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Space-time symmetries for massless composite particles are studied within the kinemati-

cal framework of the relativistic harmonic-oscillator formalism. It is noted first that the
Lorentz-invariant harmonic-oscillator equation is separable in the Kalnins-Miller coordinate

system in which the helicity and gauge transformation parameters can be separated from
other space-time variables. It is shown then that this separation procedure leads to the rep-
resentations of the Poincare group which display the same space-time symmetry as those for
photons and gravitons. The gauge transformation parameters are shown to be internal

space-time parameters in the case of massless composite particles. It is shown in particular
that the spin in this case is associated with an orbitlike motion on the plane perpendicular to
the momentum of the composite particle.

I. INTRODUCTION

Composite models of "fundamental" particles are
of current interest. ' We are interested in space-time
symmetries of these particles. While the massive
composite particle is known to have O(3)-like inter-
nal space-time symmetries, we are not yet familiar
with internal space-time symmetries of massless
composite particles. '

There are at present two different approaches to
the space-time structure of composite particles. One
way is to look for the dynamical origin of the forces
between constituents and then study how they be-
come confined using the Lagrangian field-theoretic
method. ' The other approach is to start with con-
fined constituents and study space-time symmetry
properties of the composite system, following closely
the line based on the construction of representations
of the Poincare group suggested by Wigner and
Dirac.

In the approach of constructing representations of
the Poincare group, the covariant harmonic-
oscillator formalism has been shown to be a solu-
tion of Dirac's commutator equations for his "in-
stant form" quantum mechanics. In addition, the
oscillator model has produced comfortable numeri-
cal results in the relativistic quark model. '

In signer's language, the above-mentioned
harmonic-oscillator wave functions form the repre-
sentations of the O(3)-like little group for massive
hadrons. For massless particles, the internal
space-time symmetry is isomorphic to the two-
dimensional Euclidean group or E(2). Therefore, it

is an interesting proposition to construct harmonic-
oscillator wave functions which form the representa-
tions of the E(2)-like little group for massless com-
posite particles.

In this paper, we note first that the harmonic-
oscillator equation is separable in many different
coordinate systems. In particular, it is separable in
one of the orthogonal coordinate systems discussed
recently by Kalnins and Miller. ' In this coordinate
system, two of the space-time coordinate variables
are conjugate to the generators of the E(2)-like little
group for the massless composite particle. We can
therefore construct representations of the E(2)-like
little group by solving the differential equation using
the Kalnins-Miller coordinate system.

We study then properties of the explicit solutions
of the harmonic oscillator equation. It is shown
that the gauge parameters in this case are space-time
parameters, and therefore that the spin of massless
composite particles is related to an orbitlike motion
in the plane perpendicular to the momentum, as was
suspected in one of our previous papers. ' Although
we used the harmonic-oscillator equation for con-
venience, it turns out that most of the results ob-
tained in this paper, particularly those connected
with gauge transformations, are independent of
forms of the potential, and are readily applicable to
more general cases which share the same space-time
symmetry.

%e assume throughout this paper that the consti-
tuent particles are spinless, and therefore that the re-
sulting massless composite particles can have only
integer spins. %e realize that composite particles
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with half-integer helicities would also be interest-
ing. ' However, in view of our experience in the
quark model for hadrons, this spin problem does not
appear to be trivial, and definitely requires a
separate investigation.

In Sec. II we present the covariant harmonic-
oscillator formalism in a form suitable for discuss-
ing the internal space-time symmetries for both
massive and massless composite particles. Section
III contains an explicit construction of the represen-
tations having the E(2)-like internal space-time sym-
metry for massless composite systems. Section IV
deals with a physical interpretation of the
mathematical formulas derived in Sec. III. It is
shown that the gauge transformation is an internal
space-time coordinate transformation.

II. FORMULATION OF THE PROBLEM

I."„„=i(x„a/ex"—x„a/ax~),
(3)

L»=i(x~8/Bx —xyB/Bx~) .

As was noted in previous papers, ' the translation
operator P& does not depend on the internal variable

x&, and the Lorentz transformation generator M»
is a sum of the generators for X and x coordinates.

L„„ is the Lorentz transformation operator acting
on the internal coordinate.

In the case of massive hadrons, we can construct
representations of the Poincare group by solving the
following harmonic-oscillator equation ' ':
[2(Oi+02) ——„(xi—x2) +ma ]P(xi,x2)=0, (4)

where the spring constant is assumed to be 1. In
terms of the coordinate variables given in Eq. (l),

The standard procedure in studying internal
space-time structures is to start from the space-time
coordinates of constituent particles. Let us consider
for simplicity a composite system consisting of two
constituent particles. If their space-time coordinates
are x ~ and x2, we are led to the variables

X=(xi+x2)/2,
x =(xi —x2)/V 2,

where X is the space-time coordinate for the compo-
site particle, and x is the relative space-time separa-
tion between the two constituent particles.

In terms of these variables, the generators of the
Poincare group can be written as

p„=ia/ax~,

Mpv=L pv +Lpv

where

the above Lorentz-invariant differential equation
can be written as

[(8/Bx„) +mo + —,[(8/Bx„) —x„]I/(X,x)=0 .

This equation is separable in the X and x variables,
and thus

P (X,x ) =f(X)g(x),

where f(X) and f(x) satisfy differential equations

[(8/BX„) +mp +A]f(x)=0,
—,[(8/Bx„)'—x„']ll (x) =A/(x) . (8)

For the case of massive hadrons with positive values
of p, the harmonic-oscillator equation given in Eq.
(8) has solutions which span the representation space
of the O(3)-like little group. '

As was discussed extensively in the literature, the
above-mentioned procedure is consistent with the
known physical principles of quantum mechanics
and special relativity, and is within the framework
of Dirac's instant-form quantum mechanics. This
procedure is also consistent with the basic observed
hadronic phenomena including mass spectra, form-
factor behaviors, parton picture, and jet
phenomenon. We have therefore a good reason to
believe that the solutions of the oscillator equation
illustrates the space-time symmetries, if not the de-
tailed dynamics, of relativistic composite particles.

The differential equation of Eq. (7) is a Klein-
Gordon equation, and its solution is well known.

f(X) takes the form

f(x}=exp(+ip X}

with

p =mo+A, ,

where p is the four-momentum of the composite
particle. p is of course the (mass) of the composite
particle. The separation constant A, is determined
from the solutions of the harmonic-oscillator dif-
ferential equation given in Eq. (8).

The study of the internal space-time symmetry of
composite systems is the study of the little group
whose transformations leave the total four-
momentum p invariant. In the case of massive had-
rons, the little group is isomorphic to O(3), and its
representation takes the simplest form in the
Lorentz frame in which the composite particle is at
rest. The generators of this httle group are

(l0)
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We are then naturally led, still within the frame-
work of this oscillator formalism, to the question of
constructing representations of the Poincare group
for massless particles.

If the composite particle is massless, this means
that mo and A, in Eq. (9) are such that p is zero. In
this case, the generators of the little group are dif-
ferent from those in Eq. (10). We shall study wheth-
er we can construct representations of this little
group by solving the harmonic-oscillator equation
given in Eq. (8).

III. CONSTRUCTION OF REPRESENTATIONS
FOR MASSLESS COMPOSITE PARTICLES

Let us assume without loss of generality that the
momentum of the massless composite particle is in
the z direction. Then the little group is generated by
L 3 Ni and N2, where

y =pe ti sing,

z=(p/2)[e +(q' —l)e —],
t=(p/2)[e +(rt'+1)e ] .

These equations can also be written as

(14)

judicious choice of the coordinate system in which
the differential equation is separable. It is known
that the IGein-Gordon equation is separable in many
different coordinate systems. In a relatively recent
paper, ' Kalnins and Miller discussed 34 different
coordinate systems. Among those, coordinate sys-
tem number 14 appears to satisfy our requirement.
We shall call this the Kalnins-Miller coordinate sys-
tem.

If the four-vector x is timelike with positive t, the
Kalnins-Miller coordinate variables p, g, a, and P,
are related to x, y, z, and t by

x =pe rt cosP,

[Ni, Nz] =0,
[L3,N) ]= iNz, —
[L3,Nz]=iNi .

(12)

Ni=Loi —L2

N2=Lo2+Li .

These generators satisfy the commutation relations

p =(t —z r)—2 2 2 1/2

g =r/(t z), —

a = —ln[(t —z)/(t —z —r)'r ],
/=tan '(yix),

where

(x2+y 2) 1/2

(15)

As was noted first by Wigner, the above commu-
tation relations are those for the generators of the
E(2) group consisting of a rotation and two transla-
tions in a two-dimensional Euclidean plane. N& and
N2 represent the two translation operators, while L3
is the rotation operator. L3 in this case is the heli-
city operator. There are two maximal commuting
sets of operators in the enveloping I.ie algebra.
They are

(a} ',N), Ng,

(b) N, L3,
where N =Ni +N2 . Because we are interested in
states with definite helicities, we have to construct
wave functions which are diagonal in L3 and N

In order to construct solutions of the oscillator
wave equation given in Eq. (8}, we have to make a

In terms of the Kalnins-Miller variables, L3 and N
take the form

L3 ———ia/ap,

N, = —ia/aq, ,

Nz —ia/ay g, ——
N'= —(a/aq )'—(1/q )(a/aq )

—(1/rt ')(a/aP ),
=- —[(a/aq, )'+(a/a~, )'],

where

ri &
——rt cosP, rtz rt sin(I)——

The oscillator differential equation of Eq. (8) can
then be written as

'3

P li(x) +1 8 3 8 1

p ~p ~p p

8 8—2
Ba Ba

2

g(x) — — e N +p li(x)=2k'(x) .1

P

In order to separate this differential equation, let
us write P(x) in the form

P(x)=G(p, a)F(g, g) . (18)

If F(rt, g ) satisfies the eigenvalue equation

N F(rt, g)=b F(g,P), (19)
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then, G(p, a ) should satisfy the differential equation

a ~aq +
a a

(r2+z2 t2)1/2

rt =r/(z t—),
a =—ln[p/(z —t)] .

(27)

e —b G —p G=2XG . (20)

The differential equation of Eq. (19) is a two-
dimensional Helmholtz equation if b does not van-
ish. It is a Laplace's equation if b =0 As .was dis-
cussed in our previous papers, ' ' b has to vanish
in order that the representation be finite dimension-
al. ' The solution then becomes

F(ri,g) =2) exp(+imP }, (21}

where m is an integer and is the magnitude of the
angular momentum. Since b =0, the differential
equation of Eq. (20) becomes

p appap +
p aa 'aa

2

I

—p G=2A, G . (22)

The solution of the above differential equation will
then take the form

G&„(p,a)=[p"exp( p /2)]L—&"+"(p )A„' '(a), -

(23)

where

A„'+'(a) =exp[(n+2)a],
'(a) =exp( na) . —

L„'"+"(p2) is the generalized Laguerre function. '

The eigenvalue on Eq. (22) takes

A, =—(n+2p, +1), (24)

where n and p take integer values. In order that the
composite particle be massless, the above eigenvalue
and mc2 should satisfy the condition of Eq. (9) for
massless particles:

The process of separating and solving the differen-
tial equation is the same as in the case of timelike
region. We can use the form of Eq. (21) for F(2),p ),
and Eq. (23) for G(p, a ). However, the eigenvalue A,

in this case takes the values

A, =n+2p+1 . (28)

It is important that the masslessness condition of
Eq. (25}be satisfied for the above values of A, . Since
A, 's for the timelike and spacelike regions have oppo-
site signs, mo will also have different signs. This
does not cause any conceptual difficulty, because the
timelike region never mixes with the spacelike re-
gion under Poincare transformations.

IV. INTERPRETATION OF REPRESENTATIONS
FOR MASSLESS COMPOSITE PARTICLES

F(rt 4)=F(gati rt2) =(gati-+&n2»

with

(29)

In studying space-time symmetries of the solution
of the wave equation obtained in Sec. III, we note
that the internal wave function P(x} is a product of
G(p, a ) and F(rt, g ), as is given in Eq. (18). This al-
lows us to deal with Eand 6 separately.

Let us first discuss the F function. It is not diffi-
cult to see that tI} in Eq. (21) is the angle variable
specifying the rotation around the z axis with
momentum +m. This is known as the helicity for
the massless particle. Since physically observable
states are expected to be helicity eigenstates, they are
invariant under the rotation around the z axis.

In terms of the rt i and rt 2 variables defined in Eq.
(16),Fcan be written as

p =mc +A, =O. (25) q, =x/(t —z), rt2=y/(t z), —

z =(p/2) [e —(rt —1)e ],
t=(p/2)[e (rt +1)e ] . — (26)

Consequently, two of the equations in Eq. (15) are
modified to

We have so far been working for the case where x
is timelike with positive values of t If t is nega. tive,
we can reverse the sign of the Cartesian coordinate
variables given in Eqs. (14) and (15). If x is a space-
like vector, z and t of Eq. (14) have to be modified
014

g] —Q] +V1
t

'g2 ='Q2+ V2

without changing the differential equation.

(30)

for the timelike region. The operators Ni and N2
given in Eq. (16) now generate translations in the
ri i 2)2 plane. Since both of these "translation" opera.
tors commute with N, the differential equation of
Eq. (17} is invariant under this transformation. We
can replace rt i and rt 2 in F(rt i, rt2) of Eq. (29) by rt i
and g2, respectively, where
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As was emphasized in our previous papers, ' '
the above-mentioned Ni and N2 transformations are
equivalent to gauge transformations. Then what is
the gauge transformation in terms of the conven-
tional space-time variables'? The translation of Eq.
(30) causes the following changes in the rl and P
variables:

(31)

Another way to interpret the above transformations
is to regard Eq. (29) as a rotation around the origin
in the gig2 plane. Then the transformation of Eq.
(30} is to shift the center of rotation from the origin
to the coordinate point ( —vi, —v2). '

In order to see the effect of the Ni and Nz
transformations in terms of the Cartesian space-time
variables, let us write Eq. (14) for the timelike region
as

r =pge

y/x =tang,

t+z=p(e +g e ),
z —t= —pe

It is apparent that the (r —z) variable remains in-
variant under the gauge transformation. The effects
of Eqs. (30) or (31) on other variables are

tion of the rotation axis from the origin to another
point in the xy plane.

As for the normalization of F(q, P ), the P depen-
dence is just like the case of hydrogen atom. The
Hilbert space and the normalization of wave func-
tion associated with this variable are well known.
The g dependence is not normalizable, and there is
no Hilbert space associated with this variable. As
was noted before, ' this is due to the fact that gauge
transformation is not measurable.

Let us next discuss properties of the G(p, a) func-
tion given in Eq. (23). This function is a product of
two separate functions. The p dependence is nor-
malizable, and the wave function is concentrated
within a hyperbolic region near the light cones. Qn
the other hand, the o.' dependence, which measures
the (r z) vari—able for fixed p, is not normalizable.
However, this does not introduce any additional dif-
ficulty to the overall wave function which is not
normalizable due to the nonobservability of gauge
transformations.

The above discussion has so far been restricted to
x in the forward light cone. By changing the sign of
the Cartesian variables given in Eq. (14), we can give
the same reasoning for the backward light cone. By
replacing the z and t variables by those given in Eq.
(26), we can give a similar treatment for the space-
like region.

V. CONCI. UDING REMARKS

(33)

The variable p=(t z r)'~ is a gau—ge-i—nvariant
quantity.

Since (t —z) is invariant under the N, and Nz
transformations, it is clear from Eq. (29) that the x
and y coordinate variables are directly proportional
to rl& and qz, respectively. Indeed, for b =0, the
differential equation given in Eq. (19}can be written
as

[(a/ax)'+(a/By) ]F(x,y) =0,
with the solution

(34)

F(x,y )=(x+iy )

The mathematics of this form is quite familiar to us,
and does not require any further explanation. The
point is that the gauge transformation parameters
are now directly related to the x and y coordinate
variables, and the spin of the massless composite
particle is indeed due to the above orbitlike form.
The gauge transformation in this case is a transla-

Starting from the harmonic-oscillator equation
designed to describe a massless composite system
consisting of two particles bound together by a
harmonic-oscillator force, ' ' 's we have con-
structed the representations of the Poincare group
satisfying the prescribed requirements. It has been
shown that the wave function can be factorized into
the part whose form is expected from those of pho-
tons and gravitons, "' and into the part which de-
pends on the form of potential.

We have studied in detail the part containing the
space-time symmetries expected from those of pho-
tons and gravitons. This part is independent of the
form of potential. It has been shown that the gauge
transformation is a space-time transformation in the
internal coordinate system which specifies the rela-
tive space-time separation between the constituent
particles.

Unlike the case of massive composite particles,
wave functions are not normalizable. However,
this should not alarm us. The transverse coordi-
nates in this case are proportional to gauge parame-
ters. In the case of massless composite particles, the
fact that gauge transformation is not observable is
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translated into the lack of Hilbert space associated
with the transverse coordinate variables.

As for the fundamental question of whether mass-
less composite particles exist in nature, or whether
the existing massless particles such as photons and

gravitons are ultimately composite, we are not able
to provide the answer at this time. Yet, it is of in-
terest to study their internal space-time symmetries,
particularly from the standpoint of constructing rep-
resentations of the Poincare group.
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