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Absolute nature of the thermal ambience of accelerated observers
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The blackbody radiation (thermal ambience) surrounding a linearly and uniformly ac-
celerated observer is shown to be totally isotropic. By contrast, an observer who does not

merely have this uniform acceleration into some direction, but also (a) drifts uniformly (ac-

cording to his own clock) into another, or alternatively (b) orbits uniformly around a fixed

axis, will be surrounded by vacuum fluctuations with the spectrum of a blackbody endowed

with a chemical potential. This potential is proportional to the drift velocity for one ob-

server, and to the angular velocity for the other. These chemical potentials express an an-

isotropy of empty flat space relative to these observers.

I. INTRODUCTION AND SUMMARY

It is known that in flat space-time the vacuum re-
lative to an observer suffering linear uniform ac-
celeration is distinct from that of an inertial ob-
server. ' The vacuum fluctuations relative to the ac-
celerated observer have the spectrum of thermal ra-
diation. ' Interestingly enough, the effects of these
vacuum fluctuations are directly observable in the
presence of accelerated detectors, accelerated con-
ductors, as well as in the presence of accelerated
charges.

This paper reports two phenomena. (l) Although
a uniformly linearly accelerated observer has a pre-
ferred direction (namely, his acceleration), radiation
processes on the classical as well as on the quantum
level are totally isotropic. (2) Relative to more gen-
eral accelerated observers this isotropy is broken.
This happens if they have (according to their own
clocks) (a) a uniform drift velocity or (b) a uniformly
orbiting motion in addition to what otherwise would

only be uniform linear acceleration. On the
quantum-mechanical level this breaking of the spa-
tial isotropy manifests itself as a nonzero chemical
potential of the thermal radiation ("ambience") sur-

rounding these observers. This potential is propor-
tional to the drift velocity or the angular velocity of
the respective accelerated observers.

The chemical potential is such that the intensity
of wave field modes propagating against (a) the drift
or (b) the rotation exceeds that of wave field modes
propagating in the same sense. Thus the thermal
ambience has a tendency to slow down the drift or
angular velocity of an observer until his surrounding
is totally isotropic. The novel feature implied by the
above-mentioned spatial isotropy together with iso-
tropy breaking by the chemical potentials is this:

Empty flat space has an absolute character relative to

uniformly accelerated observers Thus. , among the
set of all accelerated observers, each one of which
has a prima facie preferred direction associated with
his spatial direction of acceleration, there is a subset
of accelerated observers for whom this prima facie
direction is totally absent. This subset of observers
consists of uniformly linearly accelerated observers.
Relative to them the electromagnetic field of empty
Minkowski space-time appears totally isotropic. On
a classical level this fact is well known: radiation-
reaction forces acting on a detector consisting of a
point charge carried along by this observer are iden-
tically zero. ' This isotropy, as we shall see, ex-
tends itself to the quantum-mechanical level. In
fact, for this observer, and others like him, the ther-
mal ambience has a stress energy tensor which is
that of a perfect isotropic nonhomogeneous fiuid.
More graphically, he is immersed in a liquid ocean
whose bottom is the event horizon, where the pres-
sure becomes infinite. In the presence of purely or-
biting motion, i.e., in the absence of an event hor-
izon there is no thermal radiation and no chemical
potential. "

II. DRIFTING AND ROTATING
RINDLER OBSERVERS

Observers possessing (a) uniform drift or (b) uni-
form orbiting motion in addition to only uniform
linear acceleration are generalizations' of those ob-
servers whose world lines generate the well-known
Rindler coordinates on flat space-time. If
Schwarzschild space-time is identified with
Rindler's representation of Minkowski" space-time,
then both of the aforementioned generalizations are
similar to Kerr space-time.

Drifting and rotating generalizations of Rindler
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representations are characterized, respectively, by
additional vector fields, a translational Killing vec-
tor field in one case and a rotational Killing field in
the other. The two space-times are so similar that in
this paper we shall consider only the drifting space-
time in any detail. The results for the rotating
space-time we merely quote near the end.

The coordinates that mold themselves naturally to
the generalized Rindler representation with uniform
drift are obtained from Minkowski coordinates by

is trivial. It is characterized by zero temperature.
Its spectrum is simply that of the vacuum fluctua-
tions. These fluctuations are an incoherent superpo-
sition of normal modes of the appropriate wave field
in question. Consider a zero-rest-mass scalar wave
field in a large cavity of length a and cross-section
area L . The allowed normal modes are
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t =g sinhgT,

x =g coshgT,

y =F+uT,
z=z .
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For g, Y,z held constant the resultant world line has
constant proper acceleration

g (2g2 u2

is the frequency, and

p —p(1l ] ]ii ]]3}

n 1 ~2 713 = 1,2, . . .

whose direction precesses with proper angular velo-
city

f2g2 u2

relative to a set of (Fermi-Walker transported) gyro-
scopes. Furthermore the world line has a constant
drift dy/dT = u into the y direction and traces out a
Killing trajectory as is evident from the form of the
metric relative to these coordinates:

ds = (g g u)d—T +2ud—YdT+dY

+dg'+dz' . (2)

The noncompact event horizon is at /=0 and the
"ergo" slab, the region where Killing trajectories are
spacelike, extends over the interval 0 & g & u/g.

III. THERMAL AMBIENCE
OF RINDLER REPRESENTATION WITH DRIFT

We now pose and solve the following initial-value
problem: Given a spacelike hypersurface in Min-
kowski space-time, specify random initial conditions
on this surface. Let these initial-value data evolve
according to some wave equation, for now the
Klein-Gordon equation. Determine the wave field,
in particular its Fourier spectrum, as seen by an ac-
celerated observer with uniform drift.

Quantum mechanics enters the picture only
through the initial-value data. The evolution and
the field amplitude seen by the accelerated observer
are considered here strictly within classical wave
field theory.

The thermal ambience of the Minkowski vacuum

is the phase angle, a random function of the modes.
The modes are oscillators in their ground states
whose energies are —,%co„. Consequently, the ampli-
tude A„of each has the value

2A 1

QN~ 2L

This completes the specification of the Minkowski
vacuum as random initial-value data.

An accelerated observer does not use Minkowski
normal modes to describe the vacuum fluctuations
he sees. Instead he uses the modes associated with
the generalized Rindler coordinates of Eq. (l). An
important question which all observers following the
trajectories of topologically distinct timelike Killing
vector fields must ask and answer is this: How are
the vacuum fluctuations, in particular their intensity
spectra, related to each other?

The answer is obtained by having an accelerated
observer Fourier analyze the fluctuating Minkowski
normal modes, Eq. (3}. He uses, of course, the
Fourier basis associated with his own Killing vector
field, instead of that based on the inertial world lines
of the Minkowski space-time. The procedure is
straightforward. Have the observer evaluate Eq. (3)
along his own world line, Eq. (l), and then Fourier
analyze the resultant signal. The result is strikingly
simple and far reaching.

The typical real standing-wave mode, Eq. (3), is
composed of complex exponential modes. They
refer to particles of positive (]]iso„) as well as negative
( fico„) energies. —Each has momenta +]]lk» parallel
and antiparallel to the drift velocity u =dy/dT of
the observer. Thus the typical standing-wave mode,
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Eq. (3), is the superposition of two parts: particle
modes having momentum parallel and those having
momentum antiparallel to the drift velocity of the
observer. This superposition is

Pn =fn, k + Pn, —
k& ~

where
n)Kx

g„+k =+ ". si n(co„t+p„)c os
2i

n 3KZ +Egg ~/L,
Xsin e

The spectral intensity of a single wave is'

~
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Here E is the modified Bessel function of pure ima-
ginary order

I
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+
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The angle O„characterizes the Minkowski mode by

co„=k cosh'„, k„=k sinhe„.

What is so important about the spectral intensity
Eq. (4)? The answer is threefold: (i) thermal nature;
(ii) isotropy for uniformly linearly (v =0) accelerat-
ed observers; and (iii) anisotropy, via a chemical po-
tential, for accelerated observers with drift (u&0).

The first feature, the thermal nature of the ther-
mal ambience, is directly revealed by Eq. (4) when it
refers to oscillating wave modes, i.e., when the
waves are primarily propagating along the g direc-
tion: (kg) «(co+uk~) . In that case the spectrum
1S

N 1
—.= —.(co+kyu)

2

whose argument is proportional to the magnitude of
the transverse propagation vector:

'2 ' '2 1/2

lf., +k (~ 4 I'z)
I

=g.(~,z)k(~, &„g) —+
2 exp[A'(co+tv)/kT] —1

+
exp[A'(co+tv)/kT] —I

' 2 1/2

where
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It (to, ky, g) = sin (cg+k u)ln +argI (ico+ik v)
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and I is the gamma function. The importance of
the spectrum Eq. (6) lies in the quantity in curly
brackets. It consists of three terms. The first two
have the form of the Minkowski zero-point energy
spectrum augmented by a blackbody spectrum,
whose temperature is that of Unruh and Davies,

kT= fi g
2' C

[Temperature T is not to be confused with the
world-line parameter in Eqs. (1) and (2). Neither is
Boltzmann's constant k to be confused with the
magnitude of the transverse propagation vector Eq.
(5).] The grand total spectral intensity seen by the
accelerated observer is the sum of contributions, Eq.
(6), due to all relevant Minkowski modes. In such a

I

sum the fluctuating third term of Eq. (6) averages to
zero. It (i) constitutes the fluctuations away from
thermal equilibrium, (ii) is demanded by the thermal
nature of blackbody radiation, and (iii) has its roots
in the randomness of the Minkowski zero-point
fluctuations, i.e., in the phase incoherence of the set
of Planckian oscillators, Eq. (3), in their ground
states.

From the viewpoint of basic issues of principle
the importance of the fluctuating (third) term can
not be stressed too much. If it were absent, one
mould be totally unjustified in claiming that

co %co
2&c

g kT'
i.e., that the power spectrum (the second term) seen
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by the accelerated observer is thermal in nature.
After all, a Planckian spectrum can be obtained
from a suitable multicolor array of lasers. It is the
magnitude of the rms fluctuations in each spectral
component away from the Planckian mean that pro-
vides distinctive agreement with a thermal spec-
trum.

The second important feature about the spectral
intensity Eq. (4) is its stunning simplicity both in re-
gard to its mean power spectrum and its root-mean-
squared fiuctuation spectrum. Instead of Klein-
Gordon theory, consider now Maxwell theory in the
absence of drift (v =0). Equation (4) now serves as
a scalar potential for transverse electric modes pro-
vided the normalization constant gets replaced by
A„=32mA/aco„k . L . Transverse magnetic modes
follow virtually the same treatment. We have now
the following principle: The thermal ambience is
spatially isotropic in every respect, even though the

observer is accelerating into a preferred direction.
This isotropy holds with respect to (a) the polariza-
tion of the electromagnetic field, (b) the thermal
fluctuations away from the mean spectral power,
and (c) the electromagnetic stress energy tensor.
The proof of these claims, sketched below, follows
from the manner in which polarization-sensitive
detectors respond to the electromagnetic field.

A polarization-sensitive detector' consists of a
particle of charge e, mass m, bound harmonically
with frequency co, and constrained to move along
one of the three perpendicular spatial directions of
the observer. Consequently, each detector responds
only to its respective electric field component
Ez, j=g,y,z. The energy deposited into the jth
detector of frequency co by all normal modes, both
transverse electric and magnetic, typically given by
Eq. (3), having the various propagation directions
(kr, k, ) =(nirr/L, n3rr/L) is

(energy)J ——(ire /m) f I [Ez(co,kr, k, )] dk„dk, , j =g,y, z .

A straightforward evaluation of these integrals shows that the energies in all three polarizations have the same
value, ' namely,

(energy)J = me 32m A m 1

4 + 1

m aco„L2 L4 2 exp(fico/kT) —1

N +CO

3
(8)

In order to show that this frequency spectrum has in fact a thermal nature one must show that the rms fluc-
tuations in these three energies have also identical values.

This demonstration is easily achieved by inference from Eq. (8) applied to Eq. (4):

~e 32m% 1
[rms fluctuation in (energy)J ]=

m aco„L2 L4 exp Ace/kT —1

1+
exp(iruo /k T)—1

1/2

6) +N
3

J =k~y~z

Thus the fluctuations in all three energies are indeed identical and have in fact the characteristic thermal signa-
ture.

An analogous set of statements holds for the magnetic field components. Moreover the remaining elec-
tromagnetic (shear) components constructed [like Eq. (7)] from E;E~ and B;BJ, i&j, are zero. Furthermore,
the Poynting vector is also zero. An absorber, i.e., a detector sensitive to radiative electromagnetic momentum,
would therefore indicate no preferred direction. We thus conclude that the thermal ambience is totally isotro-
pic, in its power spectrum as well as in its thermal fluctuation spectrum.

The above remarks make it clear that the electromagnetic stress energy tensor constructed from the above
quadratic expressions in the electromagnetic field is spatially isotropic. In fact, it is given by

T — —+1 32mB m " 1 1
(co +co )dcodlagI ly Ty i y p j (10)

4rr aco„L g' o 2 exp(fico /kT) —1
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Note, however, that this tensor is not an event-wise-
defined object. In fact, it is composed of the mean-
field intensities, which are measured by the rms en-

ergies, Eq. (7), of an oscillator. These energies in
turn are averages over at least one oscillation, typi-
cally,

c 1 A'

g 2m. kT '

the time during which the accelerated detector
changes its velocity by a substantial fraction as seen

by a Minkowski observer. This stress energy tensor
is therefore defined along a non-negligible segment
of the accelerated detector's world line. In short, the
"tensor" field is not pointwise defined. It does not
have the appropriate coordinate-transformation
properties. It is therefore a rather dubious proposi-
tion to use such "tensor" fields (after a suitable reg
ularization) as some sort of effective source for the
Einstein field equation.

The third important and novel feature of the
blackbody spectrum is that it has a chemical poten-
tial. It is such that the accelerated observer sees a
larger intensity of wave fields running antiparallel to
his drift velocity than parallel. If he interacts with
this thermal ambience, then it has a tendency to
slow him down. This is analogous to the spin down
of a Kerr black hole.

IV. THERMAL AMBIENCE
OF RINDLER REPRESENTATION

WITH ROTATION

In x,y,z coordinate space this observer executes a
helical motion. The natural representation of the
metric for this observer is

ds = (g—g rQ—)dT +2r Q dTd@

+r d4 +dg +dr

The spectrum of this ambience is analogous to that
given by Eq. (4). Now, however, the Planck spec-
trum has the form

1

exp[Pi(co+ mQ ) IkT] l—
The chemical potential +fiQm (here m is the azimu-
thal wave number) is such that the wave field inten-
sity of the thermal ambience is greater for those
modes that circulate against the angular velocity 0
of the observer. Suppose the observer interacts with
this thermal ambience. Then it will have a tendency
to slow his rotation until his thermal ambience coin-
cides with a thermal ambience which has no rotation
(and no drift). This thermal ambience is isotropic;
i.e., (i) its power spectrum is isotropic, (ii) its fluc-
tuation spectrum is isotropic and gives the power
spectrum a thermal signature, (iii) its stress energy
tensor is isotropic, and (iv) classical radiation reac-
tion forces are absent from point detectors carried
along by the observer. The thermal ambience has
therefore an "absolute" status in relation to those
ambiences in which the event horizon is rotating (or
drifting) relative to the observer.

The absolute nature of the thermal ambience is
evidently present with all accelerated observers that
have an event horizon. In fact, let the accelerated
observer not be drifting but rather rotating uniform-

ly with some angular velocity constant as measured

by his own clock. Such an observer traces out a
world line (g,4,r =const, —ao & T & ao) given by'

t =g sinhgT,

x =g coshgT,

y =r sin(4+QT),

z =r c s(o4+QT) .
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