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The original idea of the inAationary universe is shown to be consistent with observation,
if the effects of spacetime curvature are considered. Specifically, a combined grand-
unified —gravitational tunneling solution exists, which is homogeneous over the entire spa-
tial section and has lower action than the flat-space, inhomogeneous bubble. Thus, the exit
from the metastable de Sitter phase can occur gracefully, without generating large spatial
inhomogeneities or magnetic monopoles. The large expansion factor is generated naturally

by the tunneling amplitude and does not require fine tuning the initial conditions of the
post-tunneling evolution. Fluctuations in this model may differ substantially from the roll-

over picture.

I. INTRODUCTION

An essential element in current ideas of unifica-
tion of the different interactions observed in nature
is spontaneous symmetry breaking. However, the
symmetry of the ground state of a system generally
depends on its temperature. A system with a high
degree of symmetry may undergo one or more phase
transitions to states of lower or spontaneously bro-
ken symmetry as its temperature is lowered. This
simple observation leads to dramatic conclusions
when grand unified theories' are applied to cosmolo-
gy. For, if the universe was once in an early high-
temperature phase, with complete symmetry be-
tween the fundamental interactions, its expansion
and cooling may have "trapped" it in a supercooled
false vacuum state. Since the energy density of the
false vacuum is positive, the universe would have
passed through an exponentially expanding de Sitter
phase, greatly diluting any curvature inhomo-

geneities, while greatly expanding the size of a
causally connected domain. If the exit from this de
Sitter phase is via quantum tunneling, which is typi-
cally a slow process, then the large expansion factor
arises naturally and provides a resolution of the hor-
izon and flatness problems of the standard model.

Just as this idea was proposed it was understood
to have significant problems. The mechanism for
the first-order phase transition is the spontaneous
materialization of bubbles of true vacuum within
false. Since this process is completely random,
there is no correlation between the different asym-
metric states within different bubbles. When the

bubble walls collide a violent process of vacuum
rearrangement must take place and topological de-
fects are produced. In grand unified theories
(GUT's) these defects are magnetic monopoles,
which would have been produced in numbers so
enormous as to dominate the mass energy of the
universe. 5 The present universe would then have
large inhomogeneity and anisotropy, contrary to ob-
servation. On the other hand, if the bubble walls do
not collide then the supercooled universe could never
rethermalize, in the simplest picture, and all of the
successful predictions of the standard model at later
times would be lost.

Recently, several authors have pointed the way
out of this dilemma. The collision of the bubble
walls is essential to rethermalization only within the
thin-wall approximation of vacuum decay. This ap-
proximation, in turn, is justified only if the energy-
density difference between the false vacuum and
true is small compared to the mass scales in the
problem. If this condition is not satisfied, re-
thermalization may occur mitIIIin each bubble by a
process of particle creation and interaction, indepen-
dently of collisions with other bubble walls. There
is then no large production of monopoles or associ-
ated inhomogeneities and the original inflationary-
universe idea has been rescued, provided the entire
universe can fit in one such bubble.

Preliminary work has focused on the Coleman-
Weinberg mechanism for spontaneous symmetry
breaking and has not included a complete treatment
of curvature effects. Despite one's initial thought
that the Planck mass Mz is 4 orders of magnitude
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larger than the GUT scale, Hawking and Moss ob-
served that gravitational effects are relevant in one
important respect. Since de Sitter spacetime has a
cosmological event horizon, Hawking radiation does
not permit the supercooling to continue below the
Hawking-de Sitter temperature T&.

In addition, curvature has another important ef-
fect. The RP coupling required for renormaliza-
bility in curved spacetime can generate an effective
barrier to tunneling out of the false vacuum': This
barrier is sufficient to produce the large dimension-
less number needed for the inflationary picture to
work —without any fine adjustment of initial condi-
tions in the post-tunneling expansion. Furthermore
we shall show that this tunneling takes place homo-
geneously over the entire universe. In contrast to
previous authors, who attempt to gain a sufficiently
large expansion of the universe in a post-tunneling
evolution down a Coleman-Weinberg plateau, we
gain the large expansion factor in the pre-tunneling
phase. The point is that the universe is expanding in
the pre-tunneling false-vacuum stage, and when a
homogeneous tunneling takes place it fills this al-

ready expanded universe. This is in contradistinc-
tion to a scenario where an inhomogeneous bubble
tunneling event takes place —because even though
the universe may be large at the time of tunneling
the bubble nucleates at a typical small size which
must then grow in a post-tunneling evolution to a
size consistent with the present physical universe.

Also in this homogeneous scenario there are no
bubble walls to worry about and monopole produc-

'

tion is suppressed. Rethermalization takes place
throughout the universe by conversion of the vacu-
um eriergy density to matter.

Thus, the consistent inclusion of gravitational ef-
fects leads to a small probability for barrier penetra-
tion which allows us to achieve a natural solution of
the horizon and flatness problems of the standard
model without the inhomogeneities of the original
inflationary scenario, i.e., curvature effects permit a
graceful exit from the symmetric phase.

The paper is organized as follows. In Sec. II we
consider the effects of the RP coupling in the SU(5)
GUT with Coleman-Weinberg symmetry breaking
and calculate the action for various escape paths
from the symmetric vacuum. In Sec. III we calcu-
late the decay rate or time of tunneling and present
the explicit analytic continuations necessary to
demonstrate that this time is large enough to expand
the universe by as much as 60 orders of magnitude.
In Sec. IV we consider the post-tunneling evolution
and estimate the temperature at rethermalization,
which is important for baryon asymmetry calcula-
tions. We conclude with a discussion of the possi-
bility of relaxing the pure Coleman-Weinberg poten-

tial and fluctuations about the homogeneous back-
gl ound.

8 = —,6aGU~ =7.7X l0 (2.3)

and 0 is the expectation value at zero temperature,

a=1.2X10' GeV, (2.4)

with a~U~ ——4, , at this energy scale.
When the theory is considered in curved space-

time, a counterterm of the form —i)RP /2 is re-
quired to obtain finite results. Here R is the Ricci
scalar and tl is a free dimensionless parameter.
Since g evolves according to renormalization-group
changes in scale, it cannot be set equal to zero for all
scales. Now, the Coleman-Weinberg potential is
derived by assuming scale invariance at the tree lev-

el; thus, the most natural choice for il is —, (at the
GUT scale) for a classically conformally invariant
theory. We shall leave rl unspecified but implicitly
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FIG. 1. The form of the one-loop Coleman-Weinberg
effective potential of Eq. (2.2), in units in which o=1.
The Rgi barrier near /=0 is totally negligible on this
scale.

II. RP~ BARRIER PENETRATION IN SU(S)

In the SU(5) theory, " the Higgs field 4 relevant
for spontaneous symmetry breaking is in the 24 rep-
resentation of SU(5). Assuming this breaking is
directly to SU(3) XSU(2) XU(1) we can write the ex-
pectation value of 4 in the form

(4)=(—„)'~ /diag(1, 1, 1,——,, ——, ) . (2.1)

The Coleman-Weinberg' one-loop effective po-
tential for P is then (cf. Fig. 1)

Vcw(((') =BP"[1n(jb~lo' ) —,]+—, Bcr, —(2.2)
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where N(T) is the number of massless particle
species at temperature T. When 1falls below o the
thermal energy density quickly becomes negligible
compared to V(0) and the universe begins the de
Sitter expansion. This defines both the time direc-
tion and origin. It is not necessary to assume any-
thing about earlier times, particularly the existence
of any singularity, provided that the temperature
was once high enough to place the universe in the
symmetric vacuum. Since the approach to the de
Sitter phase is exponentially rapid, any previous in-
homogeneity or detailed history becomes irrelevant.

The fact that the vacuum energy density V(0)
dominates, implies that the scalar curvature is fixed
at

Rc ——— V(0)= —4K V(0)
Mp

(2.6)

by Einstein s equations, with cosmological constant
a V(0}. Thus the RP term acts as an effective mass
term, with mass of order of the de Sitter scale,

' 1/2

H= =6.7X10 GeV.
3

(2.7)

This mass term presents a larger effective barrier
than the temperature term in Eq. (5) as soon as T
falls below 10' GeV. This is approximately 10TH
where

Tlt =H/2m=1. 1)& 10 Ge.V (2.8)

is the Hawking-de Sitter temperature.
In order to discuss the tunneling through the RP

barrier we must consider the Euclidean section.
Since the geometry is essentially fixed to be de Sitter
space, the global properties of that space on the Eu-
clidean section are relevant. The line element may
be written in the form

ds =d g +p (g)(dX +sin X d Qi),

with

p(g) =H 'cos(Hg —Hgi),

(2.9)

(2.10)

assume it to be positive and of order —„ to 1 in what

follows. When the theory is considered at tempera-
tures greater than TG~, the unique ground state is
at /=0. As the temperature falls, the asymmetric
state becomes energetically favored. Escape from
the / =0 vacuum is highly improbable at high tem-
peratures even in flat space. ' For low temperatures
the form of the effective potential is

V(giT)= Vcw—($)+ N(T)T + , maT—ip
30

(2.5}

gi an arbitrary constant. This is the line element on
a four-sphere of radius H

Now field theory at finite temperature is defined
by its periodicity in the Euclidean time coordinate.
Since it is impossible for any function defined on S4
to have a periodicity greater than 2n/H, for any
choice of time coordinate, it is impossible to define a
temperature lower than Ttt on this manifold. Physi-
cally, this is so because the cosmological event hor-
izon of de Sitter space implies a loss of information
accessible to an observer following the trajectory of
the standard timelike Killing vector. By the homo-
geneity of de Sitter space, a cosmological observer
whose constant time slices are surfaces of homo-
geneity is in a similar situation. This manifests it-
self in the form of a bath of thermal radiation at the
Hawking temperature TH—independently of the
growth of the scale factor a(t). That is, the usual
assumption that the temperature is inversely propor-
tional to a (t), which grows exponentially in the de
Sitter phase, does not apply. The extreme supercool-
ing of the original inflationary model ignores the
event horizon of de Sitter space: radiation cannot be
red-shifted by expansion further than the infinite
wavelengths approached near the horizon. Thus the
temperature cannot fall below T&.

The concept of temperature makes sense only in
equilibrium or when the system is slowly evolving.
Since the Coleman-Weinberg potential is very flat,
the scalar field and V(P) are slowly varying.

Also, if there were no barrier (ran=0) the homo-
geneity and isotropy of the de Sitter phase would
persist as long as P remained on the plateau of the
potential. When rl ——, the height of the barrier is of
order 10 '6V(0) so that we should expect that the
system would prefer to tunnel through this very
small obstacle and then continue its quasiclassical
evolution to the new vacuum / =0, without destroy-
ing its homogeneity and isotropy, rather than tun-
neling directly to P=tr by the nucleation of small
bubbles of new vacuum. We shall see that this ex-
pectation is borne out.

To analyze the tunneling process in detail we
must find the classical Euclidean solution of least
action. In fiat space it is well known that the
minimal action solution is rotationally invariant. '

No proof of this statement in curved space is
known, but it is reasonable to assume that it remains
true in the presence of gravity. The most general ro-
tationally invariant Euclidean metric may then be
considered. It has already been given by Eq. (2.9).
Furthermore, since the barrier is so much smaller
than the scale of V(0), Eq. (2.10) remains valid to
good approximation. If, as we have argued is plau-
sible, the tunneling does not destroy the rotational
invariance, then there must exist a choice of g such
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that the Higgs field (t} is also a function only of g.
~ith P =P(g) the Euclidean equations become

—i)RP,
3p', d V

p'( V —
2 P')+ —p(p' —1)=const,

(2.11)

(2.12)

0+Ci . (2.13)

The other components of Einstein's equations are
simply consequences of (2.11) and (2.12). Since the
Lorentzian form of the general homogeneous, isotro-
pic metric is the Robertson-Walker line element,

ds = 12+a—(r)(dX +sin XdQ ), (2.14}

where a prime denotes Bldg and the closed universe
has been chosen for definiteness. Equation (2.12) is
the conservation equation corresponding to the
translation symmetry of the metric (2.9),

p=Hi 'sin(Hip),

a V(gi)
H1 ——

3

(2.19)

+22 f dip V (p—i~/=0)

4 1 1

V(0) V(gi)
(2.20)

Now, the maximum of V+ riRp /2 is given by

R ($i) ag V(P, )
pi ln(pi /0~}=g

48 9 (2.21)

where pi is the maximum of V(p)+imp~/2 indi
cated in Fig. 1. The action for this solution is

1

it is natural to identify g with Euclidean time and
Eq. (2.12) as the conservation of energy condition.
The precise relation of this time to that fixed at the
beginning of the de Sitter expansion will be given in
the next section. The identification of Eq. (2.12}
with conservation of Euclidean energy allows us to
fix the constant by comparison with the de Sitter
solution on the Lorentzian section:

and

V(gi)= V(0) 1—Roti'
2So'

6riw

381n(cr/P i )

(2.22)

(2.23)

=0,
g (r) =H 'cosh(Hr) .

(2.15)

Replacing d/dg by id/dr and p by a fixes the con-
stant to be zero so that (2.12) can be rewritten as

(2.16)

Ab„bbia-P V(0)-—=1300 .1
(2.18)

Direct numerical integration of the equations was
performed and confirms this estimate. '6

On the other hand Hawking and Moss pointed
out that a simple homogeneous solution also exists:

Equations (2.11) and (2.16) are the equations of the
Coleman-de Luccia bounce. ' The action for a solu-
tion of these equations is

A =46 f dg(p V —3p/a) . (2.17)

To find the solution of least action let us first
consider tunneling directly from the symmetric vac-
uum to /=0'. This corresponds to the nucleation of
bubbles of size p-(Bo )

'~ For such . bubbles,
gravitational effects are negligible (P«H ') and
the action is of order

Note that there is an additional in(0/p, ) =1(}in
the denominator of the homogeneous actjon. This
accounts for the lower action for the homogeneous
solution and implies that the preferred escape from
the de Sitter symmetric phase is not the nucleation
of small bubbles of new vacuum but tunneling of the
universe as a whole —without destroying the homo-
geneity of the symmetric phase.

The solution, Eq. (2.19), represents a sudden
"jump" to the top of the R((t barrier due to a homo-
geneous thermal fiuctuation at the Hawking tem-

perature. The number e measures the probabili-
ty for this thermal fiuctuation. In general, a second
solution exists in which p(g) has qualitatively the
same behavior as in (2.10) or (2.19) but P varies
from ((} near zero to P near Pz as g ranges from 0 to
g,„with

e= V(0)—V($2), (2.24)

where Pi is the point to the right of the RP2 barrier

&(max &
H1

This is the Coleman-de Luccia bounce, the action
of which has been calculated by Parke in the zero
temperature thin-wall approximation. 17 Let
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at which the bounce has P'=0 and the continuation
to Lorentzian time is performed. The quantity

III. THE DURATION OF THE DE SITTER
EXPANSION PHASE

g, = f dg[2V(0) —2V(P)]'/

12B ln(o /Pl)
(2.25)

In the usual application of the Callan-Coleman
bounce at zero temperature one considers the per-
sistence amplitude for the false vacuum. The contri-
bution of the bounce to this amplitude is proportion-
al to

measure the surface tension of the wall. The action
of the bounce can be expressed in the form

27m Si"
(2.26}

2E'

where r is the correction factor due to gravity, com-
puted by Parke. ' For the case @~0,

16@ 3
2a V(0)

3/2

(2.27)

Thus the minimized bounce action in this approxi-
mation is

v 2' (6g) 3/2
B)thin wall= 3B 1 ( /P )

}

(2.28)

Ag ——421

for r)= —,, instead of (2.28}.' If we recall that the
Hawking temperature is itself a one-loop quantum
effect and view the RP barrier as similar to the
T P barrier with T-TH, the similarity of (2.29)
and (2.23) is not surprising.—A~

Since e is small we expect that the universe
must remain trapped in the systematic phase for a
long time before tunneling. Then the expansion fac-
tor a (~) could become very large naturally. Howev-
er, the scale factor p would seem to be less than or
on the order of H ', so that any immediate connec-
tion with the Lorentzian metric (2.14) presents a
problem: How can a large a (r) match onto the Eu-
clidean solution? In the next section we answer this
question by exhibiting an explicit continuation be-
tween the I.orentzian and Euclidean sections which
relates the small probability of tunneling e to a
large expansion factor.

(2.29}

The cancellation of e in this formula is indicative
of the fact that this bounce does not have a flat-
space analog. Its size is limited by gravitational ef-
fects (p-H ') and not by e. The similarity be-
tween Az and AH indicates that homogeneous tun-
neling via the zero-temperature bounce is not sharp-
ly distinguishable from classically jumping over the
barrier by a thermal fluctuation. In fact, numerical
integration of the bounce equations yield

i
~

det'(5 A ) (
'/ e (3.1)

where 5' is the second-order variation of the action
and the prime indicates nonzero modes only of 5 A
are to be included in the determinant. The factor of
i comes from the negative mode. In the case of the
Coleman-de Luccia bounce, ' there are four zero
modes corresponding to arbitrary translations of the
solution on S4.. In curved spacetime the collective-
coordinate integration multiplying (3.1) must respect
general coordinate invariance. Therefore the volume
element multiplying (3.1) is proportional to

f d xVg=2ir f dip(g). (3.2)

In order to calculate the decay rate and follow the
real time evolution, we consider the de Sitter metric
on the Lorentzian section, given by (2.14). The
Lorentzian analogs of (2.11) and (2.16) are

+i?RP,
dV

a' =—1+—,xa ( V+ —,P)2,

(3.3)

(3.4)

where the overdot denotes d/dr. If r is real, /=0
and

a (r) =H 'coshHr (3.5)

describes the exponentially expanding de Sitter
phase. What determines xi, the time of tunneling' ?

In one-dimensional tunnehng through a potential
barrier there is a conserved energy and a correspond-
ing time translational symmetry of the action.
Hence the time of tunneling cannot be determined
by the minimization of an action which is invariant
under t~t+tl. Instead, the time of tunneling is
determined by requiring that the probability of es-
caping the potential will be of order unity, i.e.,
tiI =1 where I is the semiclassical decay rate.

For field theory in flat space time the bounce
solution of minimal action has O(4) spherical sym-
metry. The role of the time variable is taken by the
O(4)-invariant radius p=(r +t )' . This variable
ranges from 0 to 00 and so has a definite origin.
There is no translational symmetry in p and the bub-
ble radius p is determined by the equations of
motion, i.e., the minimization of the action. Homo-
geneity is necessarily destroyed in the tunneling pro-
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cess by the nucleation of the bubble.
When gravity is added, an additional function

p(g) makes its appearance. The inhomogeneous
bounce solution(s) which existed before remain,
though slightly reduced in size. However, since

g—+(+pi is a symmetry of the metric, p need not
have a definite origin. There may exist new solu-
tions to the equations which are more similar to
one-dimensional quantum mechanics than to the flat
space bounce, in that the "time" of tunneling is not
determined by the equations of motion but by the
barrier-penetration factor. The homogeneous solu-
tion (2.19) represents precisely this possibility.

The explicit continuation between the Lorentzian
and Euclidean sections is achieved for such homo-
geneous tunneling just as in the one-dimensional
case. Let

~=t+i (3.6)

with (=0 until the instant of tunneling, ri ti. ——
Then fix Rer=ti and allow g to vary, so that
dr=id( If we. let

p(C) =o«) l.=i, +g
(3.7)

with g varying from 0 to g,„&rr/H, then Eqs. (3.3)
and (3.4) become identical to the Euclidean bounce
equations (2.11) and (2.16). If a solution to these
equations exists, then we have the desired tunneling
solution which connects smoothly' onto the pre-
tunneling expansion through Eqs. (3.7), by letting

g, =iti be the zero point of the Euclidean time evo-
lution of Eqs. (2.11) and (2.16).

Thus, it is possible to have p »H ' for the solu-
tion of the Euclidean bounce equations by the sim-
ple expedient of allowing the integration constant gi
in Eq. (2.10) to be imaginary. This implies that p(g)
for 0&/&/, „ is complex. Complex paths have
been utilized in one-dimensional tunneling at finite
temperature where they have been shown to be
essential to the correct semiclassical limit. ' In this
case, the homogeneous tunneling path which
matches smoothly onto the pre-tunneling exponen-
tial expansion of a (r) in the de Sitter phase must be
complex, since p is bounded by H ' for real paths.

The geometric interpretation of the Euclidean
bounce as residing on a real four-sphere is lost if
p(g) is complex. However, nothing actually depends
on this geometry. The periodicity in g is determined
solely by the differential equations (2.11) and (2.16).
If p(g) is a solution to these equations with periodi-
city 2g,„, then p(g —gi) is as well and it has the
same periodicity, whether gi is real or not. Because
the action is invariant under (2.13) the action for the

translated complex solution is identical to that of
the real solution with gi ——0. Since Art &Ai,„&i,i,
[Eqs. (2.18), (2.23), and (2.29}] the complex tunnel-
ing path is the preferred path for the (graceful) exit
from the symmetric phase.

As g varies from zero to g,„, P varies from zero
to Pi in the bounce solution —over the entire spatial
section. ' At g=g~,„we fix g and resume the real
time evolution of Eqs. (3.4} and (3.5) with
r=t +ig,„,dr=dt. Since p is periodic with period
2g,„, the scale factor is again real and given by—a (ti ) while a has become —a(t i ).

The sign change is not physically significant since
a appears in the line element and physical observ-
ables such as the curvature scalar

R =6 —+ (1+t't )
a 1 2

a a
(3.8)

H )&H e 'e =13' —A
(3.10)

ti =-Art/3H,

a~/3a(t, ) =- e
2H

(3.11)

for ti »H ', i.e., Aa »1, the condition of validity
of the semiclassical approximation. An action of
570 [cf. Eq. (2.18)] implies that the universe is
trapped in the symmetric phase for 190 de Sitter
times, which allows the expansion factor to grow by
e' =-10 . This is more than enough to accommo-
date the 28 orders of magnitude required by obser-
vation in our present universe. An action of the or-
der A~ ——410 implies an expansion factor of
e' =10 which is still amply large for accommo-
dating the present universe.

One aspect of this calculation of ti may require
some further explanation. The assumption of rota-
tion invariance fixes the metric to be (2.9). Thus,
the tunneling event is certainly homogeneous and
simultaneous in some frame. But this frame need

are invariant under a~—a.
Thus, the complex Euclidean bounce solution

smoothly connects the symmetric vacuum with the
post-tunneling evolution to the new vacuum by con-
tinuation in the Robertson-Walker time coordinate.

The time of tunneling t, is computed by multiply-
ing the Lorentzian form of (3.2),

2n J dta (t) (3.9)

by (3.1) and setting the result equal to unity. Since
(3.1) must have dimensions (distance) and H ' is
the only distance relevant in the tunneling process,
we have the estimate
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not be the same one in which the pre-tunneling evo-
lution is given by (3.5). The situation is analogous
to Lorentz invariance in flat space. Bubbles of new
vacuum need not form at rest; they may appear with
any velocity u &e. However, the bubble walls are
accelerated to c very rapidly and any original veloci-
ty becomes irrelevant.

In the present case, we have a de Sitter invariance
group. An arbitrary group rotation relates ~ in Eq.
(3.5} to that in (3.6). For example, consider the
group rotation g +/+—n/H which is the furthest
from the identity on the Euclidean section in the
sense that antipodal points on S4 are mapped into
each other. On the Lorentzian section this means
that a typical large group rotation can change t& by
m /H and hence a (ti ) by a factor of e . Thus, in the
frame in which the pre-tunneling evolution is given

by Eq. (3.5) the post-tunneling universe is not quite
homogeneous and isotropic. Rather, considering the
spatial sections as three-spheres, one side of the
three-sphere may tunnel earlier, by b, ti (m./H, while
the other side later by the same amount. Conse-
quently, one part of the universe may experience an

AH~3 ~ 58 6expansion factor of e " =10' while anotherai+ 613part an expansion factor of e ~ =106 . This is
a trivial difference. It means that the universe is flat
to one part in 10 ' in one region but only to one
part in 10 in another. Any such inhomogeneity
would be undetectable by any current observations.
Thus the de Sitter group rotations are as irrelevant
here as the Lorentz group boosts in flat-space false-
vacuum decay.
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FIG. 2. The post-tunneling evolution of the
Robertson-Walker expansion factor a(t) in time units of
H '. c grows exponentially until t 1.5H ' after the
phase transition. It then switches to the power law, ap-

. propriate for nonrelativistic matter.
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FIG. 3. The oscillations of the P field around P=o.
The slow decrease in the amplitude of the oscillations is
due to the cosmological red-shift alone; particle creation
effects are not included.

IV. THE POST-TUNNELING EVOLUTION

With the homogeneous exit from the symmetric
false vacuum, the real time evolution resumes ac-
cording to Eqs. (3.3) and (3.4). For the bounce solu-
tion, a, a, and P are unchanged' from their pre-
tunneling values. Thus, Eq. (3.4) implies

V($2) = V(0) or

Pi——(4.52X10 )o . (4.1)

Equations (3.3} and (3.4} were integrated numeri-
cally with these initial conditions and the results are
presented in Figs. 2 and 3. Note that the additional
expansion factor due to the rollover from the pla-
teau of the potential is less than 5, compared to the
expansion due to the tunneling suppression,

A~/3
e ~ =-10. Thus when rj&0 a very natural ex-
planation for the large expansion factor arises,
which requires no fine adjustment of the initial con-
ditions of the rollover. In fact, the initial conditions
are fixed by the Euclidean bounce equations which
do not allow changing P2 to adjust the rollover time.

Since the large expansion is due to the number
Ag

e generated by the tunneling process and not the
slow rollover from the plateau, it is possible to con-
sider modifying the pure Coleman-Weinberg poten-
tial of Eq. (2.2). For example, we might add an ex-
plicit III pi term to V or allow Il to differ from —,.
In order for the tunneling picture to be correct the
barrier must be large enough (Ae & 194) to yield a
large enough expansion factor, while still small
enough (AII (1300) to suppress nucleation of small
bubbles and breakdown of homogeneity. This gives
the limits
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H & i
m —rtR

i
&6H (4.2)

dE ——SpE .
dt

(4.3)

Therefore, the time scale for full conversion of the
vacuum energy density into rnatter is not p

' but

t,.„„-a-'p-'-1300p-' . (4.4)

This is the same order of magnitude as the roll-
over time from the potential plateau.

As the Higgs particles are created they spontane-
ously decay into lighter species. Since 8 is
O(aoUT ) the decay time is also of order t«„„Fi-.
nally, the various particle species must interact in
order to rethermalize. The interaction time can be
estimated from the interaction rate, nSU, where n is
the number density of created particles [—V(0)/p],
S is the interaction cross section (-a /p ), and U is
the average particle velocity ( &c). The interaction
time is then

tint = 1

nSv
(4.5)

This must be compared with the characteristic ex-
pansion time of the universe at this epoch,

—1 —1
M

t,„~-H -p —10000p (4.6)

If t,„z were less than t;„„the universe would be

Explicit mass terms of the order of H present no
problem but m -p are ruled out in this picture.

As the classical solution begins to oscillate about
the new vacuum, the coherent state energy density
E = —,P + V(P) will be converted to matter by parti-
cle production. The effective potential language is
no longer adequate to describe this process since P
now varies on time scales comparable to the mass of
its excited particle states. A correct description of
the process would require solving the full nonlocal
semiclassical equations derived from the one-loop
effective action. It will be sufficient for our pur-
poses, however, to estimate the partide production
rate very roughly as follows.

Let P=P,i+Pq„where Pd is the solution of Eqs.
(3.3) and (3.4) and Pq„ is responsible for the particle
production. Expanding to second order in P„„yields

0q' V"(0.i) -&Nq'0. i' .

Thus 8 characterizes the coupling between the clas-
sical field, viewed as a time dependent source and
the quantum field. Now, the energy density E de-

cays into particles at a rate proportional to E, to the
coupling 8, and to the frequency of oscillation about
P=o which is p=VSBcr:

or

T~ =4.4& 10' GeV,

(4.7)

respectively.
Once equilibrium is reestablished at T=T, the

universe resumes the homogeneous and isotropic
radiation-dominated expansion of the standard
model. In this model baryon asymmetry is generat-
ed when the density becomes low enough that the in-
teraction rate falls below the expansion rate. Be-
cause of (4.5) and (4.6) the temperature at which this
occurs is lower than T, by roughly an order of mag-
nitude. Thus the phase transition and particle
creation epoch has a negligible effect on the baryon
asymmetry calculations in the standard model. This
conclusion is somewhat model dependent, however.

The magnetic monopole density predicted in this
picture is the very small value associated with the—M/T~
Boltzmann equilibrium distribution e ' where
M is the monopole mass.

The entropy generated in the vacuum decay and
particle production process is of order of the number
of particles created,

MpS-
p

'3
~a 1075 (4.8)

Thus the same large factor from the tunneling
process accounts for the large entropy of the
universe.

We conclude that the solution of the horizon, flat-
ness (and possibly the singularity) problems of the
standard model through homogeneous vacuum de-
cay does not destroy any of its successful features.

Finally, there is the issue of inhomogeneous per-
turbations on the homogeneous classical background
evolution. It is known that the spectrum of quan-
tum fluctuations in a de Sitter background is
white. ' This scale invariance appears to be precise-
ly what is required for the subsequent development
of irregularities into galaxies. However, in the
rollover inflationary scenario the amplitude of these

expanding faster than the particles could interact
and equilibrium could not be reestablished. Since
t,„~ involves Mplo this is not the case and the
matter does rethermalize. The rethermahzation
temperature T, may be estimated by equating the
energy density E of the classical solution to
(n /30)E» T» where N» is the number of massless
particle species at T =T, (N» —100). Since
T, -E'~ —1/t'~, T, is not strongly dependent on
the time t that we choose to evaluate E. Taking t to
be 5t„„,and 10t„„,gives

T~ =5.9X10' GcV
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fluctuations has been shown to be far too large to
be in accordance with the isotropy of the microwave
background.

This large result depends on the slow rollover in a
crucial way, through the large value of (P) '. In
the tunneling transition or "old inflationary
universe" considered by us, P is zero classically dur-

ing the relevant large expansion era. It is not clear
that the same result for the fluctuation amplitude
remains valid in this very different circumstance.
Linde has argued that in the case of interest (his
case E) the one-loop approximation is not valid so
that the magnitude of the fluctuations may be quite
different than in the rollover picture. The issue of

the fluctuations in the homogeneous inflationary
universe is examined in the following paper.
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