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SU(3) flux-tube dynamics and asymptotic freedom are incorporated into a semirelativistic

quark model of baryons and mesons. Good agreement with the energy levels of spin-

averaged multiplets of mesons and baryons is obtained using conventional values for the

strong-interaction coupling constant a„ the string tension 9 o, and the constituent quark

mass m. We calculate meson energy levels with angular momentum L =0, 1, 2, 3, and 4
and baryon levels with L =0, 1, and 2 to within 3% of their experimental values. Baryon
radial excitations are also considered and the Roper resonance is calculated with -5% er-

ror. The three-body wave equation for the baryons is solved approximately using variation-

al Monte Carlo methods which have been developed previously for nuclear-physics prob-

lems.

I. INTRODUCTION

In the past decade quantum chromodynamics'
(QCD) has emerged as the most promising theory of
hadrons. In the nonrelativistic, i.e., static-source
limit the basic SU(3) flux-tube picture leads to a
Coulomb + linear potential between qq pairs. Such
a potential has been used in a nonrelativistic
Schrodinger equation to calculate the spectrum of
charmonium ' and bb states. The color-magnetic
interactions due to one-gluon exchange have also
been used to study the hyperfine splittings within
multiplets of light mesons and baryons. '

The aim of this paper is to abstract current ideas
of quark-gluon dynamics from QCD into a semirel-
ativistic Hamiltonian for qq and qqq systems. This
Hamiltonian contains an adiabatic potential ob-
tained by minimizing the energy in the gauge fields
for fixed quark positions, and relativistic kinetic en-

ergies for the quarks. It is shown that such a Ham-
iltonian is justified for QED in (1+1) dimensions,
where the potential between the charges is linear.

In the limit of massive quarks our semirelativistic
Hamiltonian for qq systems becomes identical to
that used in Ref. 3 for charmonium and bb studies.
However, it is meant to be useful for the study of
light mesons, and it does explain quite accurately
their spectra associated with orbital excitations.

Our model for baryons is more novel. In a color-
singlet qqq system, each quark acts as a source of
one flux tube. For SU(3) gauge fields, the flux tubes
can merge at a single point P between the quarks.
Minimizing the energy in the flux tubes determines
the location P and the qqq potential. The baryon po-

tential is, therefore, intimately related to the SU(3)
color group. We find that the potential energy of
three quarks forming a baryon can be expressed as a
sum of three pair potentials and a relatively weaker
three-body potential. The pair potential in baryons
is exactly half the potential between qq, and the
three-body potential depends only on the tension in
SU(3) flux tubes. Thus, from the point of view of
many-body theory, a unified model for studying
baryon and meson spectra is proposed. The present
study is limited to the baryon spectrum associated
with orbital and radial excitations, and thus comple-
ments the studies ' of the hyperfine splittings. Our
spectrum calculations are in good agreement with
experiment.

This paper is organized into four sections. In Sec.
II, we discuss SU(3) flux tubes in the context of
lattice formulations of QCD. We motivate our
semirelativistic potential model by considering the
fully relativistic Schwinger model (QED in 1+1 di-
mensions). In Sec. III we describe the variational
method used to calculate eigenvalues of the semirel-
ativistic two- and three-body Hamiltonians. Results
and discussion appear in Sec. IV.

II. THE MODEL HAMILTONIANS

Recent numerical work ' on lattice QCD and its
continuum limit support the naive physical picture
and properties of gluon dynamics which follows.
The Hamiltonian for SU(3) gluons interacting
among themselves, modeled on a spatial cubic lattice
of spacing a is
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The E (I) measures the color-electric flux along link
I, and UUUU indicates the product of color-rotation
matrices taken around a closed square (plaquette) as
shown in Fig. 1. Equation (2.1) is a locally gauge-
invariant, lattice-regulated form of the ordinary en-

ergy in the Yang-Mills field, and g is a coupling
constant which can be identified with the conven-
tianal quantity in the continuum limit in which the
lattice spacing a tends to zero. The basic commuta-
tion relation satisfied by the E (l) and Uj(l) follows
fram their geometric meaning as the a =1,8 genera-
tors of the color rotations, and i,j=1,3 color-
rotation matrices, respectively,

[E (I), U,j(l')] = —,[iPU(l)];j5g . (2.2)

Here A, are SU(3) matrices. Let
I
0) be the "vacu-

um" state with no color-electric flux:

E (I) Io)=0. (2.3)

The state Uj(l)
I
0) has one unit of electric flux on

link l,

E'(I)v,,(l) Io) =(-,'x x v) j(1) Io)

—,U (2.4)

as can be verified with Eq. (2.2). Thus U~(l) ma-
trices create additional flux alang link l.

The last fundamental ingredient in the theory is
the requirement of local gauge invariance. This
means that only states corresponding to operators
whose color indices at every lattice point are con-
tracted into color singlets are physically realized.
For example, an isolated Uj(l) is not locally gauge
invariant. Since it has two free color indices it
transforms as (3,3). However, ordered products of
U matrices on closed paths through the lattice are
acceptable.

The states

~'j(ll )vjk(I2) U (4 )
I
0& (2.5)

~W

H = g E (I) 4
—g (trUUUU+ H. c. )

I

links plaquettes

(2.1)

where links ll, l2, . . . , l„ form a closed loop, are
gauge invariant. (By convention a sum over repeat-
ed color indices is implied. ) These states describe
loops of color-electric flux.

If quarks are incorporated into the scheme as
color sources, the flux tubes can originate and ter-
minate on the quark. Let P; (r) create a quark on
site r, and P (r ') create an antiquark on site r '

Then a locally gauge-invariant operator to create a
qq state would be

Q; (r)v;j(li)vjk(12) Ul (l„)p (r '), (2.6)

where the links l&, lz. . . l„ form a path from r and
r', and the repeated color indices are summed.
Physically the string of U matrices carries the unit
of flux emanating from the quark and terminating
on the antiquark. These states are used to describe
the mesons.

To estimate the force, i.e., the dependence of ener-

gy on
I
r —r '

I, we must determine the path of the
U matrices in the lowest-energy state. It is believed
that the strong-coupling limit g y~1 of the lattice
theory describes many of the relevant features of the
long-distance behavior of Yang-Mills fields. It is
trivial to calculate the path of the U matrices in this
limiting case in which the magnetic-fluctuation term
(tr UUUU) in Eq. (2.1) can be neglected The .Ham-
iltonian then reduces to gE (I), and the energy of
the state (2.6) is

g2 4
&&

—(number of links) = (path length) .2g
2a 3 3Q

(2.7)

The minimum path length is simply the distance
I

r —r '
I, and this gives the familiar confining po-

tential

V( r —r ') =v 0.
I
r —r ' I, v 0 =2g /3a

(2.8)

Numerical studies ' of lattice gauge theory suggest
that a linear confining potential also occurs in the
continuum limit. Therefore, it is sensible to use it in
quark models of mesons as has been done by many
authors. ' '

The potential at small distances can be calculated
perturbatively using asymptotic freedom of the
theory. It is

4a,
V( r —r ') =—,

I
r r'

I & 1/—v cr,
3Ir —r'I

P
~M (2.9)

FIG. 1. Three-dimensional cubic lattice with sites r,
links l, and color-rotation matrices U(l) assigned to links.

where a, =g /4m is the strong-interaction fine-
structure constant. It has a weak spatial dependence
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given by asymptotic freedom:

2'
(Xs

11 ln(A ~r —r'~)
(2.10)

L = —, F„„F&"+P(i j3 g—g—m)Q, —
where

Fpv =()pAv —8'vAp .

(2.13)

(2.14)

The Hamiltonian of this theory is particularly re-
vealing in the Coulomb gauge where Gauss's law,

a, 'w, = g:0'0:=gj'0— — (2.15)

becomes an equation of constraint. Then an elemen-
tary exercise yields

a= I dxy(i), a&+m)q

——,g J dx dy jo(x)jo(y)
~

x —y ~

. (2.16)

The linear confinement mechanism is clear in the

These long- and short-range parts can be easily in-
corporated into a single qq potential

0!s
V-(r —r ')= —— +Vcr

~

r —r '
~

(2.11)

which has been used to study meson spectra of
heavy (c,b, . . . ) and light (u, d, s. . . ) quarks. Al-
though the potential (2.11) captures much of the
physics of gluons, it is certainly not complete. For
example, very general arguments concerning the
dynamics of long flux tubes indicate that there are
(universal) power-law corrections to Eq. (2.8) of the
type

V(r —r ') =~a
~

r —r '
~

— +

/

r —r'
f
» It~a (2.12)

induced by long-wavelength transverse fluctuations
of the tube. ' In practice some of these effects are
taken into account approximately by fitting a, and
Vo to the data, rather than carrying out a first-
principles calculation. In such fits the weak spatial
dependence of a, [Eq. (2.10)] may be neglected;

Even with the potential Eq. (2.11) in hand it is not
obvious how to incorporate it into a potential-model
calculation of the meson spectrum. Various ques-
tions arise: Should V be treated as a Lorentz vector
or scalar quantity? Is it restricted to only nonrela-
tivistic qq systems? What about retardation effects,
quantum fluctuations such as virtual and real pair
production, etc? To gain some perspective on these
questions consider the simplest soluble model of
quark confinement and flux tubes, the Schwinger
model (quantum electrodynamics in 1+1 dimen-
sions). Its Lagrangian is

The fermion field operator

g(x)= J dp[a(p)u(p)e'~"
v'2n.

+b (p)U(p)e '~"], (2.18)

where

[a (p),a t(p')
I =5(p —p'),

(ap +Pm)u =Eu

E=(p +m )', u (p)u(p)=1,

(2.19)

(2.20)

(2.21)

and similarly for the positron operators and spinors.
Substituting Eq. (2.18) into Eq. (2.16) and evaluating
Eq. (2.17) gives,

~R 2{p2+m 2)1/2+ g2
(
x (2.22)

in the approximation where field theoretic fluctua-
tions such as pair production are ignored. It is in-
teresting that Eq. (2.22) is fully relativistic and that
the linear confining potential appears here without
being obscured by retardation or velocity-dependent
effects. This simplicity, of course, relies on the
kinematics of 1+1 dimensions, but we shall use it as
a guidepost in our 3+1 dimension potential-model
work. In particular, we shall treat the quark kinetic
energy fully relativistically —this is necessary for
light-quark spectroscopy —and use the potential en-

ergy given by the strong-coupling behavior at long
distances and asymptotic freedom at short distances.

The major aim of this work is the construction
and analysis of a quark model for baryons which in-

corporates features of gluon dynamics of QCD.
Therefore, consider the g »1 behavior of flux
tubes in the presence of three heavy quarks. Each
quark is the source of one unit of electric flux. The
lowest-energy state of the three quarks will have the
least amount of flux consistent with local gauge in-

second term. The theory confines simply because
electric flux is always in straight tubes in 1+1 di-
mensions. Because of this, the Schwinger model is
often used as a theoretical laboratory for some of the
long-distance features of gluon dynamics in 3+ 1 di-
mensions. Note also that Eq. (2.16) describes fully
relativistic, causal dynamics since it follows by
canonical methods from Eq. (2.13).

Next consider Eq. (2.16) restricted to the qq sub-
space. Denote a two-particle state

~ p, q ) where p is
the momentum of the quark and q is the momentum
of the antiquark. Following Ref. 11, consider the
reduced (center-of-mass) Hamiltonian,

&q'p'I If
I p p)=~—(p'+q')O'IH'IP & .

(2.17)
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variance. There are two distinct flux configurations
depending on the relative positions of the quarks.
Consider the quarks in positions r1, r2, and r3 as
shown in Fig. 2. Suppose that none of the interior
angles of the triangle whose vertices are r„rz, and

r3 are greater than 120'. Then the flux tubes from
each quark will meet in the interior at positions r4,
and the total energy in the configuration is

2

V(r~rqr3)= (
I
ri —r4I+

I
r2 ~4I

3Q

It is clear, however, that if one of the interior angles
i of the triangle r, rzr3 is greater than 120' Eq.
(2.26) cannot be satisfied and the flux tube from the
vertex i will collapse to a point. Then the flux con-
figuration will consist of two linear segments as
shown in Fig. 3.

For completeness we eliminate r4 from Eq. (2.23).
An exercise in trigonometry gives for the flux con-
figuration of Fig. 2

I
r; —r4I =r;4 (C r—p, )IS—,

+
I

r3 r41 ) . (2.23)

where

(ij,k cyclic), (2.27)

It is crucial that in SU(3) gauge theory the vertex at
r4 can be constructed in a locally gauge-invariant
fashion. The operator which creates the state at
strong coupling is

1i,'(-. , )y,'(-.,)1(,'(-., )

x HU IIU II U e, , (2.24)
P3

Js

where p; indicates the path from r; to r4 and e„„ is
the usual antisymmetric tensor. Recall that in SU(3)
3(3) 3(3) 3= 1(38 8(3) 10, and the singlet is the antisym-
metric product of the three objects each transform-
ing as a 3. Finally, the position r4 is determined by
the condition that it minimize the static energy,

S =3C —g,
2 2 2k=riz +rz3 +r3i
2 2 2 2 2 2

12 ~23 + 23 ~31 +~31 12

(2.28)

(2.29)

(2.30)

(2.31)

For the flux configuration in Fig. 3 we note that
r4 ——r;.

It is instructive to decompose the total potential
energy (2.23) of the qqq system in the long-range
(LR) region into "two-body" and "three-body" in-

teractions as follows:

VLR( 1 2 3)

V4V=O (2.25) ,'~or, , +v 0 gr;4 ,
' gr„(2—.3—2)

l +J l l +J

&l.4=0 (2.26)
This decomposition is meaningful because the
three-body term is relatively small compared to the
sum of two-body terms. The ratio

where r;4 (r; —r&)I
I
r; —r4——

I
. As shown in the

figure, the angles that the flux tubes make with one
another are 120' independent of the r; themselves.

1

l4 Q lJ
1

lJ

is zero when the quarks are in a line, and it ap-

r4

FIG. 2. The flux-tube configuration in a three-quark
state at strong coupling, when none of the interior angles
of the triangle r &rqr 3 are greater than 120'.

FIG. 3. The flux-tube configuration in a three-quark
state when the angle at r & is greater than 120'.
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proaches zero when one of the quarks is pulled far
away from the other two. It has its maximum value
of 0.154 when the quarks form an equilateral trian-
gle.

The short-range (SR) interaction is simply the
two-body color-Coulomb force

where for nonstrange mesons we have

H = g (p& +m )'~ +u(r&)+Eo
i =1,2

and for nonstrange baryons

(3.1)

(3.2)

4(z,
VSR( 1 2 3)

3rlJ
(2.33) H = g (p; +m )' +V(rl, r2, r3)+ED .

i =1,3
1

The factor of —, is due to the one-gluon-exchange

potential between a qq pair in a qqq color singlet be-

ing half as strong as that between a qq pair in a qq
singlet. ' Thus if we define U(r) to be the two-body
potential in a qq state as given by Eq. (2.11) the po-
tential energy of the qqq system is given by

V(ri, r2, r3)= —, g U(r;, )

(3.3)

The U(r) and V(rl, r2, r3) are given by Eqs. (2.11)
and (2.34), respectively, and m is the mass of u, d
quarks. The Eo and Eo are constants to be deter-
mined from data. We refer to Hamiltonians (3.2)
and (3.3) as semirelativistic (SR) models.

We also discuss solutions of the corresponding
nonrelativistic (NR) Hamiltonians:

2

H = g '
+U(r;, )+ED,

12 2m
(3.4).

In the next section this potential will be added to the
relativistic kinetic energy g, (p; +m )' to obtain
the Hamiltonian for baryons.

1

The factor of —, relating the short-range part of
the two-body qq and qq interactions is well known,
and the energy differences between spin multiplets
can be used to test its validity. The same factor —,

also relates the long-range qq and qq interactions.
Phenomenologically it is important because (i) it
guarantees that baryon Regge trajectories have the
same slope as the meson trajectories and (ii) it allows
the spacings in low-energy meson and baryon spec-
tra to be explained with the same string tension v 0.
An optimist can interpret this success in explaining
the hadron spectra as an evidence for flux tubes as
suggested by QCD.

There are several ways one might imagine im-

proving and generalizing the considerations of this
section. Spin effects might be accounted for by in-

cluding the color-hyperfine terms from the short-
range one-gluon-exchange graphs. Considerable
work has been done on this subject with some good
results. Multiquark states and glueballs could also
be studied in the flux-tube framework suggested
here. In fact, we are engaged in some exploratory
work in these directions.

III. VARIATIONAL CALCULATIONS

The meson and baryon spectra, in the simplest
model which neglects the coupling of baryon states
to baryon + meson, and of meson states to mul-
timeson states, are given by the eigenvalues of the
Schrodinger equation

.2
H = g ' + V(r1 r2 r3)+Eo .

13 2m
(3.5)

The Schrodinger equation can be trivially solved for
only the Hamiltonian (3.4). The eigenvalues of the
other Hamiltonians (3.2), (3.3), and (3.5) are calcu-
lated with the variational method.

The variational wave functions for the qq and qqq
states are taken to be

Pl, ( 12) f ( 12)kl( r12) (3.6)

Pn, qqq 12 r23 123 g f(rij )'i4 12 13
l (J

The f(r) are parametrized functions of r, while F123
is a function of r12, r13, and r31. These functions
are varied to minimize the energy of the state. The
p's are constructed so that the 1(t has appropriate
quantum numbers. The $1(r12) of qq states are tak-
en as

12) 12 I l (( 12(('12) (3.8)

these generate states of angular momentum I with
no radial excitations.

The qqq states are classified by the total angular
momentum L, parity vr, and symmetry under spatial
permutations. The ground state is a 0+ spatially
symmetric state, to be multiplied with a [symmetric
SU(6)] [antisymmetric color] wave f'unction to
obtain a fully antisymmetric wave function. Simi-
larly, spatially mixed symmetric (antisym metric)
states are to be used with mixed symmetric (an-
tisymmetric) SU(6) states to obtain nonstrange and
strange baryons.
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A mixed-symmetry state may be classified as a p-
or A,-type state obeying the following relations under
permutations:

Pz34r = 41—,
v3

Ptzf) =
2 4P

v3
Pizfr = , 4r+—243,

3 1

4p —,A
v3

Pt34r = z4r A— .
2

Examples of L = 1 states of p and A, type are

1
0,—,= ~ (&3 —&Z»

1- (&z +&3—2zt} .
1 A,

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

1+exp( ro la)—
W(r)=

1+exp[(r ro)la] '— (3.15}

The p and A, states having the same quantum num-
bers are of course degenerate.

The P„'s for the lowest seven qqq states are given
in Table I. It should be noted that these states are
translationally invariant, i.e., P=0 states of the
baryon, and consequently the t/i„'s also have total
momentum P=0. All states other than the two
symmetric 0+ states are orthogonal to each other by
construction, while the parameter a in the P of the
excited 0+S(Roper resonance) state is adjusted to
make the Po+s(ground} and Po+s(Roper} orthogo-
nal.

We first discuss the parametrization of f(r) and

F]z3 for the NR three-body Hamiltonian (3.5). The
f(r) in this case is taken as

—lnf(r)= W(r)A, ~r+[1—W(r)]A, t 5r', (3.14)

This f(r} gives a nonrelativistic Coulomb-type wave
function at small r, and that appropriate to a linear
potential at large r. The A, , is fixed so that the
singular (2a, /3r, j }g term in the Schrodinger equa-
tion is canceled by the A /m (Vzf J /f J )g term T. his
gives

2 mc
y~ ——+—a, (3.16)

' 1/2
4v om

27fi
(3.18)

The Ftz3 is meant to take into account the influence
of the three-body interaction in the qqq potential en-

ergy [Eq. (2.34)] on the wave function. Since this
interaction is rather weak we use the F~23 suggested
by perturbation theory':

1

Ftz3 —— 1 pvo g—r~4 —, g r" (—3 19)

and vary p to minimize the energy. The F&z3 corre-
lation simply reduces the magnitude of 1( in the re-
gions where the three-body potential is repulsive.

The potential energy V (qqq} is a smooth function
of r &, rz, r3, and so rather accurate solutions of this
NR three-body problem are obtained with these sim-
ple variational wave functions. For example, the
calculated expectation value ((HNR) ) is close to
((HNR)) and the quantity

The value of the parameter A,
~ 5 can be estimated by

examining the wave function in the limit rt rz -and

r3/ r3z )) 1 /V o In .the limit r, 3 -r3z =r +oo i—t
can be seen' that the f (r) is the solution of a two-
body Schrodinger equation with reduced mass

)M = —,m, and potential v or. Thus

3'
V f (r)-~orf (r), lim r~oo (3.17)

4m

gives A~ 5 as

with A, ~, A,
~ 5, a, and ro as variational parameters. ((HNR) ~ (HHR ~

(HNR&
(3.20)

TABLE I. The p functions of baryon states. The p+,
pp, A. +, and A,p are spherical-tensor components of the vec-
tors p =( rz —r 3)/v 2 and A, =( rz+ r3 —2r &).

Symmetry

is -0.001 for all states. The highest value for the
above ratio is 0.0013 for the 0+S(Roper) state. The
estimated error in the variational energy of the
0+S(ground) state,

S
M
S
M
S
M
A

pp
1 —a(p+ )

p
3(pp+~p )—(p +~ )

3ppA, p
—p ' A

p-~+ p+~-

NR ~G ( NR~G
/3.E 0+S ground =

(HNR ~R (HNR )G

(3.21)

where ( )G and ( )~ denote expectation values for
the ground and Roper states, is -4 MeV. The ex-
pression (3.21) generally overestimates the error in
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the variational energies.
We basically assume that the eigenfunctions of

the SR Hamiltonians are similar to those of the NR
Hamiltonians. Variational calculations with the SR
qqq Hamiltonian (3.3) are carried out with a slightly
more general f(r) given by

—lnf (r) = W(r)(y i r +y 2r )

0.5-

0.5E

~ 02
N

CJ

0.I

+ [1—W(r)] y, ,r ", (3.22)

and F]23 given by Eq. (3.19). In test calculations on
two-body systems it was noticed that the equilibri-
um value of y, is close to the NR estimate (3.16)
and hence y& is kept fixed at that value, and the oth-
er parameters y1 5, a, ro, and y2 are varied to mini-
mize the energy. The y3 has little effect on the cal-
culated eigenvalues.

It is well known' that the wave function of the
relativistic hydrogen atom is singular at the origin.
The variational f(r) for the SR qq problem is
parametrized to allow for such a singularity:

f(r)=r s exp [
—W(r) y, r

—[1—W(r)]y, ,r' I .

The y1 is kept fixed at its NR value:

4 m 1
'V1 = &s

3 ' 2 (1+1) '

(3.23)

(3.24)

and 5, @1 5, r„and a are varied to minimize the en-

ergy. From the relativistic-hydrogen-atom wave
function we expect 5 in the l =0 state to be

0
0

q(urn ()

FIG. 4. The momentum distribution in three-quark
states.

'2 ~1/2

——0.134 .
3

(3.25)

The equilibrium value of 5 in l =0 state is found to
be ——0.2. The r in f(r) has very little effect on
the energy; the I =0 state energy increases by only
-5 MeV on setting 5=0. Hence the r factor is
omitted in the calculations of I )0 mesons. In prin-
ciple the f(r) [Eq. (3.22)] used in qqq calculations
should also have a r factor, but the effective fine-
structure constant there is 2o., /3-0. 25, which
yields an estimated value 5- —0.03 that is too
small to influence variational energies.

In NR qqq calculations the expectation values of

TABLE II. Details of SR kinetic-energy calculation. All the momentum-space results are
with p =4.417 fm

0+S ground
Coordinate space
Momentum space p &p
Momentum space and tail
Parametrized P(p)

0+S Roper
Coordinate space
Momentum space p &p
Momentum space and tail
Parametrized P(r)

1+3
Coordinate space
Momentum space p &p
Momentum space and tail
Parametrized P(r)

(fm )

7.77
5.96
7.77
7.77

11.02
6.19

11.02
11.02

11.21
8.45

11.21
11.21

(k, 4&

(fm-')

119.7
54.0

133.1
119.7

256.9
67.5

282.1

256.9

195.2
91.2

205.8
195.2

g (i~'+p )'"&

(GeV)

1.671
1.794
1.803

1.668
1.998
2.034

1.920
2.103
2.109
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2.5—

Model

TABLE III. The values of Eo and Eo in GeV.

EM EB

2.0—

T(5 )

s(4+)

NR
SR
SR

313
0

313

0.372
0.547
0.735

0.676
0.940
1.265

g9) A~(2 )

1.0—

0.5—
NR

3I3

A2(2+}
B(l')

AI(l+)

s(o+)

p(I )

SR SR Expt, Expt.

0 L 3I3 S= l(J ) S=O(J")

is calculated in momentum space. Et is relatively
easy to take Fourier transforms of the two-body qq
wave function. Those of the three-body wave func-
tion are calculated as follows.

Let p P;(p) be the probability of quark i to have
momentum of magnitude p:

f P;(p)p'dp= I (3.26)

((m +p; )'i ) = I P;(p)(m +p )'i p dp .

(3.27)

FIG. 5. The calculated meson spectra are compared
with the experimental data (Ref. 17).

2.2—

2.0—
IA

2 M

2+S
o+M

I.6—
0 s

I.4—

the potential energy (V), of kinetic energy (T),
and those of V, V, and V V+PT operators are
calculated with the Monte Carlo method. ' From
these we trivially obtain the (,H ) and (H ). In SR
calculations the expectation value

( T ) — g(~

lpga

2)l /2)

The P; (p) is given by

sin(p
I

r; —r ';
I

)
P;(p)= —Id r;d r d rid rk

(3.28)

where N is determined from the normalization
(3.26). The integral (3.28) is evaluated by the Monte
Carlo method up to a certain maximum value p
beyond which accurate numerical calculations be-
come difficult. The calculated momentum distribu-
tions are shown in Fig. 4 for 0+5 ground and Roper
states, and the 1+3 state of the three-quark system
with m =313 MeV.

The p &p~ states give -90% of the SR kinetic
energy (Table II), however they account for a much
smaller fraction of the expectation values (p; ) and

(p; ) obtained from ( —V ) and (V ) in coordinate
space. The P;(p&p~) is approximated by an ex-
ponential ae ~. The parameter a is determined
from continuity of P;(p) at p~, while b is obtained
from the (p; ) calculated in coordinate space.
Comparison of (k ) calculated from the P;(b) and
(V"), given in Table II suggests that this treatment

l.2—

TABLE IV. Parameters of meson wave functions in fm.

L yi a 5

l.o—

NR

3IO
SR
0

SR
3IO

o+s

Isgur
L Sy

FIG. 6. The calculated baryon spectra are compared
with that of Isgur and Karl.

0
1

2
3
4

0.3965
0.1982
0.1322
0.0991
0.0793

2.1

2.2
2.1

2.2
2.2

0.15
0.15
0.25
0.3
0.3

0.05
0.1

0.2
0.3
0.3

—0.2
0.0
0.0
0.0
0.0
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TABLE V. Properties of meson wave functions in fm. TABLE VII. Details of the meson energies in GeV.

(k') (k4) ( r2) 1/2 ( (m 2+p 2) t/2) ( 4a—, /3r ) ( V o r )

'Divergent.

7.93
8.97

11.16
14.56
16.48

a
132.6
180.9
281.8
347.5

0.29
0.43
0.53
0.60
0.69

1.18
1.29
1.41
1.59
1.68

—0.27
—0.15
—0.11
—0.09
—0.08

0.52
0.80
1.02
1.15
1.33

of the tail of P; (p) is adequate, though not exact.
The above calculation of ((m +p; )'/ ) is rather

time consuming, and a much simpler method is used
for minimizing (H ) in SR calculations. We assume
a functional form for the Q, P;(p),

g P;(p) =—(xpP exp( —xp ),3

2

(3.29)

IV. RESULTS

All the results reported in this section are ob-
tained with the values

4

, o.g —0.5,
Vo=l GeV/fm,

(4.1)

(4.2)

that are consistent with the values 0.52 and 0.93
GeV/fm used to fit the spectrum of charinonium.
The calculated s ectra are shown in Figs. 5 and 6.
The constant Ep in the meson Hamiltonian is fixed
so that the calculated energy of the L =1 mesons is
1203 MeV which corresponds to the center of mass
of the J =0+, 1+, and 2+ 5(980), A&(1100), and

TABLE VI. Properties of baryon wave functions in fm.

State g k, 4 ( r2 )1/2

0+S(G)
1 M
0+S(R)
0+M
2+S
2+M
1+A

23.4
28.8
33.1
33.3
32.3
332
33.6

359
491
771
640
591
593
586

0.33
0.48
0.66
0.65
0.67
0.65
0.64

and calculatex andy from the (7 ) and (7 ). The

g,.((m +p; )) is estimated using this functional
form. As can be seen from Table II this simpler cal-
culation is quite accurate, and we test its accuracy at
the end of the variational calculation by the detailed
calculation of g,. ((m +p; )) for the optimum
wave functions.

/Iz(1310) mesons. These mesons are believed to
have L =1 and spin S=1. The L =1, S=O,
J =1+ meson is believed to be the B(1235), thus
the O. ~. o.

z interaction in L =1 mesons appears to be
negligible. The Ep is fixed so that the 0+S qqq
ground state is at 1.135 GeV as determined by Isiur
and Karl. The values obtained for Ep and Ep in

various models are given in Table III. At present
these constants cannot be computed from basic prin-

ciples.
We have ignored the quark spina in our calcula-

tions. The 0
&

o q and L S forces are believed to be
of short range, and the observed energies of L =2
mesons are indeed not too sensitive to the value of
total spin. Hence, it is meaningful to compare the
energies of L g 2 mesons with experiment. Figure 5
reveals that the calculated meson spectra for the SR
model with m =313 are within a few percent of the
experiment, and a detailed study of hyperfine split-
tings is necessary to determine the deviations from
experiment. The energy of the L=0 state of this
model is 0.68 GeV. It is likely that the o

~
0.

2 in-
teraction will push the L =0, S=1 p-meson state to
approximately the correct energy. The L =0, S =0
state may not come as low as the m meson.

Isgur and Karl have analyzed the spectra of
baryons starting from a Hamiltonian:

H =Hp+Hhyp (4 3)

where Hp contains the kinetic and spin-independent
forces, while Hh» contains spin-spin and tensor
terms. The eigenvalues of Hp are taken as free
parameters to be determined from the experimental
masses, and Hhy„ is treated as a perturbation. The
present work complements that of Isgur and Karl;
we calculate the eigenfunctions and eigenvalues of
Hp. Hence it is meaningful to compare our results
with the eigenvalues of Hp deduced from the experi-
rnental masses in Ref. 5. Figure 6 shows that the
SR model with m=313 MeV is indeed in good
agreement with the data.

The calculated energies of the 1 M, 0+M, 2+S,
2+M, and 1+A states are within 3% of those of Is-
gur and Karl, but the 0+S(Roper) is too high by 120
MeV, or 7.5%. It should be noted here that Isgur
and Karl obtain the X~ Roper resonance at 1405
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TABLE VIII. Details of the baryon energies in GeV.

State

0+5(G)
1 M
0+S(~)
0+m
2+S
2+M
1+a

((m2+p2)1/2

1.80
1.96
2.01
2.08
2.06
2.09
2.11

( 2a—, /3r J )

—0.34
—0.27
—0.30
—0.25
—0.24
—0.23
—0.21

(,'~or;; &

0.86
1.04
1.17
1.20
1.22
1.22
1.23

( V 0'( r; 4
— r(i ) )

0.08
0.10
0.11
0.08
0.10
0.12
0.15

MeV, i.e., about 65 MeV too low compared with the
experimental 1470 MeV. Thus the unperturbed en-

ergy of the 0+S(Roper) state could be -65 MeV
above that indicated by Isgur and Karl. Second, we
note that the J = —, states b(1950) and N(1990)
give clear indications for the unperturbed energies of
the 2+S and 2+M states, but those of the 0+M and
I+A are not that uniquely determined from the data.

The spectra of SR Hamiltonians are not too sensi-
tive to the assumed value of u, d quark mass in the
relativistic kinetic energy. The level spacings gen-
erally reduce by —15% as we go from NR m =313
MeV, SR m =0 to SR m =313 MeV models. How-
ever, the 0+S Roper resonance state is particularly
sensitive to the form of kinetic energy. We have not
attempted to fit the meson masses or Isgur and Karl
energies by carefully varying a„v o, and m. It may
be possible to obtain a little better agreement with a
few percentage smaller value of v o.

The equilibrium values of the parameters for the
meson wave function are given in Table IV. For the
baryons, the parameters in the wave function were
essentially identical in all states, within the accuracy
of the method. Even in the nonrelativistic case,
where our results should be most accurate, the
parameters change very little for the different states.
For the m =313 MeV semirelativistic case, the
parameters are

y2 ——0.637 fm, y) $ =1.40 fm

ro ——0.12 fm, a=0. 12 fm,

P=0.25 GeV

The k, k, and rms radii are given in Tables V
and VI and the expectation values of the kinetic,
color-Coulomb, linear, and three-body potentials are
given in Tables VII and VIII. These tables report
results obtained with the SR m =313 MeV model.

We learn from these tables that the hadronic
states in this model are relatively small and contain
rather energetic constituents. In particular, the pro-
ton has a rms radius of =—, fm and each quark in it
has an average kinetic energy of approximately 600
MeV. Studies of the large-transverse-momentum
distributions of the fragments of hadronic collisions
suggest quark kinetic energies of this order. ' The
small rms size of the proton suggested here is con-
sistent with other quark models but is considerably
smaller. than values favored by phenomenologists. It
has been suggested in the literature' that quark cal-
culations of (r )'~ give the "core size" of the pro-
ton. There is in addition the pion cloud surrounding
the proton which is not accounted for in our model
and may be responsible for the large proton-size esti-
mates deduced from peripheral-scattering processes.

Note added in proof. Cutkosky and Hendrick'
have considered the long-range interaction given by
Eq. (2.23) in baryons. Stringlike solutions of the bag
model give meson Hamiltonians similar to Eq.
(3.2).
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