16mgEReg z"
h

lf

„+8m.g
I

z"
~

'f —, gf,b, p'p p' 24~GE —,
' gf»y~y~

gz h
abc AB

2—48m.gERe g ,f. P'—P'P'f* + g —,gf .,y'y'+8~gy 'f
E ab

Here V is the potential of the hidden sector alone

2

+8~gz"'f —24~G
~ f~'

h
h

and N and E are the exponential factors

N =exp 8m G g ~
zo (

A

(A20)

(A21)

(A22)

E =N exp 8ngg
~

z ."
~

(A23)

Also, we remind the reader that sums over a, b, . . run o.ver the values A, B,. . . and a,P, . . . and E,l, . . . .
We now express the heavy scalars P" and P as functions of P—:z by imposing the conditions that V be

stationary in heavy scalars. Expressing the heavy scalars in power series

with

=z( +z2+z3+ ' ' '

=zf+z2+z3 + ' ' '

(A24)

(A25)

z„" and z„(ms)"
the stationarity conditions become

(A26)

(A27)

0=

8 V2 BV2

gyA gyK

av, a'V. .. av, , a'v,
~2 A28

gad + gyAgyB~ 2 gyx & gyKgyL

and so on, the subscript indicating that P" and P are set equal to z& and z&, while P =—z is a free variable.
[In writing (A28), we use the fact that the only nonvanishing second derivatives of Vz are those shown here. ]
From (A27) and (A28), we find

z) ———8ngf gzo
B

(A29)

z", = —g f '», 8mgg f ' aczoE 'V2+ —, pe, i,zfz~+4ngzp Q fcDz&z&
B C ab CD

and

+8~gz
' f+g z" +8~g~z" ~'f 24~gfz, —

h

(A30)
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Ez( ——0,
Z2 = —

g gp KL(Z1rLZ1) ~

sc

L

(A31)

(A32)

with z
&
=z . We will not need the formulas for the higher-order terms in z and z .

Now we can calculate the effective potential of the light scalars by inserting our results for z" and z in V.
To order mg, this gives

8V2
V,«= (V2), + g z"2+cc+ g11»

2 ,A, a
ay"ay'

Using (A27) and (A28), this simplifies to

x 8V3 8V3
z, +(V)+ g z", +ce+ g z»

gy» a4

gy»dpL
2 2+ ~ gya

&+ + ~ gp»
&+ 4)' '

(A33)

2 2~sVe«=( V2)1+( V3)1+(V4)1 —g ~ e Z2Z2 —
2 g Z2Z2

~a ~4 d4' 1 »L
(A34)

First consider the effective potential to third order in mg. Using (A29) and (A31) in (A18) and (A19), this is

(V2), +(V2)1 —— 1+16mGRegzo z1 Nv+smGERe, gz" „+ SING Q ~z"
~

—3 f g fgsz1Z"1, .
h h Bz h AB

(A35)

We note that (A35} is completely independent of light fields, so we can find a z -independent value of the hid-
den fields z" where (A35} is stationary in z ", and we can adjust an additive constant in f to order ms so that
(A35) vanishes at this point. However, the remaining terms in (A34) are already of order ms, and to this order
it is an adequate approximation to calculate these terms using the lowest-order values for z" and f(z ") at the
stationary point. These are determined by the conditions that the second-order term NV in (A35) vanish and
be stationary, i.e., that

= V=0.
ez" (A36)

These conditions fix z" to have the value denoted z o in Sec. II. From now on, we suppose that z" and the ad-
ditive constant in f have been determined in this way.

With ( V2+ Vs)1 absent, the effective potential is given by (A35) as

2 2av, „.. . av,e«4 1 g ~~g~~S 2 2 2 g ~~K~~L
2 2 (A37}

Setting p"=z1 and p =z1 =0 in (A20) yields

2

(V4), = Eo g 2 f„,sz;z1+4mGzo gz1Z1+snGfoz1 +Eo g I 2 fa tz'z +smGZ fo I

A BC e

T

+S~GEo S~G+ ~z" ~' —3 ,
' gf„,z",z', —

h AB
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r

+16~GE Re
az abc

2 gfK~bz;z, + z X I
z, tKzl

I
+ z 2 I

zlt~z (A38)

Also, (A30} and (A32} give

O'V2 B
ale Z2Z2 =Eo g gfABZ2

~a ~4"8' i ~ a

=Eo g , gf~.—bzizl +4~Gzo QfcDzizi
A ab CD

+8 G
&' y -h df + Sm.GQ lzll I

—2 fll
Bz" p

(A39)

a'v,
z,z, =2+@Ktz2Z2

gyKgyL

g (ZltKzl }
1

K
(A40)

Part of (A39) cancels the first term in (A38), and (A40) cancels the next-to-last term in (A38), leaving us with

V,«= —16m.GEpRe g z" + S~GX lzol —3 fo
h

&& —, gf~abzizlzl+4~G gzizo gfcDzlzl +S~Gfo g I
zl

I

abA A CD A

-h~ P 2
64+G g lzl I

gz" h+ SirG+ lzol 3 fo +Eog 2 gfaabzlzi+SmGZ 'fp
A h BZ h n ab

2

+SnGEp Sn 6 Q.
I

.z
I

—3 —, Q fgilz 1z1
h AB

+16~GE Re y zh f + SAG+ Iz I

—3 foe z
h

2

)& —, g f,b,z lz,z 1 +g, g fK,bz lz 1 + —, g I
z 1t„zl I

abc K ab K

(A41)

We note also that

fK tt= gfK~Z, =0A

A

(A42)
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so the sum over a and b in the next-to-last term in (A41) runs only over heavy scalar indices A and B, and this
term is therefore independent of light scalars.

(Proof: From the gauge-invariance condition on the superpotential

(tKz)'=08

c ()z

we have by differentiating twice and setting z =zo

g [f.b.(tK»'+f (tK)b+fb (tK)'. ]=o

Using (A7) and (A8) allows us to solve for fK,b.

fKab gP KLlfac(tL }6+fbc(tL }ai .
Lc

Equation (A5) then yields

fK p=o

and

fK~ = —g)M 'KLf~g(tL)a
LB

SO

g fK~Z) =+8~Gf gz()'(tL)
A LB

which vanishes by (A7}.)
It is vs convenient to rewnte (A41) by introducing an effective supemotential

1/2Eo
feff = ~ fabcz (Z )Z ( (A43)

The other z -dependent quantities in (A41}can be wrttten

gf Z4zaz b 3f(0)+2f(1)+f(2)

abA

f Zazazb f(()+2f(2)+3f(3)

aba

1 a b
aab~ 1~1

aab

eff

Zc

where f'"' is the term in f,tt of nth order in light scalars. Equation (A41} thus takes the i'o~

ett + «tmg f"'I+4«Imgf"))+2«(((4mg mg)'f"'I—+ ~mg i2+ iz
az

2

+ —, g gz z (t )p +Vo,
nP

where mg, mg, and Vp are the constants

(A44)

mg 8mGEo)i fo i——
(A45}

mg 8nGE0 gzt ——
b +8nGfog izo i

h Z p h

(A46)
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2

Vo= —2 Re(mg —3mg )mg g I
zl I

'—X I
zl

I

'
I mg —3mg I

'+Eo X —, Xf~Bzlz1
A A AB

2
—4Ep Re(mg 3m—g)~f ' '+Ep g —, g fxABZ 1z 1 +vo

K AB

(A47)

where vp is the part of (A35) that arises from any additive constant of order mg in f. Equation (A44) is our
desired result, quoted in Sec. III as Eq. (3.11).

APPENDIX B: CONDITIONS FOR LIGHT SCALAR INDEPENDENCE IN LOVE ORDERS

Consider a general potential V(z), expressed as a power series in a small parameter e:

V(z) = Vp(z)+eV1(z)+e V2(z)+

Suppose that the zeroth order potential has a minimum at z'=zo.
8 Vp(z) =0 at z'=zo .

Za

Choose a basis in which a runs over values A and a, with

~oaP= ~OAa=0 ~

VOAB nonsingular,

where subscripts denote differentiation with respect to z':

(81)

(82)

(84)

~~b"- = 8V„(z)

Bz Bz ''' z=sa b
0

(85)

%e write the scalars as

z'=zp+eP'

and expand

(86)

V«) =C+e' —, g VoABN"0 + g Vl.k'+&'
6 X vo 1 O'A'+

z g Vl.bk'0' + g V2.0' +o(&'»
AB a abc ab a

(87)

where C is a z'-independent constant. We "integrate out" the heavy scalars P", by imposing the condition that

gyA

This has a power-series solution

=zl +ezp+ ' ' 'A A A

with

Zl g V OAB V1B
A

B

Inserting this back into (87) yields

(88)

(89)

(810)

V,rr(P )=C'+e g Via% +e 6 g Voapyk A + 2 g Vo pAN 0 zl
a aPy aPA

+ 2 g Vp~Bp zAlzB1+
& g Vlzpp p + g VhzAp z 1 + g Vzzp +0(e )

aAB aP aA a
(811)
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with C' a P -independent constant. The conditions
for the z"-dependent terms in V,tt to vanish in or-
ders e and s are therefore

2

V y +8rrGE inza fa"
V)a ——0, (B12)

(B14)

Vo py
——0,

g VoapAz I + Vlap
A

—,g V~azizi + g ViiLtzi + Via ——0 . (B15)
AB

—24irG
I
E'~'f +f,tt I

'+ g D„2 (C2)

with z and f taken as of order ms and

+g E' „+8~Gz"f +8irGz" f,tt
h t}z

In the case of the supergravity potential (A1},
we can regard f and g„z "t}fIBf" as parameters of
order e (with z" regarded as a fixed parameter}.
With zo=0, we can easily verify that Via, Vo pr,
and Vz all vanish, while the first two terms in

(B14) and (B15) cancel. This verifies again that V,tt
is independent of z in orders e and e .

f.tt=E'" —, gf pz zP
ap

1+ —, gf pp zpz& -nt, '.
apy

(C3)

APPENDIX C: THEORIES WITHOUT
SUPERHEAVY SCALARS

We suppose in this appendix that there are no su-
perheavy scalars, but that the superpotential f(z) in-
volves a light mass scale, of order ms. That is, the
scalar field labels a,b, . . . run only over values
a,P, . . . denoting light scalars, and the superpoten-
tial now has nonvanishing but small second deriva-
tives with respect to these scalars:

The quantities within the absolute value signs in
(C2) are purely of order ms in the first term, but of
order mg and mg in the second and third terms.
Discarding the terms in V of order ms, we have
then to order mg:

2

V= EV+ g +16mGE'~ Ref.*gzaf„, i2
t}Z Bz

+64+G'E If I'X Iz I'

+16irGE' Re+ z" "„+8rrGf Iz&
I

BZ

48nGE'~ Ref—~f,tt+ QD„z . (C4)

f p= p-—ms .
az Bz

To order ms, Eq. (2.2) then gives

(Cl }

To this order the minimization of V with respect to
z " gives z "=z t, where V vanishes. Equation (C4) is
then the same as the result quoted in Eq. (3.14}.

~The possibilities of constructing realistic models with
low-energy spontaneously broken supersymmetry were
extensively explored by P. Fayet, Phys. Lett. 698, 489
(1977); 708, 461 (1977); in New Frontiers in High Ener-

gy Physics, edited by A. Perlmutter and L. F. Scott (Ple-
num, New York, 1978), p. 413; in Unification of the
Fundamental Particle Interactions, proceedings of the
Europhysics Study Conference, Erice, 1980, edited by
S. Ferrara, J. Ellis, and P. van Nieuwenhuizen (Plenum,
New York, 1980},p. 587; in Proceedings of the XVIth
Rencontre de Moriond: Vol. I, Perturbative QCD and
Electrotoeak Interactions, edited by J. Tran Thanh Van

(Editions Frontieres, Dreux, France, 1981), p. 347.
Also see M. Sohnius, Nucl. Phys. 8122, 291 (1977).
For more recent discussions of the difficulties encoun-
tered in these models, see E. Witten, Nucl. Phys. 8188,
513 (1981); S. Dimopoulos and H. Georgi, ibid. 8193,
150 (1981); N. Sakai, Z. Phys. C 11, 753 (1982); S.
Weinberg, Phys. Rev. D 26, 287 (1982); L. Alvarez-
Gaume, M. Claudson, and M. Wise, Nucl. Phys. 8207,
96 (1982); L. Hall and I. Hinchcliffe, Phys. Lett. 1128,
351 (1982); G. Farrar and S. Weinberg, Phys. Rev. D
(to be published).

26lobally supersymmetric models with a partially isolated



SUPERGRAVITY AS THE MESSENGER OF SUPERSYMMETRY. . . 2377

supersymmetry-breaking sector have been discussed by
many authors, including E. Witten, Phys. Lett. 105B,
267 (1981); L. Alvarez-Gaume, M. Claudson, and M.
Wise, Ref. 1; J. Ellis, L. Ibanez, and C. G. Ross, Phys.
Lett. 113B,283 (1982); M. Dine and W. Fischler, ibid.
110B, 227 (1982); C. Nappi and B. Ovrut, ibid. 113B,
175 (1982); T. Banks and V. Kaplunovsky, Nucl. Phys.
B206, 45 (1982); S. Dimopoulos and S. Raby, ibid.
B192, 353 (1981); R. Barbieri, S. Ferrara, and D. V.
Nanopoulos, Z., Phys. C 13, 267 (1982); Phys. Lett.
113B,219 (1982); 116B, 16 (1982); J. Polchinski and L.
Susskind, Phys. Rev. D 26, 3661 (1982).

A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys.
Rev. Lett. 49, 970 (1982); P. Nath, R. Arnowitt, and

A. P. Chamseddine, Phys. Lett. 121B, 33 {1983);A. H.
Chamseddine, P. Nath, and R. Arnowitt, Harvard-

Northeastern Report No. HUTP-82/AO56-NUB2578
(unpublished).

4R. Barbieri, S. Ferrara, and C. A. Savoy, Phys. Lett.
119B,343 (1982).

5L. Ibanez, Phys. Lett. 118B, 73 (1982); Madrid Report
No. FTUAM82-8 (unpublished).

6H. P. Nilles, M. Srednicki, and D. Wyler, Phys. Lett.
120B, 346 (1983). Also see H. P. Nilles, Phys. Lett.
115B, 193 (1982); CERN Reports Nos. TH3330 and
TH3398 (unpublished).

7J. Ellis, D. V. Nanopoulos, and K. Tamvakis, Phys. Lett.
121B, 123 (1983).

SS. Ferrara, D. V. N. Nanopoulos, and C. A. Savoy,

CERN Report No. TH3442 (unpublished).

N. Ohta, Tokyo Report No. UT-388 (unpublished).

L. Alvarez-Gaume, J. Polchinski, and M. Wise,
Harvard/CalTech Report No. HUTP-82/A063
—CALT-68-990 (unpublished).

~tJ. Leon, M. Quiros, and M. Ramon Medrano, Madrid
report (unpublished).
Forerunners of the work of Refs. 3—11 include B. A.
Ovrut and J. Wess, Phys. Lett. 112B, 347 (1982) and
R. Barbieri, S. Ferrara, D. V. Nanopoulos, and K. S.
Stelle, ibid. 113B, 219 (1982). Ovrut and Wess con-

sidered a supergravity model in which supersymmetry
was broken in the hidden sector not spontaneously, but
through the discard of a cosmological constant. Bar-
bieri et al. discussed a supergravity model in which su-

persymmetry is spontaneously broken by a hidden sec-

tor, but there is no observable sector superpotential.
~ The appearance of relatively light gauge fermions in

theories like those of Refs. 3—12 is discussed by S.
Weinberg, Phys. Rev. Lett. 50, 387 (1983). R. Arnowi-

tt, A. H. Chamseddine, and P. Nath, ibid. 50, 232
(1983).

~4The assumption of a superpotential consisting of a sum

of two terms involving different sets of superfields

would be more attractive if it could be shown to follow

naturally from some symmetry of the theory. This is

easy to arrange if the superpotential is limited to be a
cubic polynomial; for instance, if the theory has a
group G )& G of gauge and/or global symmetries, then if

all superfields S' are non-neutral under G and neutral
under 6 and all superfields S are neutral under G and
non-neutral under G, the superpotential can contain no
terms involving both S"s and S 's. However, it is
doubtful whether the assumption of a cubic superpoten-
tial can be justified on the grounds of renormalizability
for fields like S, whose scalar VEV's are of order of
the Planck mass. Alternatively, it would be possible to
understand the decomposition of the superpotential into

f(S) and f(S ) if the theory had an 8 symmetry (a sym-

metry for which the superfield coordinate 8L carries
some nonvanishing quantum number, say, + 1); for in-

stance, if all S' superfields have R =—and all S
superfields have R =2, then the superpotential consists
of terms trilinear in the S' plus terms linear in the S .
In such a theory there would be no additive constant in
the superpotential that could be used to cancel the
cosmological constant, but it would still be possible to
arrange for a flat space by adjustment of the Kahler po-
tential.
An alternative with similar consequences is suggested by
E. Cremmer, P. Fayet, and L. Girardello, Phys. Lett.
122B, 41 (1983).

The independence of the physics of the light Higgs sca-
lars on the grand-unified mass scale was subsequently
discussed for a wide class of superpotentials by P.
Nath, A. H. Chamseddine, and R. Arnowitt, Harvard-
Northeastern Report No. HUPT82/AO57 —NUB2579
(unpublished).
This result was given for nongauge theories with a sin-

gle chiral superfield by E. Cremmer, B. Julia, J. Scherk,
S. Ferrara, L. Girardello, and P. van Nieuwenhuizen,

Phys. Lett. 79B, 231 (1978); Nucl. Phys. B147, 105
(1979). The generalization to theories with arbitrary
numbers of chiral scalars was given by E. Witten and J.
Bagger, Phys. Lett. 115B, 202 (1982); R. Barbieri, S.
Ferrara, D. V. Nanopoulos, and K. S. Stelle, ibid.
113B, 219 (1982). The results for general gauge
theories were given by E. Cremmer, S. Ferrara, L.
Girardello, and A. Van Proeyen, ibid. 116B,231 (1982);
J. Bagger, Princeton report (unpublished).

~SThe breakdown of the grand-gauge group can allow sca-
lars to remain with zero mass and VEV for any one of
three possible reasons: either because of unbroken sym-

metries, or of a fine tuning of the parameters of the
theory, or as a more or less accidental property of the
potential minimum that follows automatically from the
symmetries and cubic polynomiality of the observable

sector superpotential. In the case of fine tuning a tiny

change in the input parameters could introduce addi-

tional mass parameters in the low-energy theory in ad-

dition to those produced by supergravity, so in this case
it may be argued that it is not gravitation alone that
sets the mass scale of known particles. In the other two
cases supersymmetry can truly be said to resolve the
hierarchy problem, except that the small scale of the
hidden-sector superpotential still has to be put in by
hand. In this paper we will consider all these cases to-



2378 LAWRENCE HALL, JOE LYKKEN, AND STEVEN WEINBERG 27

gether.
This is in apparent conflict with the cosmological lower

bound of about 10 TeV on the mass of heavy gravi-
tinos; see S. Weinberg, Phys. Lett. 48, 1303 (1982).
However, entropy-producing mechanisms like cosmic
inflation that dilute the gravitino (and monopole) densi-

ties could reduce the entropy produced in gravitino de-

cay sufficiently so as not to disturb calculations of
cosmic nucleosynthesi. s; see J. Ellis, A. D. Linde, and
D. V. Nanopoulos, Phys. Lett. 1188, 59 (1982); S. Di-
mopoulos and S. Raby, Los Alamos Report No. LA-
UR-82-1282, 1982 (unpublished).

Theories with a purely trilinear effective low-energy su-

perpotential have a severe phenomenological problem:
the electroweak SU(2) &&U(1) symmetry is spontaneous-

ly broken only for
~ ms /ms

~

& 3, but in this case the
introduction of quark and lepton superfields leads to a
vacuum solution for which quark and/or lepton scalars
have nonzero VEV's, as pointed out by J.-M. Frere,
D. R. T. Jones, and S. Raby, Michigan Report No.
UMHE82-58 (unpublished). However, SU(2) g U(1)
can be spontaneously broken for

~
mg /ms

~

& 3 if bilin-

ear terms are allowed in the effective superpotential,
and in this case it is not clear that VEV's appear for
quark and lepton scalars. Also it is not clear that the
tunneling from the baryon- and lepton-conserving local

minima of the potential to the one found by Frere et al.
is fast enough to pose a serious problem, ' M. Claudson,
L. Hall, and I. Hinchcliffe (unpublished).
The problem of radiative corrections has been discussed
by R. Arnowitt, A. H. Chamseddine, and P. Nath,
Phys. Lett. 120B, 145 (1983); S. Ferrara, D. V. Nano-
poulos, and C. A. Savoy, Ref. 8; H. P. Nilles, M. Sred-
nicki, and D. Wyler, CERN Report No. TH-3461 (un-
published); A. B.Lahanas, CERN Report No. TH-3467
(unpublished); R. Barbieri and S. Cecotti, Pisa Report
No. SNS9/1982 (unpublished). Also see J. Polchinski
and L. Susskind, Ref. 2.

2 This symmetry was used in a similar way by S. Wein-
berg, Ref. 13. Also see M. K. Gaillard, talk at the Van-
derbilt University Conference on Novel Results in Par-
ticle Physics, Berkeley Report No. LBL-14647 (unpub-
lished).

~3The assumption that the scalar fields A, 4 ', and g do
not get large masses or VEV's in the breakdown of the
grand-gauge group is, for example, automatically satis-
fied if we suppose that a discrete symmetry remains un-
broken, for which the superfields H, H', and J are
transformed by a factor exp(2i~/3). In this case the
only terms in (5.9) are the last two, with coefficient A,

and A, '.


