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A deterministic model that accounts for the statistical behavior of random samples of
identical particles is presented. The model is based on some nonmeasurable distribution of
spin values in all directions. The mathematical existence of such distributions is proved by
set-theoretical techniques, and the relation between these distributions and observed fre-

quencies is explored within an appropriate extension of probability theory. The relation be-

tween quantum mechanics and the model is specified. The model is shown to be consistent
with known polarization phenomena and the existence of macroscopic magnetism. Finally
the possibility of a thought experiment which indicates a deviation from the predictions of
quantum mechanics is described.

I. INTRODUCTION

In 1924 Banach and Tarski proved the following
remarkable theorem'. "Using the axiom of choice
one can cut a ball into finitely many pieces which can
be so rearranged that one obtains two balls of the
same size as the original one. "

This so-called "Banach-Tarski paradox" is not a
paradox at all. The pieces into which the ball is cut
are nonmeasurable sets, that is, one cannot assign
them numbers that indicate their volume since this
will clearly violate the additivity or invariance of
"volume. " In spite of this explanation and in spite
of independent proofs that nonmeasurable sets exist,
the Banach-Tarski result was taken as an unfor-
tunate consequence of the axiom of choice (which is,
nevertheless, essential in some fields of "good"
mathematics).

Suppose, however, that we reverse this attitude
and maintain that the subsets into which the ball is
decomposed exist in physical reality. These hidden
pieces could be detected in two "states. " The first is
a "one-ball state" and the second a "two-balls state. "
In each state the pieces do have a "volume" which
depends, however, on their mutual configuration.
Assume that we have a source that emits five balls
in the first state. On the way from the source to a
counter two of the balls spontaneously transform to
the second state. The counter, which does not dis-
tinguish between the states, will detect seven balls.
This rather simplistic example serves to indicate
that one can "perform miracles" if one is willing to
accept the physical reality of some highly abstract
set-theoretical objects. In particular, if such as-
sumptions are made, it is possible to account for in-
terference effects in a completely mechanistic way
without introducing wavelike nonlocal components

to the theory. In a previous letter I have sketched a
model for spin- —, statistics based on some non-

measurable distribution of spin values in all direc-
tions. The purpose of this article is to extend this
model, to point out some of its physical conse-
quences, and to supply it with a sound mathematical
basis.

Mathematicians, in particular applied mathemati-
cians, were reluctant to take nonmeasurable sets seri-
ously. As a result there exists no mathematical
theory that relates nonmeasurable distributions with
relative frequencies. Such an extension of probabili-

ty theory, which I believe is suitable for the spin-
statistics case, is developed in Sec. II. In Sec. III I
present a model of spin- —, statistics. The relation
between this model and the usual, Hilbert-space, for-
malism of quantum mechanics is developed and
various phenomena such as polarization and macro-
scopic magnetism are explained. Section IV is an
extension of the theory to massive spin-1 particles
and finally in Sec. V I point out some cases where
the predictions of the model may differ from the
predictions of quantum mechanics.

Taken in historical perspective the proposed
model belongs to the tradition of "hidden-variable
theories. " Since the birth of quantum mechanics
there have been numerous attempts to explain its
statistical correlations by reducing them to deter-
ministic relations among hidden, yet undetected,
physical parameters. These challenges to the pre-
vailing Copenhagen interpretation were met, in turn,
by some mathematical results to the effect that such
an enterprise is impossible. The two most powerful
impossibility theorems of this kind are due to Bell
and Kochen and Specker.

Bell has argued that spin correlations of identical
particles in the singlet state could not be explained
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by a "local hidden-variable theory. "The expectation
values (or the corresponding relative frequencies)
which are predicted by any local hidden-variable
theory should satisfy a certain inequality. This in-
equality in turn is violated by the expectation values
given in quantum mechanics. Various experiments
verified quantum mechanics rather than its alterna-
tives. Therefore, any hidden-variable theory that at-
tempts to explain these correlations should include a
nonlocal mechanism for transporting infiuences in-
stantaneously from one particle to its singlet-state
companion even when they are far apart. There are
many good reasons to reject such a theory. The
proofs of the various versions of Bell's inequality all
assume the validity of probability theory, in particu-
lar the additivity axiom. Nonmeasurable distribu-
tions can violate additivity and the resulting physi-
cally obserued relative frequencies can violate Bell' s
inequality. In fact, in the framework of my model,
Bell's argument merely establishes the nonmeasura-
bility of the set of points where the relative frequen-
cies converge to the expected limit. (See theorem 4
below. This set is, however, very "big" so that con-
vergence occurs "almost everywhere" in some non-
standard sense. } Thus if one is willing to pay the
price of nonmeasurability, locality could be saved.

The other objection to hidden-variable theories,
the Kochen and Specker theorem, applies only in the
spin-1 (and higher) cases and is therefore accounted
for in Sec. IV.

The proposed model is by no means intended as
an alternative to quantum mechanics. It should
rather be taken as an attempt to interpret at least a
part of quantum mechanics in a deterministic
fashion. It should also be noted that the expectation
values given in the model are Gallilei invariant.
Since spin is a relativistic degree of freedom I feel
that a more complete account should be developed
in a Lorentz-invariant framework.

II. MATHEMATICAL PRELIMINARIES

In the following, x,y, z, w will denote unit vectors
in three-dimensional Euclidean space. Let S' ' be
the set of all such unit vectors,

of S' '. In the following I shall introduce an exten-
sion of the concept of Borel measurability.

Let m, g be the Lebesgue measure on the circle
c(z, 8) so that m, e(c(z, 8))=2m. sin8 denote

p, e——(2m. sin8) m, e, then p, e is a probability mea-
sure on c (z,8).

Definition l. (a) Let f be a real function on S' '.

f is spherically integrable if for all zCS'2' and
0&8&@ the restriction of f to c(z,8) is p, e inte-
grable. In this case I shall denote

E(f
~

z, 8)= f f (w)dp, e(w) . (2.1)

E(f ~z, 8} is the conditional expectation of f on
c (z,8).

(b) A spherically integrable function is said to be
totally spherically integrable if for all z ES' ' the in-
tegral

E(f)= —, f E(f ~z, 8)sin8d8 (2.2)

is defined and its Ualue is independent of z. In this
case E(f) is the total spherical expectation of f.

(c) A subset A CS' ' is spherically measurable if
its indicator function Xq(w) which equals 1 for
wFA and zero for w&A is spherically integrable.
The set 3 is totally spherically measurable when Pz
is totally spherically integrable. In this case E(Xq)
is called the total spherical expectation of A.

(d) Two spherically integrable functions f,g are
spherically independent if

E(fg ~z, 8)=E(f ~z, 8)E(g ~z, 8) (2.3)

for all z&S' ' and 0&8&m.
Every Borel-measurable subset of S' ' is totally

spherically measurable. This follows from the fact
that the intersection of an open subset of S' ' with
the circle c(z, 8) is open relative to c(z,8). Thus
every integrable Borel function is totally spherically
integrable and its total spherical expectation is iden-
tical with its integral with respect to the normalized
Lebesgue measure on S' '. To see this, let (r, 8,$) be
a set of spherical coordinates and let z=(1,0,0).
Then

f f f(8,$)sin8dg d8

Let z ESi2i and 0 & 8 & m. denote by c (z, 8) the set of
all unit vectors that form an angle 8 with z:

c(z,8)=IxES' '~x z=cos8)

(where x z denotes the scalar product of x and z).
c (z, 8) is a circle on the sphere S' ' with radius sin8
and center on the vector z (or —z).

The family of Borel-measurable subsets of S' ' is
the O.-Boolean algebra generated by the open subsets

= —,
' f f f(8,$)dg sin8d8

0 2~ 0

= —, f E(f ~z, 8)sin8d8=E(f) .
0

There are totally spherically measurable sets which
are not Borel measurable (not even Lebesgue
measurable). We shall see that the family of totally
spherically measurable sets is not even a Boolean
algebra. Thus there exists two totally spherically
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E (s
i
z, 8)=s (z)cos8 (2.4)

for all z E-S' ' and 0 & 8 & m. We have the following.
Theorem 1. There exists a spin , -f—unction Th. e

proof is by set-theoretical techniques and is given in
the Appendix. The theorem establishes the
mathematical consistency of the calculations and
model that will follow. We shall see that spin- —,

functions are not measurable in the usual sense but
they are, nevertheless, totally spherically integrable
and have total spherical expectation zero since

E(s)= —, f E(s iz, 8)sin8d8
0

1
7r= —,s (z) cos8 sin8 d 8

0

=0. (2.5)

Let s be a spin- —, function and denote

A+ ——Iw&S' 'is(w)= —, J

measurable sets A,B such that A flB is not totally
spherically measurable.

Definition 2. A spin- —, function is a function s:
S' '~

t
——,, —, I such that s ( —w) = —s (w) for all

ur ES' ' and such that s is spherically integrable and

P p
——Ispoa

i
a CO3]. We have the following.

Theorem 2. ~ p is an infinite set.
Proof: Let 03+ be the group of "real" rotations,

i.e., orthogonal 3 g 3 matrices with determinant + 1.
Consider the representation of 03+ as a permutation
group of the set P p ——Ispo a

i
a EO3+ I as follows:

sofia

spa (aP)

The kernel of this representation is a normal (invari-
ant) subgroup of 03+ and it cannot, be 03+ itself
[since sp( —w) =—sp(w)]. But 03+ is simple, i.e., it
has no nontrivial invariant subgroups. It follows
that P 0 is infinite since, otherwise, we would have
a faithful representation of 03+ as a finite permuta-
tion group, which is absurd. Q.E.D.

Before I proceed, let me demonstrate, at this
stage, some of the "bizarre" features of spin- —, func-

tions. By similar technique to that in the proof of
Theorem 1, one can prove the following (see the Ap-
pendix).

Theorem 3. Let a&03, a&+1. Then there exists
a spin , fu-n —ction s such that for all z ES' ' and all
0&t9&m.

and

=Iw&S' 'is(w)= ——, I .

E(ssoa
i z, 8)=E(s

i
z, 8)E(soa

i
z, 8)

=s(z)s(a(z))cos 8. (2.9)

1
Let s+=Xz and s =X&, then s+=s+ —,; and

therefore for all z ES' ' and 0 & 8 & ewe have.

E(s+ iz, 8=E(s+ —, iz, 8)
1= —,+s (z)cos8

Each one of the functions s,soa in the above
theorem is totally spherically integrable but their
product ssoa is not, since from (2.9)

—, f E(ssoa
i
z, 8)sin8d8= —,s(z)s(a(z))

(2.10)

cos ( —,8) if s (z) = —, ,

sin ( —,8) if s (z) = ——, .
(2.6)

and therefore the integral on the left-hand side of
(2.10) equals +—„when s(z)=s(a(z)) and
when s (z)&s(a(z)). In the same way, one can show
that the intersection

The sets 2+,A are totally spherically measurable
since for all z CS' ' we get from formula (2.6)

E(s+)= —,
' f E(s+

i z, 8)sin8 d8= —,
'

(2.7)

with a similar formula for s . Thus the total spher-
ical expectation for "spin up", i.e., s (w) = —,, is —,.

Let s be a spin- —, function and let 03 be the group
of orthogonal transformations in E' '. For a &03
let saa be defined by so a(w) =s(a(w) ). It is easy to
see that for all z ES' ' and 0 & 8& m

E (s~ a
i
z,8)=s(a(z) )cos8 . (2.8)

In other words so a is also a spin- —, function and the
conditional expectation in Eq. (2.4) is 03 invariant.
Let sp be a fixed spin- —, function and denote

I w eS'"
i
s(w)= —, J 9 {weS' '

i
s(a(w))= —, ]

is not totally spherically measurable even though
each one of the intersecting sets is. It follows that

IwES' 'is(w)= —, I

is nonmeasurable in the usual sense. The phenome-
na indicated in theorem 3 is the motivation for the
following:

Definition 3. Let ai, a2, . . . , a„,. . . be a sequence
of orthogonal transformations and let s be a spin- —,

function. Denote s; =so a;. The sequence
a&,a2, . . . , a„,. . . is s random (and the sequence
si, s2, . . . , s„,. . . simply random) if, for all zES' '

(except maybe finitely many} and all 0 & 8 & m,
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k

E(s;,s;, s;„ Iz, 8}=gE(s; Iz, 8)
' j=1

k
=(cos8)"g s;.(z)

1j=1
(2.1 1)

for all k & 2 and indices 1 &i i &i2 « ik & ao.
Generalizing the proof of Theorem 3 one can

show that random sequences in the above sense exist
(see the Appendix).

In standard probability theory a "law of large
numbers" is usually invoked in order to establish the
relation between finite means of random variables
and their mutual expectation values. Such a law
usually states that the means of a sequence of ran-
dom variables converges to their expectation value
"almost everywhere" (that is, except on a set of mea-
sure zero). In the present case the situation is slight-
ly more complex and a version of the law of large
numbers is given below:

Theorem 4. Let s1,s2, ' -, s„be a random se-
quence and let zp&S' ' be fixed Let s'i. ,s2, . . . , sk

be the subsequence of the original syeuence of all
these functions which satisfy s (zp) = + —,. Denote

SJ have the same expectation on c(zp, 8). Since
spin--, functions are bivalued, this also means that
the si are equally distributed on c (zp, 8). We have
assumed that the original sequence is independent
on each circle c(z,8} [Eq. (2.11)]. Thus the subse-
quence (SJ' J is also independent on each circle and
in particular on c (zp, 8 }. It follows from the
(strong) law of large numbers7 that
(1/k) QSJ'(w) —+ —, cos8 for almost all wEc(zp, 8}
(where "almost all" is measured in terms of p, e).0
Thus we have proved (2.13).

In the rest of the proof the term "measurable"
refers to the normalized Lebesgue measure on S' '.
Assume by negation that B is measurable. Then its
measure is 1 since by integrating (2.13) we get

E(Xs)=—, J E(Xs
I
zp, 8)sin8d8=1,

and the measure of a subset of S' ', when defined, is
independent of the choice of coordinates. Let
yp'EB ypQ+zp, be fixed. We can split the sequence
Is&') into two subsequences [SJ' I =Isj J VIS& ),
such that sj (yp) = + —, and sj (yp) = ——, j
=1,2, . . . . Denote

W Zp
B= w CS' ' —g SJ (w)~ (2.12) C= w CS' ' —g sj (w) ~(2) 1 I

2

l j, '
r 2

l

Then B is nonmeasurable in terms of the Lebesgue
measure on the sphere but nevertheless for all
Og8(m

(X,
I
z, ,8)=1. (2.13)

Proof: I shall prove first that (2.13) obtains. Let
8 be fixed. We have sj' (zp ) = —, and thus

E(sj Izp8)= —, cos8 for j=1,2, . . . . Hence all the
I

3 w ypD = w eS"' —g s,'(w) ~—
m

1
m 2

By the law of large numbers we get again

E(Xc Iyp 8)=E(XD
I yp 8)=1

and hence also E (XcXti
I yp, 8)= 1 for all 0 & 8 & m. .

From the definition of sj,sj,

$'i (w)+ ' ' ' +sk(w} s i(w)+ +st'(w)

l k

Si(w)+ ' ' ' +Sk I(w)

k —l
(2.14}

We have assumed that yp CB thus for large k the ra-
tio (l/k) is approximately the relative frequency of
"spin up" in the yp direction in the sequence Is~' j.
In other words

l 1 yoz—+
k 2 2

In the same way

k —l 1 yo zo

k 2 2

Assume that w &BAC AD, then taking the limit
k ~ 00 in (2.14) we get

w zo 1 yo'zp
+

2 2 2

wyp

2

0 Zp+
2 2

w'yo

2

Thus wEBflCAD only if w zp ——(w yp)(yp zp). It
follows that BAC AD is measurable and has mea-
sure zero. Now put C AD =(BIl C AD)

U(BACKED)

where B=S' ~/B. We have proved
that BA C AD is measurable and has measure zero.
Also, by assumption B is measurable and has mea-
sure 1. Therefore, B is measurable and has measure
zero and thus also BA C AD is measurable and has
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measure zero. %e conclude that C AD is measur-
able and has measure zero, but this is a contradic-
tion since E(XcXD

~ yo, 8) =1 for all 0 & 8 & rr.

Therefore, 8 is nonmeasurable. Q.E.D.
The set 8 of directions w for which the sequence

(1/k) g,. , s ( w) converges to the quantum-
mechanical value zo w/2 is thus "big." This means
that if we measure the size of B in a spherical coor-
dinate system with z as axis it appears as if the (nor-
malized) measure of 8 is 1 or, in other words 8
is "almost the whole sphere" since

p, e[BAc(zo, 8)]=1 for all 0& 8 & m; On the other

hand, if we measure the size of B in a different coor-
dinate system 8 appears "small" as is evident from
the proof of Theorem 4. This peculiar "paradoxi-
cal" property of B is the analog of the Banach-
Tarski paradox in the present context.

Vivat I suggest is to utilize this paradoxical prop-
erty of B and maintain that the averages do con-
verge on their quantum-mechanical expected value
almost everywhere (since 8 is, in some measure-
theoretic source, "almost the whole sphere"). This
move does not involve the logical contradiction de-
rived from Bell's inequality precisely because B is
"small" in another sense. The same observation ap-

plies to random sequences s1,s2, . . . , s„,. . . which
are not necessarily polarized in a particular direction
as follows from the following:

Theorem 5. L,et s1,s2, . . . , s„,. . . be a random se-
quence. Denote

ll

w ES' ' —g s;(w)~0 . .
n .1=1

Then for all z&S' ': E(X~ ~z, m/2)=1. Moreouer if
zEA then for a110&8&m E(Xz ~z, 8)=1.

Proof: For a given z&S' ' divide the sequence

[s; I into two subsequences [s; I
= Is I U Is;"I where

s (z)=+ —,s;"(z)=——,. From Theorem 4it follows
that

k 'gs (w)~
i=1

almost everywhere on c(z,8) for all 0&8&m.. By
the same argument

I
1

' g s;"(w)~—

almost everywhere on c (z, 8). Now.

1 " k 1, wz
s w= s. w

n
1

n k; 1
2

wz
s; (w)+ +

i=1

2k —n wz
n 2

For 8=sr/2 we have w z=0 and thus the right-
hand side of (2.15) converges to 0 almost everywhere
on c(z,m/2) as n increases. If z EA we have

1f—g s;(z)~0,
n i=1

1 1

thus for large n, kin- —, and (n k)/n- ——, and

again the right-hand side converges to zero almost
everywhere on c(z,8) for all 0&8&m.. Q.E.D.

Theorems 4 and 5 combined give us the answer to
the following question: "What is the relative fre-
quency of spin up in the x and y direction in a ran-
dom sequence of spin function?" The answer is
"with probability 1" it is the relative frequency of
spin up in the x direction (which is —,, see Theorem
5) times the relative frequency of spin up in the y
direction among those functions in the sample
which have spin up in the x direction (which is
—,+x.y/2, Theorem 4). What is peculiar here is the
term "with probability 1" (or "almost everywhere")
which utilizes the rather paradoxical properties of
the sets A and B. As it turns out two events may
have probability 1 in my sense but their conjunction

(2.15)
I

only probability zero (see proof of Theorem 4) which
is indeed bizarre. The mode1 that follows is a solu-
tion to the quantum-statistical paradoxes only as far
as one is willing to accept the premise that "strange"
physical phenomena [such as the Einstein-
Podolsky-Rosen (EPR) paradox] calls for some non-
standard explanation. One can, as it were, reduce a
physical paradox to a mathematical "pathology. "

III. FERMI-DIRAC STATISTICS

1I shall use the electron as an example of a spin- —,

particle, but the following may apply to other spin-
—, fermions as we11. The model is based on the fol-
lowing assumptions:

(a) Each electron at any given moment has a de-
finite spin in all directions and its spin values are
given by a spin- —, function.

(b) All electron spin- —, functions belong to a fami-
ly of the form a o——[sooa

~
a&03] for some fixed

(yet unknown) spin- —, function so.
(c) If s &,s2 are spin- —, functions of two uncorrelat-
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ed electrons then s~,s2 are taken as spherically in-

dependent, i.e., they satisfy (2.9}.

cos8cosg —sing sin8cosg

a = cos8 sing cosP sin8 sing
—sin0 0 cos0

(3.1)

transforms z to x. This transformation is represent-
I

Condition (b) can, in fact, be dropped to obtain a
somewhat weaker model. In the following I shall
assume, however, that all three conditions are satis-
fied. As a result of a (low-energy) interaction the
electron spin- —, function s is transformed to another
spin- —, function s', but the transformation is always
of the form s'=soa for aEO3. I assume that the
transformation a depends on the dynamic variables
other than the spin and on the type of interaction.
This assumption turns the model into a determinis-
tic one.

The relation between the proposed model and the
usual Hilbert-space formulation of quantum
mechanics is as follows: Let z be a fixed unit vector
in physical space and (r, 8,$) a system of spherical
coordinates such that z=(1,0,0). Let i+)=(o)
and

i

—) =( ~) be the vectors in the two-dimensional
complex Hilbert space H2 which correspond to the
states "spin up" and "spin down" in the z direction,
respectively. Let x =(1,8,$) be an arbitrary unit
vector in physical space. The orthogonal matrix

ed on H2 by the unitary matrix

cos( , 8—)e '~ —sin( , 8—)e '4'

sin( —,8)e'~ cos( —,8)e'&

(3.2)
Thus the first and second columns of D~~2(a) corre-
spond with the states spin up and spin down in the x
direction, respectively. Assume that s is the electron
spin- —, function. For all x ES' ' define the vector

i
s(x)) EH2 as follows:

cos( —,8}e
Is(x)) =

sin —,8 e'
1if s(x)= —,

and (3.3)

—sin( —,8)e

i
s (x)):

cos —,8 e' if s(x)= ——,

The complete description of the electron spin state
is given by the collection of vectors

I is(x)) ixES' 'j. Note that every unit vector of
H2 has a representation as the first or second
column of D~~q(a). This is not true in the three-
dimensional spin-1 case, a fact which causes some
complications (see Sec. IV below). From (3.3) we get
that

i (s(x) is(z))
i

=cos ( —,8) when s(x)=s(z)
and

i
(s(x)

i
s(z))

i

=sin ( —,8) for s(x)&s(z).
Hence

i
(s(x) is(z))

i
=pe[Iwcc(z 8) is(w)=s(x)j]= —, +2s(x)s(z)cos8 (3 4)

for 8=arccos(x z) In othe. r words,
i
(s(x) is(z)) i

is the conditional expectation of "spin equals s(x)"on the
circle c(z,8). Formula (3.4) establishes the interpretation of the quantum-mechanical expectation values in
terms of the conditional expectations given by the model.

With the use of principle (c) of the model one can account for the quantum-mechanical addition rules as
well. Let s&,s2 be the spin- —, functions of two noninteracting electrons. The quantum-mechanical description
of the two electron systems is given by the tensor product H2H2. Let

i
s&(x) ),

i
s2(x) ) be defined as above.

Then the four-dimerisional vector

i
s

& (x)s2(x) ) —
i
s &(x) )

i
s2(x) )

refers to the state "spin s&(x) for electron 1 and spin s2(x) for electron 2 in the x direction. " Since s&s2 are
spherically independent we get

i
(s~(x)sz(x)

i
s&(z)s2(z))

i
—p e[Iw&c(z8)

i
s~(w)=s&(x) j]pe[IwFc(z, 8) is&(w) =s2(x) j]

=p,e[IwCc(z, 8) is~(w)=s~(x)j A IwEc(z, 8) is2(w}=s2(x)j], (3.5)

where 8=arccos(x z). For example, if s ~ (z)
1 1=s2(z)= —, and s&(x)= —s2(x)= —, we get from

(2.6) and (3.5)

i
(s~(x)s2(x) is&(z)s2(z))

i

=cos ( —,8)sin ( —,8)

in agreement with quantum mechanics. Thus taking
the tensor product H2(3)Hz is equivalent to the as-
sumption that s ~,s2 are spherically independent.

When the electrons are correlated we cannot any
longer assume spherical independence. In this case,
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the electron spin- —, functions are spherically corre-
lated in a way given by the triplet and singlet states.
This case will be described in a separate article. (A
hint of the triplet-state correlations may be found in
the discussion of spin-1 particles below. )

Theorerns 4 and 5 above are the keys to the ex-
planation of the statistical behavior of large samples
of identical spin- —, fermions. Suppose that we are
given a random sample of electrons. Let
s~,s2, . . . , s„be the sequence of its spin- —, func-
tions. The randomness of the sample is accounted
in the present model in terms of the randomness of
the sequence s i,s2, . . . , s„(Definition 3). Let z be a
fixed direction and s &, . . . , sk the subsequence of all
those functions in the sample which have spin up in
the z direction. For large n we have with probability
1: k-n/2 (Theorem 5). Let x be an arbitrary
direction. Then for large n we have with probability
1:

k 'gs (x)-
i=1 2

where the probability is measured in terms of p, e for
8=arccos(x z) (Theorem 4). Thus, the answer to
the question: "In a random sample of electrons
what is the relative frequency of spin up in the z
direction and spin up in the x direction" is "with
probability 1 it is —, cos ( —,8)", where probability is
measured as before. This explains the frequencies
observed in various polarization experiments as well
as EPR types of arrangements.

In the same way I can also explain the properties
of macroscopic magnetic fields. I have assumed
that an electron has a definite spin in all directions,
therefore it also has a definite magnetic moment in
each direction x, given by pps(x) where pp is the
Bohr magneton and s the electron spin- —, function.
Thus microscopic magnetic moments are not vec-
tors. Macroscopic magnetic moments, on the other
hand, behave like vectors. This could be explained
as follows: Assume that we have a sample of elec-
trons all polarized "up" in the z direction and all
confined to a relatively small portion of space. Let
si,s2, . . . , s„be the electrons' spin- —, function then

s&(zp) = + —,. The magnetic moment in the z direc-
tion due to the electrons in the sample is approxi-
mately

pon
Pz —g Pp j(Z}=

j=l 2

Let x&z, then

ponp„—Q @pe(x)= (x.z)+p pr (n),
2

where

panp„- (x z)=p, (x z) .
2

Therefore, the vectorlike behavior of macroscopic
magnetic moments is a statistical phenomenon in my
model. One may speculate at this stage what would
have happened if the distribution of spins on the
sphere had not been given by a spin- —, function but
rather by another type of function. In that case,
macroscopic magnetic fields would not have
behaved like vectors. This suggests that the macro-
scopic space-time structure that we observe results,
in fact, from a statistical distribution of hidden vari-
ables of various kinds.

IU. BOSE-EINSTEIN STATISTICS

I shall construct a model for Bose-Einstein statis-
tics along the same lines as in the Fermi-Dirac case.

Definition 4. A spin-1 function is a function j:
S' '~t —1,0, 1I such that j(—w)= —j(w) for
wES' ' and such that

E(j ~z, 8)=j(z)cos8,

E(j ~z, 8)=sin 8+j (z) —,(3cos 8 1) . —
(4.1)

(4.2)

Again using the same set-theoretical techniques, one
can prove that spin-1 functions exist and thus the
model is mathematically consistent (see the Appen-
dix). From (4.1) and (4.2) it is obvious that. both j
and j are totally spherically integrable and their to-
tal spherical expectation is

E(j)=0, E(j')= —, . (4.3)

Note that the conditional expectation of spin &0 on
c(z, 8) is sin 8, when j(z)=0, but for j(z)&0 one
has to add to this value a "dipole moment effect, "
—,(3cos 8—1). Note also that the conditions (4.1}
and (4.2) are 03 invariant, i.e., if j is a spin-1 func-
tion, so is jou for aEO3.

Let A+ ——I w ES '
~
j(w) =1I and similarly define

Ao and 3 . Let j+,j,j be the indicator functions
of A+ApA, respectively, then j =j ++j
j=j+—j, and j =1—j . Thus we can calculate
the expectation values for spin up, spin zero, and
spin down on c(z, 8) from (4.1) and (4.2). These
values are given in the following formulation:

r(n)= pe(x) ——x.z .
2

As n increases, with probability 1, the component
ppr(n) represents a decreasing percentage of the ef-
fect [since (1/n) gs;(w) —+(w z)/2 for almost all

w Cc(z, 8), where 8=arccos(x z)]. Hence for large
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j(z)= 1

j(z)=0
j(z)=—1

cos ( —0)
—sm 01

2

sin4( —0)

—sin 01

2

cos'0
1—sm 0
2

sin ( —,0)
—sm 01

2

cos ( —0)
(4.4)

E(j+
~

z8) E(j
~

z8) E(j
~

z8) fixed jo. Finally I assume that the spin-1 functions
of two uncorrelated identical particles are spherical-
ly independent.

Let H3 be the three-dimensional complex Hilbert
space and let

0 0
We are now in the position to introduce the physical
assumptions. As before I shall assume that each
(massive) spin-1 particle has definite spin value in all
directions and its spin values are given by a spin-1
function. I shall also assume that the spin-1 func-
tions of a particular species of spin-1 particles all be-

long to a family of the form Ijcoa
~

a EO& I for some

0, 1, 0
0 0 1

be the H3 vectors representing the states spin up,
zero, and down in the z direction, respectively. The
orthogonal transformation a in (3.1) is represented
on H3 by the unitary matrix

cos ( —8)e '~ — sin8e '~ sin ( 8)e—

Di(a)= 1~ sin8
2

cos8 1
sine (4.5)

sin ( —,8)e'i sin8e'&
2

cos ( —,8)e'&

Let x =(1,8,$) be an arbitrary unit vector in the
physical space and let jbe a spin-1 function. Define

~
j(x) ) EH& to be the first, second, or third column

of Di(a) in case j(x)=1,0, —1, respectively. Then
we get again

)
(j(x)

)
j(z)) )'=p, s[ twFc( z, 8)[j(w)=j(x)j]

(4.6)

for 8=arccos(x.z). This could easily be verified
from (4.4). The rest of the spin-1 case follow the
same lines as the spin- —, case. There is, however,
one complication in this case that does not arise in
the spin- —, case. Not all the vectors in H3 can be
represented as one of the columns of the matrix
(4.5). From the principle of superposition we know,
on the other hand, that every unit vector in H3 cor-
responds to a possible physical state. Thus quantum
mechanics is much richer in states than my model.
This observation is related to a result due to Kochen
and Specker, who proved that the no bivalued
homomorphism exists on the lattice of subspaces of
the three-dimensional Hilbert space. Thus the set of
all H3 states could not be recovered by a hidden-
variable theory, not even one such as I have suggest-
ed. The way to circumvent this difficulty is to ob-
serve that the principle of superposition makes sense
only in the absence of a detailed hidden-variable
theory. I suggest, in other words, that we introduce
the following:

Superselection Rule: The states realizable by a sin-
gle (massiue) spin lparti-cle are all of the form

~
j(x))for x&S' 'and some spin 1functio-n j.'o

What about the rest of the unit vectors of H&? They
represent some statistical information about a parti-
cle that belongs to a collection which has some dis-
tinguished features. For example, the vector

v2
' "i+)+-'i»+-' ""i—

&2 2

represents the following statistical information
about a spin-1 particle:

(1) It belongs to a collection in which the relative
frequencies of snin up, zero, and down in the z
direction are —,, 4, 4, respectively.

(2) The collection is polarized in such a way that
it has no particles with spin-0 in the x =(1,8,$)
direction for ((I =0 and 8=arctan(V 2).

It can easily be proved that every vector in H3 could
be interpreted in a similar way. Note that the parti-
.cle has a definite spin in all directions and the infor-
mation given by the unit vector merely represents
our ignorance of these values.

V. PRINCIPLES FOR TESTING THE MODEL

A random sample of electrons is described by a
random sequence of spin- —, functions. The model,
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on the other hand, is assumed to be deterministic,
that is, one can calculate, in principle, the exact
transformation s~soa which the electron spin- —,

function undergoes during an interaction. Using
such a calculation one can design a sample of elec-
trons in which randomness has been destroyed. As a
result the sample will manifest statistical behavior
which deviates from the predictions of quantum
mechanics.

Suppose that we pass an electron through a
Stern-Gerlach apparatus oriented in the z direction.
Let s be the electron spin- —, function before it enters
the apparatus. After it leaves the apparatus the elec-
tron Fermi function is sea for aE03. We know
that in every such experiment the electron spin in the
z direction does not change. Thus we can assume
that in this case a leaves z invariant a(z)=z. The
orthogonal transformation o, depends on the dynam-
ic variables of the electron other than the spin itself
and on the properties of the magnetic field of the
apparatus. I do not have a theory of the nature of
this dependence but in the following I shall assume
that such a theory is available.

Consider the following thought experiment: Take
an electron and pass it through a Stern-Gerlach ap-
paratus in the z direction. Suppose it goes "up".
Now further polarize it in the x direction for x
orthogonal to z. Suppose it goes "up" again. Finally
polarize it a third time in'the z direction. jLet s be
the original spin- —, function of the electron. It un-

dergoes three orthogonal transformations:

s ~so a~~so (a&a&)—+so (a3aza&),

where a&(z) =a3(z) =z and az(x) =x. If we can con-
trol the dynamic variables and magnetic fields so
that az is a 180' rotation about the x axis then the
electron will definitely go "down" through the third
apparatus. This occurs since

a3aqa&(z) =a3aq(z) =a3( —z) = —z

and hence

s(a3apa&z)=s( —z)= —s(z) .

Quantum mechanics as well as my model predicts
that in a random sample of electrons about —, of
the electrons will go up through all three apparatus.
Thus we have a thought experiment which exhibits
about 12% deviation from the predictions of quan-
tum mechanics. The thought experiment is not in-
tended, of course, as an instruction for the experi-
mentalist. It indicates, I believe, that any theory of
the nature of the transformations s~soo, could be
tested in principle. I believe that such a theory
could be developed in a relativistic framework. I
have already mentioned the possibility that the

orthogonal transformation a may have something to
do with the "Wigner rotation", which is essentially a
rotation of the spin- —, function due to a Lorentz
transformation from one reference frame to another.

Note that even if the present model fails such a
test, one can still weaken it by dropping condition
(b) of the model, that is, by rejecting the idea that
two electron spin- —, functions are related by an
orthogonal transformation. This weakened version
of the model is not deterministic. It is, at best, a
"hidden-variable" interpretation of the expectation
values of quantum mechanics.
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APPENDIX

Proof of Theorem 1: I shall use two "heavy" ax-
ioms from set theory, the axiom of choice' and the
continuum hypothesis. " For z ES' ' and
0&8&m./2 denote

9t(z, 8)=c (z, 8) U c ( —z, 8) U I
—zz I .

%(z,8) is the set composed from two poles —z,z and
two circles c (z, 8) and c ( —z, 8) which collapse onto
one circle in the case 8=m./2.

Let E be the family of all sets of the form 9F(z,8),
4i.e.,

E=ISP(z,8) izeS' ',0&8&m/2j .

By the axiom of choice (or rather its equivalent the
principle of well ordering) there is a well ordering of
the family E. Moreover since E has the power of
the continuum it follows from the continuum hy-
pothesis that there is such well ordering in which
every element %(z,8) has only countably many
predecessors. I shall define a spin- —, function s on
S' ' by induction on such an order.

(I} Let %(z&,8&) be the first element in the order.
Put s (z& ) = —s ( —z~ ) = —,. Divide the circle
c(z&,8~) into two arbitrary disjoint subsets whose
measure, on the circle c(z&,8&) is cos (8~/2) and
sin (8&/2) and define s to be + —, on the larger set
[the one with measure cos (8~/2)] and ——, on the
smaller set.

For wEc( —z&, 8~) put s(w)= —s( —w). [In the
case 8=m/2 one should divide the circle c(z~, m/2)
into two disjoint subsets of measure —, such that the
first set is the reflection of the second. ]

(2} Suppose we have defined s on all the elements
of E up to but not including a certain element
%(z~,83) in the order. If 9F(8~,zt„) is identical with



27 DETERMINISTIC MODEL OF SPIN AND STATISTICS 2325

some previous element in the order then s has al-
ready been defined, otherwise there are two possibili-
ties: (a} zi (and thus —zi} do not belong to any
preceding element in the order. In that case define
s(zi)=+ —, = —s( —zi). Since 9F(zi,8i) is preced-
ed by at most countably many elements and since
the intersection of two nonidentical circles contains
at most two points it follows that s has already been
defined on at most countably many points of
c(z&,8i) hence only on a subset of c(zi, 8i) of mea-
sure zero. Thus we can divide the rest of c(zi,8i)
into two subsets whose measures are cos (8i/2) and
sin (8i/2), respectively, and define s to be + —, on

1

the larger set, ——, on the smaller set, and for
wEc( —zi, 8i) put s(w)= —s( —w). (b) zi (and
thus —zi) belong to some preceding element in the
order. In that case s(zi } and s( —zi } has already

1
been defined. If s(zi)=+ —, we follow the pro-

1

cedure of case (a). If s (zi )= ——, we
follow the same procedure reversing the roles of zi
and —z~.

The function s which results from this construction
satisfies

r

E(s ~z, 8)=s(z) cos ——sin
8 . 2 8
2 2

=s (z)cos8

for all zFS' ' and 0&8&m Q.E.D..
A proof of Theorem 3 and the existence of random

sequences. I shall sketch a proof for the existence of
random sequences, the proof of Theorem 3 is much

I

simpler and follows the same principles. Let
xpES' ' be fixed. Let a be a rotation of space
around the xp axis by an angle P such that Pm

' is
an irrational number. We have a"+1 for
n =+1,+2, . . . and a(xp)=xp. I shall prove that
there is a spin function s such that the sequence
s„=sea" is random. I shall use the notations of the
proof of Theorem 1 above. For z ES' ' and
0&8&m'/2 put

L (z, 8)= U 9P(a"(z),8) .

Let z&+xp and consider the set L(z, 8), ignoring
for a while the rest of the sphere. I shall show that
it is possible to define a spin- —, function s on L (z, 8)
such that the sequence s„=sea" satisfies

k

E(s;,s;, s;„~z,8)= gE(s; ~z, 8)
j=1

for all indices 0&i& &i2 « . . ik & m. To estab-
lish that well order the countable family

tent(a"(z), 8}
~

n =0, +1,+2, . . . I

and define s by usual induction on the order. The
procedure follows the same principle as the induc-
tion in Theorem 1 with one extra constraint. If s
has already been defined on the first k —1 sets in the
order

A(a '(z), 8),%(a '(z), 8), . . . , %(a '(z), 8)

then on the kth element one should make sure that
the equation

E(s„s„s„s„
i
z, 8)=E(s„

i
z, 8)E(s„

i
z, 8) E(s„

i
z, 8)E(s„„

i
z, 8)

will be satisfied for all choices of indices
1&ii &i2« . . ij &k. This definition is possible
since z&xp and thus up to the kth stage the func-
tion s has already been defined only for finitely

many points of c(a (z),8). It follows that the
division of c(a "(z),8) into + —, and ——, subsets is
arbitrary from a measure-theoretic standpoint.

To construct a function s on a sphere as a whole
note that if z,z' are two directions, we have
L (z,8)=L (z', 8) only if z'=+a "z for some
n =0,+1,+2, . . . . In all other cases the intersection
L (z, 8 ) AL (z', 8) contains only countably many
points. Thus we can well order the family

IL (z, 8)
i
z ES' ',0&8(~/2j

and define s by induction on the order. At each step

I

we use the above construction taking into account
the fact that s has already been defined only on
countably many points of L(z, 8}. The only excep-
tions to this procedure are the cases z =+xp,
0&8&m./2 where we have L( x, p)8=%( x, p)8. In
these particular cases we can define s in a way simi-
lar to a typical step in the proof of Theorem 1.

It is important to note that even for z=xp
Theorem 4 still holds; that is, the relative frequen-
cies converge to the expected limit. In this case the
result follows from the ergodic theorem, not the law
of large numbers.

A Note on the existence ofspin lfunctions A-gain.
by the same induction as in Theorem 1 one divides
each circle into three disjoint subsets whose mea-
sures are given by (4.4).
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Condition (2.1) can be replaced by the somewhat weaker
assumption of asymptotic independence, that is, the
difference between the right- and left-hand sides of
(2.11) tends very rapidly to zero as k —+ ~.

Reference 5. An interpretation of the Kochen and
Specker result, different from the one presented here, is
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The continuum hypothesis is, in fact, dispensable. One
can prove the theorem from a much weaker axiom.


