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Quantum fluctuations in the homogeneous inflationary universe are shown to give rise to
inhomogeneities of the right spectrum and magnitude needed to form galaxies.

I. INTRODUCTION

The idea that the universe may have passed
through an exponentially expanding de Sitter phase
at very early times—the inflationary universe!—has
attracted a great deal of attention recently for the
following reasons.

(1) It is a necessary consequence of Einstein’s
equations and the restoration of symmetry that
occurs at very high energies and temperatures in
grand unified models of the fundamental interac-
tions.

(2) It provides a natural solution to the long-
standing homogeneity, horizon, and flatness prob-
lems of the standard model,’> while explaining why
the size and entropy of the universe should be so
€normous in microscopic units.

(3) It provides a fundamental mechanism (i.e.,
quantum fluctuations) for generating the primordial
inhomogeneous perturbations, with the correct flat
spectrum, needed to produce the conspicuous large-
scale deviations from homogeneity and isotropy ob-
served in our present universe—namely, galaxies and
galactic clusters.

The original inflationary universe suffered from
the problem of the “graceful exit” from the de Sitter
phase. The “new inflationary universe” provides a
possible solution to this problem. However, calcula-
tions of the magnitude of density fluctuations in this
model indicate a value for 8p/p far too large to be
" consistent with the observed homogeneity of the mi-
crowave background.*

An alternate inflationary model was proposed in
Ref. 5. It makes critical use of the observations of
Hawking and Moss® on the role of gravity in the
phase transition from the de Sitter vacuum. The
graceful exit problem is solved automatically by
homogeneous tunneling over all of physical space
rather than the nucleation of small bubbles of new
vacuum. The large expansion arises from the small
probability for this tunneling to occur and not from
a slow rollover from the potential plateau.
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The purpose of this paper is to analyze density
fluctuations in this homogeneous tunneling infla-
tionary universe and show that their magnitude falls
naturally into the range required to generate galaxies
at later epochs.

The paper is organized as follows. In Sec. II the
growth of the amplitude of density fluctuations in
the homogeneous inflationary universe are studied,
irrespective of their origin. In Sec. III quantum
fluctuations in the de Sitter vacuum are identified as
the appropriate origin of primordial fluctuations in
the very early universe. The growth of these initial-
ly very small fluctuations in the phase transition to
the new vacuum is shown to be of the right order of
magnitude to produce the inhomogeneities observed
in our present universe in Sec. IV.

II. THE GROWTH OF THE FLUCTUATION
AMPLITUDE

The background homogeneous solution is speci-
fied by the metric

ds?= —dt’+a*(1)(%g;dx'dx)) 2.1
and energy-momentum tensor
T9=—E(1),
Tj=p(1)8} , (2.2)
T)=Ty=0,
with

E =%(}52+ V(¢)+pr ’
p=56"—V($)+p,/3 .

(2.3)

Here ¢ is the coherent scalar field variable
describing breakdown of the grand unified group
from G to SU(3)xSU(2)XU(1), and an overdot
denotes d /dt.

Einstein’s equations are then
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HY0)=(d /)= a—c; + —;,-KE (2.4)

and
E=—3H(E +p), 2.5)

with k=87/M mmkz and C an integration constant.
If G=SU(5), the Coleman-Weinberg’ potential
appearing in (2.3) may be expressed as

V(¢)=B¢4[ln(¢2/a2)_%]+%Ba2__$2°_R¢z ’

(2.6)
where 0=1.2X 10" GeV, the symmetry-breaking
scale, and

B=%(ZSU(5)2=7-7X 10_4 (27)

are fixed by the strong and electroweak scales and
the renormalization group.®

The free parameter £ is naturally set to % for clas-
sical conformal invariance though any value in the
range 0.08 and 0.50 is allowed.

In order to treat the fluctuations about this strict-
ly homogeneous background we employ the gauge-
|

F—(a—DHz —[a+3(1+w)]H2=(2+3w)C55 — (k2 ~3C)—F — (k?—3C)
. a a

Here the definitions

d
a=—3(14¢2)=—3 |1+
+¢°) +dE

w=p/E, (2.10)
z=Ea’,,,

have been used and 7(¢) measures the deviation of
the pressure perturbation from that expected from
the background equation of state. In addition, if an-
isotropic stresses are present, i.e., deviation from
perfect fluid behavior, then additional terms make
their appearance in Eq. (2.9). However, any such
terms and all terms on the right side of Eq. (2.9) in-
volve a factor of 1/a? relative to the left side. Thus,
once the scale factor a(t)o«exp( f Hdt) has in-
creased several times these terms may be neglected.

The physics of this statement is apparent if we re-
call that physical length scales expand with a,

Aphys(t)=Roa (1) , (2.11)

while H ~!(z), the effective particle horizon, which
determines the maximum size of a region with all

invariant formalism of Bardeen.’ In this formalism
the metric fluctuations must first be decomposed
into scalar, vector, and tensor harmonics with
respect to transformations under 3g,-j. The tensor
perturbations couple to anisotropic terms in T% and
describe gravitationa! waves. The vector perturba-
tions couple to the divergenceless (vortical) velocity
field of the matter-radiation fluid with 8E =&p =0.
Thus, only the (spatially) scalar perturbations are
relevant to the fluctuations in energy density and
pressure.

The energy density fluctuation is not general coor-
dinate (gauge) invariant. However, a gauge-
invariant amplitude €,,(¢)Q (X) can be defined which
equals 8E(X,t) in any gauge in which the matter
world lines are orthogonal to ¢=const hypersur-
faces. Here Q(X) is the scalar harmonic with
comoving wave number k,

VQ+k*Q=0. (2.8)

Then the linearized Einstein equations 6G,,
=«8T,, for the variations from the background
solutions of (2.4) and (2.5) may be cast into the
gauge-invariant form'’

2
Cs2 gyaz
az

parts in causal contact with each other, is constant
during the de Sitter phase:

H=Yt)=H,"'=[5xV(0)]"'/2. (2.12)

Thus when Aup(t)>H ') physical perturba-
tions with comoving wavelength Ao can no longer be
affected by microphysical, i.e., causal processes.
The perturbation becomes “frozen in,” its subse-
quent evolution determined solely by the left side of
Eq. (2.9). Since the duration of the de Sitter phase is
long compared to Hy~! (a necessary condition for
any inflationary model), the approximate time-
translation invariance during this expansion ensures
that z(¢y) is independent of ¢y. Here ¢, is defined as
the time at which

Aphys(to)=H ~tg)=Hy ™" . (2.13)

Thus, the fluctuation magnitude is independent of
Ao=2m/k, and the spectrum is scale invariant.

After the phase transition at ¢ =¢,; the vacuum
energy V(0) is converted into radiation and H ~'(¢)
grows like 2t while a (£) ~t!/2. Hence at some later
time f, the fluctuation will again come within its
horizon:
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Aphys(t2)=H—l(t2) . (214)

For t >t, the fluctuations can begin to coalesce
into inhomogeneous clumps due to the Jeans insta-
bility and form protogalaxies. This is the relevant
epoch to ask for the amplitude of the density pertur-
bations.

If we define the growth factor

2
z(t,)  Ea'en |y,

z(t)) ~ Ed’,|,,

y= (2.15)

and use Egs. (2.4), (2.11), (2.13), and (2.14) we obtain
mlt

_Enla) (2.16)
Em(to)

Thus the growth factor in z determines the growth
of the density perturbation €,, when it reenters the

z(t) =z, +2z,e "B (2.18)

and z(t;)<z(ty): No significant growth in magni-
tude can occur prior to the phase transition.

After V(P) has been completely lconverted to radi-
ation, w =7, a=—4,and H(t)=7(t —t; )~1. Thus

z()=2z] +z5(t —t,) 3" (2.19)

and again no growth can occur. However, in be-
tween the phase transition and the conversion to ra-
diation, ¢ must classically evolve to the new vacuum
at ¢ =0. In that evolution,

E +P=¢2+%Pr5¢2
and

1 1 d
————(E
HE+pdt( +p)

i

d
a(t)=-—3 dE (E +p)

effective horizon. (2.20)
To find y consider Eq. (2.9) with the right side set
to zero: becomes large and positive. Then
. . 2
In pure de Sitter space w=—1, a=0, and
H=H,. Thus, and Eq. (2.17) may be solved explicitly,!
J
—Hy(t—1y) t ' —H(t—t") # " "
z()=ze © 0 +21f,,dt Hge exp [ftldt Hya(t") (2.21)
I
. o e, o, BE(t )
obeying the initial conditions €, ()= %j_" -~ o) (2.24)
z2(t))=z,, 3(t,)=0. ¢°(t1)

Here we have also assumed that H =H,=const
since H changes significantly only after ¢ has be-
come large [cf. Egs. (2.3)—(2.5)]. On the other hand
once this occurs, the conversion to radiation is quite
rapid (foomy <Ho~!) so that then (2.19) becomes
applicable.

The significant contribution to (2.21) comes near
t =tg, the rollover time (tg =t,+1.55H,~!). Thus,
if we integrate by parts and use ¢, >>H, ™! we find
—Hgtp

t
y=exp [ [, lzdtHoa(t) ][1+0(e )] (222

since z(t) is essentially constant prior to the phase

transition and after the conversion to radiation by
Eqgs. (2.18) and (2.19), Eq. (2.22) can be written as
Y E(t)+p(t)  af V(0)

E(t1)+P(t1) 3 &2(t1)+%pr

,  (223)

where f is a number of order unity that describes the
efficiency of conversion of vacuum energy ¥V (0) into
radiation. Since E(¢3)=V(0), Egs. (2.16) and (2.23)
give

This determines the scale-invariant magnitude of
density perturbations when they reenter their
horizon in terms of the magnitude when they left
their horizon. We now proceed to calculate
SE(ty /¢ (t)).

III. THE INITIAL FLUCTUATION AMPLITUDE

Quantum fluctuations are a natural source for de-
viations from the classical homogeneous background
solution of Egs. (2.1)—(2.7). The energy-momentum
tensor to one-loop order in the de Sitter background
is the relevant quantity to consider. Since T, is bi-
linear in the quantum fields and ((x)d(x’))
diverges as x—x', (T, will be indeterminate, i.e.,
infinite at short distances. However, we already
know from Eq. (2.9) that the magnitude of the den-
sity fluctuations at short distances (A,yys < H ~1) de-
pends on details of the theory and/or initial condi-
tions that are unknown. When |x =x'|>>H "},
(T,°) in the de Sitter background approaches a
constant, which is the usual cosmological term [here

«V(0)] plus an additional one-loop term'!:
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2
—8(T,°) =p,=;r—ONTH4 , (3.1)

where
Ty=H/27w (3.2)

is the Hawking-de Sitter temperature'? and N is the
number of degrees of freedom. Equivalently, if the
renormalization procedure is defined by reference to
flat spacetime, p, is the one-loop contribution to the
effective potential in de Sitter spacetime.

Equation (3.1) is just the expression for thermal
radiation at temperature Ty, i.e., it is the constant
energy per unit volume for volumes large compared
to Ty~>. But on length scales comparable to
Ty~ '=27H~!, quantum fluctuations in the radia-
tion field become comparable to the equilibrium
value itself.. Since Eq. (2.24) requires 8E at the time
the fluctuation region is H ~1 we have the relation

8E (ty)~p,= Hy*. (3.3)

N
4807

Because of the neglect of short-distance effects in
Egs. (2.9) and (3.3), this cannot be considered more
reliable than an order-of-magnitude estimate.

It is instructive to compare 8E with the height of
the R ¢? barrier (Fig. 1):

AV=V($))—V(0), (3.4)
where
4
¢2In(¢,2/0%) = —512"— ) (3.5)

For £=+ and N ~ 100 we find
p,/AV ~10"3 << 1. (3.6)

The fact that the thermal fluctuations are much
smaller than the barrier height is the reason that the
action for homogeneous tunneling is large

(Ay=410) and the corresponding probability e ~4#
small.’ In the present context the smallness of (3.6)
justifies a posteriori the use of p, for pure de Sitter
space, since the ¢ quantum fluctuations typified by
p» are sensitive to the region of V(¢) very close to
¢=0 only [where V(¢)=V(0)=const]. This is in
contrast to the case £=0 when AV=0 and the
quantum-thermal fluctuations would be expected to
completely destabilize the ¢ =0 vacuum and dom-
inate the transition to the new vacuum at ¢=o0. It
is precisely this breakdown of the linearized fluctua-
tion equation (2.9) that is signaled by the very large
(~50) magnitude of the relative density fluctuations
in the new inflationary scenario with £=0.*

When the universe finally does leave the ¢=0
vacuum after ~Ap /3 e-foldings of the scale factor,

-2 1

1 L
0 | 2 3 4 5

¢ (x107%)
FIG. 1. The form of the potential of Eq. (2.6) near
¢ =0 in units in which o=1.

it emerges on the right of the barrier with
=<2+ V(d)+p, 3.7)

equal to its pre-tunneling value. Now, the classical
bounce equations imply ¢=0,V(¢)=V(0). Howev-
er, the action of the Coleman-de Luccia bounce is
very close to the Hawking-Moss solution.” Hence
the ¢ at which the universe emerges from the barrier
is uncertain by A¢~¢,. Equations (3.7) and (3.4)
then imply an uncertainty in ¢ 2 at the time of tran-
sition,

Ag?|, ~2AV
(6€)*H ,*
_ 5202 ——1 1 Gy
2B In(c*/¢1°) 2In(o*/$°)

IV. THE FLUCTUATION AMPLITUDE AT
t =t, AND GALAXY FORMATION

The initial fluctuation in ¢? at ¢t =¢, determines
the growth of the fluctuation magnitude through
Eqs. (2.23) and (2.24). These equations together
with Egs. (3.1) and (3.8) yield the magnitude of the
fluctuation when it reenters its horizon at t =t,:

T_NT,?

4f 30 202

(t)) == ————2BIn(c?/$?)

en(02)= T ey, 20 O/
X 1——————l o 4.1)
21n(c?/$,?) .

or
fNB 3 | M, :
P

= - | -2
€m(ty)= 1801r21n o | o ] (4.2)
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for £= %
Taking f = % and N =100 then yields
€m(ty)=4x 1074, 4.3)

The uncertainties in this calculation arise from

(1) neglect of short-distance effects in both Egs.
(2.17) and (3.3), .

(2) the estimate of ¢ %(¢,) by Eq. (3.8), and

(3) the values of f, N, and &.

Nevertheless, fluctuations in the homogeneous
tunneling model of Ref. 5 are significantly smaller
than in the slow-rollover picture. A value of €,,(¢,)
of order of 10~* for galaxy formation has been indi-
cated by purely astrophysical considerations.'?

It is interesting to calculate ¢, for fluctuations of
the appropriate physical scale. Using Eq. (2.14) and
assuming a radiation-dominated expansion gives

172
_ A'phys,now2 8""'Gpr,now
t2 - 2 3c 2 ’
=1.3%x10" sec, (4.4)

for Aphys,now= 10** cm. This time is indeed prior to
the transition from radiation dominance to matter
dominance so that the assumption used in deriving
Eq. (4.4) is correct. After t, (red-shift of 10° the
density fluctuations can oscillate as an ordinary
pressure sound wave. However, the average magni-
tude of €, remains constant: The fluctuations in
density cannot grow because of radiation drag.'* In
fact, short-wavelength fluctuations are efficiently
damped."®

At red-shifts less than 10* (£ > 10'! sec) the matter
dominates. The nonrelativistic equation of state,
p <<E permits the density fluctuations to grow
again: €, ~t*>~a(t) for wavelengths large com-
pared to the Jeans length, which is

172

T ¢ - 4.5)

Gp.

A fluctuation with magnitude given by Eq. (4.3)
would grow to €,, ~1 at a red-shift of order 4. At
this epoch fluctuations on scales between A; and the
largest A,y which had entered its horizon (and
which had not been previously damped by Silk dif-
fusion) would develop into inhomogeneous clumps
of gas. The Silk damping scale for the =1 model
that occurs in the inflationary universe corresponds
to a mass of 310" solar masses.!* This may be
the right order of magnitude for galactic masses,
provided there is a large amount of dark, non-
baryonic matter in galactic halos.'

An interesting and important test of the entire
theory of primordial adiabatic fluctuations is afford-
ed by measurements of the microwave background
inhomogeneity. Present observational bounds are of
the same order as Eq. (4.3). An improvement of the
limit by less than 1 order of magnitude would effec-
tively exclude the present theory. It is remarkable
nonetheless that the Zeldovich spectrum and ampli-
tude can arise naturally in the homogeneous tunnel-
ing inflationary model, from purely quantum fluc-
tuations, at times when the universe was only 10~2
cm large, and, moreover, than these inhomogeneities
can eventually give rise to galaxies.
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