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We calculate the net change in generalized entropy occurring when one attempts to empty
the contents of a thin box into a black hole in the manner proposed recently by Bekenstein.
The case of a “thick” box also is treated. It is shown that, as in our previous analysis, the
effects of acceleration radiation prevent a violation of the generalized second law of thermo-
dynamics. Thus, in this example, the validity of the generalized second law is shown to rest
only on the validity of the ordinary second law and the existence of acceleration radiation.
No additional assumptions concerning entropy bounds on the contents of the box need to be

made.

Although it is understood how the ordinary

second law of thermodynamics plausibly arises for a
system with a large number of degrees of freedom,
there currently exists no proof of the second law
based on the known microscopic laws of physics.
The general belief in the validity of the second law
rests mainly on the repeated demonstrations over the
years of the failure of attempts to violate it. In the
case of the generalized second law (GSL)—which
states that the sum of the entropy of matter outside
a black hole plus % times the area of the black hole
never decreases—considerably less is known since
the fundamental microscopic laws of physics—
namely, the laws of quantum gravity—remain to be
discovered. Nevertheless, semiclassical calculations
have provided enough information about the quan-
tum behavior of black holes that Gedankenexper-
imente to test the validity of the GSL can be per-
formed. Such tests are important since the validity
of the GSL underlies the relationship between black
holes and thermodynamics.

A promising possibility for achieving a violation
of the GSL occurs when a box filled with matter is
lowered to near the black hole and its contents then
are emptied into the black hole. In a classical
analysis, the energy of the contents of the box can be
“red-shifted away” by lowering the box to the hor-
izon. If this occurs, the energy and area of the black
hole will not increase, but the entropy of the matter
outside the black hole (i.e., contents of the box) will
be lost. Bekenstein proposed a resolution! of this
apparent violation of the GSL by conjecturing a
bound? on the entropy in the box in terms of its en-
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ergy and size. However, this bound does not suffice
to rescue the validity of the GSL.3

Recently, we analyzed® the process of lowering a
box toward a black hole, taking fully into account
the effects of acceleration radiation, i.e., the effective
radiation a stationary observer near a black hole
would see. We showed that this acceleration radia-
tion produces a buoyancy force which affects the
energy-balance calculations and results in more ener-
gy being delivered to the black hole than would
occur classically. We found that the optimal place
for emptying the contents of the box into the black
hole was from its “floating point”, i.e., the height
above the black hole at which

E =eV, (1)

where E and V are the (local measured) energy and
volume of the box and e is the energy density of the
acceleration radiation. The entropy change in the
black hole was calculated to be

ASyy=1Ay=s(e)V, 2)

where s(e) is the entropy density of the acceleration
radiation. Since the acceleration radiation is
thermal and hence maximizes the entropy at fixed
energy and volume, we concluded that ASy, > Sy,
and hence that the GSL is satisfied. The entropy
bound proposed by Bekenstein? was not needed in
this analysis.

Recently, our analysis and conclusions have been
criticized by Bekenstein* on the grounds that uncon-
fined thermal radiation need not maximize entropy.
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In particular, Bekenstein showed that at sufficiently
low temperatures an electromagnetic field in a rec-
tangular box with two large dimensions and one
short dimension effectively behaves like a two-
dimensional system and has entropy and energy
given by

S2 :aszA > (3)
Ey=5a,T4, )

where a, is a constant and A is the area of the larg-
est face. On the other hand, the usual three-
dimensional formulas, applicable to a box with all
. three of its dimensions large, are

S;=a3TV, (5
Ey=+a;T*V, ©6)

where a3 is a constant and V is the volume of the
box. Comparison of Egs. (3) and (4) and (5) and (6)
shows that at fixed volume, we can make S, >S3 at
sufficiently low energy. Bekenstein suggested that
in a Gedankenexperiment where such a box is
lowered near the black hole (so that S, >S; at its
floating point) a violation of the GSL might be
achievable. He argued that the GSL could be saved
only by assuming the existence of entropy bounds on
confined systems of the type he had previously pro-
posed.

The purpose of this paper is to give a complete
analysis of the Gedankenexperiment proposed by
Bekenstein. We shall demonstrate again that the ef-
fects of acceleration radiation prevent a violation of
the GSL. It may be true that a limit on S/E such
as that suggested by Bekenstein may hold for ordi-
nary matter but no such additional hypotheses are
needed in our analysis.

First, however, we comment briefly on the mean-
ing of the term “thermal radiation” and the assump-
tions made about it in our previous analysis. We de-
fined “thermal radiation” to be the state of matter
and radiation which maximizes entropy at fixed en-
ergy and volume. We assumed that acceleration ra-
diation is thermal although this has been rigorously
proven only for free fields. Hence, the inequality
S < Vs(e) follows immediately where S denotes the
total entropy of the box (including the box walls) at
total energy E =eV (including the energy of the box
walls). Thus, this inequality is not an additional as-
sumption about the entropy of confined systems
when applied to the total system.

Nevertheless, Bekenstein’s example shows that it
is possible to make the entropy per unit volume of
the contents of a confined system (at fixed energy of
the contents) greater than that of thermal radiation.
Thus, the possibility exists of obtaining a violation

of the GSL if we can empty the contents of such a
confined system into a black hole in a suitable
manner.

There are three possible procedures for doing this
which we now shall analyze. After lowering the box
containing high-entropy, low-energy material to the
desired height we can (i) drop the entire box into the
black hole, (ii) open the box completely (or destroy
the box) and then return the open box (or its rem-
nants) to our laboratory, or (iii) cut a small hole in
the box and return the box (with hole) to our labora-
tory.

In case (i) the inequality S < Vs (e) for the total
system is applicable and our previous analysis shows
that the GSL cannot be violated.

In case (ii) if the box could be opened or destroyed
without energy being added to the contents, then our
previous analysis shows that a violation of the GSL
could be achieved. However, it is easy to see that a
violation of the ordinary second law of thermo-
dynamics also could be achieved by opening such a
box inside an ordinary thermal bath in flat space-
time. Thus, if the ordinary second law is valid, en-
ergy must be pumped into the contents of the box
when the box is opened or destroyed. Indeed, it is
straightforward to verify that the validity of the or-
dinary second law requires that after the box is
opened the final entropy S and final energy E of the
contents of a box of volume ¥V emptied into a
thermal bath of energy density e and volume v >>V
in flat spacetime must satisfy

Sgs(e)V+-1]:(E—eV) . 7

Thus, applying this result to the black-hole case we
find that at the “floating point” E =eV, the inequal-
ity S < Vs (e) again holds for the contents of the box
after the box has been opened (or destroyed), and a
violation of the GSL cannot be achieved.

The third procedure, suggested by Bekenstein,*
for emptying the contents of the box into the black
hole is perhaps the most interesting. Although, as
argued above, destroying the box must cost energy,
it should not cost energy to cut a small hole in the
box. Thus, by lowering the box to the desired
height, cutting a hole in it, and then returning it to
our laboratory we may empty the box without add-.
ing in extra energy to its contents. It is instructive
to analyze this case in detail. As we shall see, the
weight of the contents of the box (with hole) as it is
slowly pulled back to infinity—which results from
its being “bathed” by acceleration radiation—
produces just the right contribution to the energy
balance calculation to keep the GSL satisfied.

First, we spell out our assumptions concerning the
nature of the box of material used in this Gedank-
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enexperiment. For a given energy & of the contents
of the box, we define /(&) to be the maximum
possible entropy of the contents. Thus, by defini-
tion, for a box whose contents have energy & and
entropy S, we have

S< (&) . (8)

We define Ty, ~'=d.”/d&. The only assumption
we shall make in our analysis is that after the hole is
cut, at each height the box contains energy &(Ty.,)
and entropy S (Ty,,) with

Tox=T=Ten/X , ©)

where Ty, is the temperature of the black hole, X is
the red-shift factor, and thus T is the local tempera-
ture of the acceleration radiation. We shall place no
bounds whatsoever on .#(&) and, in particular, we
will not assume that #(&) is bounded by the entro-
py Vs(&/V) of a corresponding volume of uncon-
fined thermal radiation at energy &. Note that in
the case where no energy is required to open the box
completely or destroy it—as was implicitly assumed
in our previous analysis’>—then processes (ii) and (iii)
above are equivalent. However, in that case the or-
dinary second law requires

S(E)<Vs(&/V)

[see Eq. (7)] and our previous results apply. Thus,
the calculation given below may be viewed as a gen-
eralization of our previous analysis to the case where
energy may be required to destroy the box.

Below, we shall make the same “thin-box” ap-
proximation as previously made.> The generaliza-
tion to the case of a “thick box”—where the distri-
bution of matter within the box must be taken into
account—is given in the Appendix.

We calculate the change in black-hole entropy by
the same type of energy-balance analysis used previ-
ously.’ The energy delivered to the black hole is the
difference between the energy in the box initially
and the work done in raising and lowering the box.
This work is composed of three parts: (1) the work
done due to the weight of the box walls, (2) that due
to the buoyancy force of the acceleration radiation,
and (3) that due to the weight of the contents of the
box. Instead of assuming that contributions (2) and
(3) cancel during the process of pulling the box out,
we will treat the three contributions separately.*
The work due to the weight of the walls of the box
will cancel on descent and ascent, and will give a net
contribution of zero. Similarly, since by assumption
the box has not changed in size or shape, the contri-
butions of the buoyancy force will cancel. This
leaves only the weight of the contents. On the way

down, the work delivered to infinity on account of
the weight of the contents is

IO
Wi=— [ E,-f%dl:E,-(l—xo) , (10)
where E; is the energy of the contents of the closed
box, Iy is the point at which the hole is cut in the
box and X is again the red-shift factor. On the way
back up, the contents of the box are in thermal con-
tact with the exterior through the small hole.
Hence, as mentioned above, the contents will have
energy &(T), with T given by Eq. (9). The work
done to raise the contents is then given by

w dx
Wy=— [, 8D Sl (11)
We can integrate by parts to get
© d¥
Wo=8(ToWo—E(T Wt [, <l

(12)

We will neglect the energy at infinity assuming that
T is negligible. The last term may be rewritten as

= d& = d& dT
Ly “ax =1 ara®
 dS dT
= [, T 5xdl (13)

where #(T) is the entropy of the enclosed thermal
radiation. Using Eq. (9), we obtain

Wy=8&(To)Xo— Ten’(To) . (14)

Thus, the net work delivered to infinity during the
lowering and the raising is

Wi+ Wy=E;+Xo[&(To)—E;]1— Ty, (T,)
(15)

and the net increase in entropy of the black hole is

1
ASyw=——[E;— (W +W,)]
Ty

— AT+ —[E—#(Ty)] . (16)
Ty

This is minimized if the hole is cut in the bo:_( when
d(ASy;,)
0= bh d

f(To>+TL[E,-—EﬂTo>]
0

dly,  dly
_|4F 14 T,
| dT T dT |r=r, dl,
L[5, — #(Ty)] L0 (17)
—Toz[ [ 0 d,
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The first term is zero by the definition of 7. The
minimization condition therefore is simply

E;=#8(T,) . (18)

We can rephrase this condition by saying that the
optimal height is that at which the temperature
which the material in the box would have if fully
thermalized is equal to the temperature of the ac-
celeration radiation outside the box.

In the optimal case (18) the entropy change (16) of
the black hole is just #(T,). Thus, using Eq. (8) we
have proven that

ASth.y(To)ZS, (19)

where S is the original entropy of the contents of the
box. This shows that the generalized second law of
thermodynamics cannot be violated in this Gedank-
enexperiment.

It is worth emphasizing three points concerning
the above analysis. First, in the analysis we needed
to consider only the properties of the material
within the box. We did not need to compare the en-
tropy within the box with the entropy of the dis-
placed radiation as was done in our previous
analysis. Second, the optimal height at which to
open the box is no longer the floating point of the
contents of the box. It is rather that point where the
temperature of the acceleration radiation equals the
temperature the material inside the box would have
if it were fully thermalized. Third, if done at the
optimal height and if the material which we lower
into the black hole is fully thermalized, then the
process is reversible. Thus, again we can, in princi-
ple, mine energy from a black hole. However, there
is a further payoff here. Since the energy density in-
side the type of box considered here can be much
higher than that of unconfined radiation at the same
temperature, one gets more material per scoop than
one would have expected on the basis of our previ-
ous analysis.>>

The above analysis, of course, rules out only a
particular class of proposals for violating the GSL.
However, because of acceleration radiation, in any
quasistatic process the region exterior to the black
hole behaves as though it were filled with thermal
radiation in hydrostatic equilibrium. Hence, for any
quasistatic process involving a black hole, there will
be an analogous process for a self-gravitating star
composed of (real) thermal radiation. Thus, if it is
possible to violate the GSL by quasi-static processes,
it should also be possible to violate the ordinary
second law for self-gravitating stars.

In summary, our analysis does not prove the gen-
eral validity of the GSL, nor does it explain how it

may arise from the microscopic laws of physics.
However, the failure of the above Gedankenexper-
imente to produce violations of the GSL provides
evidence for the validity of the GSL of the same na-
ture as has led to the firm belief in the validity of
the ordinary second law of thermodynamics. We
emphasize that our arguments for the validity of the
GSL rest only on the validity of the ordinary second
law and on the existence of acceleration radiation.
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by the Alfred P. Sloan Foundation, and by National
Science Foundation Grant No. PHY 80-26043 to the
University of Chicago.

APPENDIX: THICK BOXES

In the analysis above as well as in our previous
analysis, we assumed for simplicity that the box is
sufficiently thin that changes in X and dX /dI across
the box are small compared with their average
values. ThlS assumption has been criticized by Bek-
enstein.® The purpose of this appendix is to analyze
the case of a “thick box,” where the above simplify-
ing assumption is not made. As expected, we find
that the conclusions of our analysis remain un-
changed.

Consider a box of arbitrary size containing energy
density p. As the box is lowered into the black hole,
the energy density will depend both on the height /
of the center of the box above the horizon, and the
position within the box, y, as measured from the
center.

The energy of the box as seen at infinity is given
by

E, (0= [ plyX( +y)dy (A1)
whereas the weight of the box at infinity is

w= [ ply) XD gy (A2)

The condition that no extra energy is fed into or ex-
tracted from the box as it is lowered is

dE ,(])
dl

f —Qgg—’y—x(l +y)dy . (A3)

Using Eq. (A3) we find that the work done during
the downward trip is

]
Wi=— [wdl=E— [ pllo,pX(o+y)dy ,
(A4)

—Ww

where E; is the initial energy in the box.
After the hole has been cut, the box will be filled
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with a thermal distribution of matter. The entropy
density o of thermal matter within the box may, in
general, be a function of the energy density € at the
given point, the position / of the box, and the posi-
tion y within the box, o0 =0(¢,,y). An important re-
lation satisfied by o can be derived from the ordi-
nary second law of thermodynamics as follows.
Consider an insulated box filled with thermal matter
which is adiabatically raised and/or lowered on a
string (with no energy flow between the string and
box) in a static gravitational field. Since this process
of raising and lowering the box is adiabatic, no
change in the total entropy .# in the box can occur.
Therefore, we have

d
dl f o(e,Ly)dy

_ 90 de(ly) 9o
= %" T |®
_ _1 a€
[T az dy . (A5)

However, for thermally distributed matter, we have’
T=T,_/X. Thus, we obtain

1 de do
=— == A6
T f)(aldy—f— - (A6)

But the first term vanishes by Eq. (A3). Thus, we
obtain the general restriction on the functional
dependence of o(e,L,y) on I:

0=
al dy (A7)

Using Eq. (A7), we find that if the matter in a box is
always thermally distributed but we no longer as-
sume that the box is insulated—in particular, if
matter may flow in and out of the box—then we
have
ds 1 e
i T [xay. (A8)

In our case, on the way up, the box will be filled
with thermal matter at temperature

T= Tbh /X . (A9)

The work done against the weight of this energy is

=—J. fe dy dl

= f ello,yX(Io+y)dy

o€

where the boundary contribution from infinity in
the integration by parts was neglected. Hence, using
Eq. (A8), we find

W= [ ello.p)X(lg+y)dy+ T, fz: d;ﬂy a

= [ el XUo+y)dy —TenFlg) . (A1)
The change in entropy of the black hole is thus

ASyy = ——(E; — W, —W,)
Ty,

1
=— y)—elly, I} d
7 J otloy)—ello.y) W(lo+y)dy

+7(1y) . (A12)

Minimizing this with respect to /; and using Eqgs.
(A3) and (A8), we obtain
0=—f‘b—h— I [puo,w—euo,y)]%)f—(zo+y)dy . (A13)
This equation states that the energy delivered to the
black hole is minimized when the weight of the en-
ergy in the box equals the weight the thermal radia-
tion has at the temperature appropriate to that level.

The equality of the weights does not guarantee the
equality of the energies, however. If p(ly,y) is distri-
buted differently from e(ly,), the energies need not
be equal. However, if they are distributed different-
ly, we can do even better toward maximizing the en-
tropy loss of the box and minimizing the entropy
gain of the black hole. Suppose that at the optimal
level of equal weights, the difference between the en-
ergies is not zero,

f (p—e)X dy+0 .

Then, clearly, the matter in the box is not distribut-
ed thermally. Now allow the material within the
box to thermalize. This will preserve.the energy, in-
crease the entropy, and, in general, change the
weight. We can then reoptimize the work by mov-
ing the box to the new optimal height corresponding
to the new energy distribution. In this process, we
increase the entropy contained in the box (and thus
increase the entropy loss when its contents go into
the black hole) and decrease the entropy gain of the
black hole. It follows that the optimal procedure for
attempting to violate the GSL with a “thick box” is
to have the matter thermally distributed in the box
at the optimal height /;. In that case, we have
p(lo,y)=€(T,ly,y), and, hence,

ASbh——-Y(lO):Sbox . (A14)
Thus, the GSL is satisfied.
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