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In our attempt to reproduce recent work by Hamber and Parisi we have discovered some -
important aspects of Monte Carlo calculations of the mass spectrum of lattice QCD. In
particular, we find that, for typical values of the input parameters, the hadron propagators
reach their asymptotic form only at a lattice distance which is larger than that available in
previous calculations. This will have some numerically important effects on the results. We
also suggest the use in certain cases of nonperiodic boundary conditions which can increase

the maximum available distance on a given lattice.

Recently, Hamber and Parisi have presented a lat-
tice Monte Carlo computation of hadron masses in
an SU(3) lattice gauge theory."? Because of the sig-
nificance of their results, we have attempted to re-
peat the calculation. In . so doing, we have
discovered some important features of the problem
which, we feel, should be pointed out at this time.

The basic idea of these calculations is as follows.
One generates, with standard Monte Carlo methods,
a series of SU(3) lattice gauge-field configurations
which are in “equilibrium” according to the pure
gauge action. Quark propagators (usually
Wilson,® =1, fermions) in each background gauge
configuration are computed by some numerical
matrix-inversion technique and are then combined
through appropriate spin and color sums to form
hadron propagators which, in turn, are averaged
over configurations. This is the so-called “quenched
approximation”* %12 because the back effect of the
quarks on the gauge fields through the fermion
determinant (i.e., the sum of closed quark loops) is
not taken into account.

Hadron masses can then be extracted from the
behavior of the hadron propagators at long distances
in one lattice direction (the “time” direction). For
convenience, the propagators are typically first aver-
aged over the perpendicular (“spatial”) direc-
tions.>®2 For an infinite lattice, the time behavior
is then simply a sum of decaying exponentials with
the decay constants given by the masses of the possi-
ble intermediate states that can be created by the
given hadron field. We thus have

G(= 3 (0| X(%,0)X(0,0)|0)
X
=Sce ™, 8
i
where X is some hadron field (made out of two or
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more quark fields), m; are the masses of intermedi-
ate states with the right quantum numbers (the had-
ron of interest and its radial excitations), and the c;
are the corresponding squares of the wave functions
at the origin. In order to extract masses reliably
from G (t), one should compute it out to values of ¢
large enough so that only the lowest-mass state con-
tributes. One thereby determines that mass. One
may then attempt to find the mass of the first excit-
ed state by subtracting out the ground-state

 behavior. The process may even be repeated, but the

errors, of course, increase at each stage. If large
enough values of ¢ for the above procedure are not
available, one may try a multiparameter fit at inter-
mediate ¢ values. This is inherently very risky, how-
ever, since there are typically only a small number
of points to fit and one does not know, a priori, how
many parameters to fit them with.

In Refs. 1 and 2, the lattice size used was predom-
inantly 5°x 8, with 6°x 10 and 6 12 also used in a
few cases. (The largest dimension of each lattice is
the time direction.) Since periodic boundary condi-
tions were imposed in the time direction, the
greatest value of ¢ that could be employed to extract
meson masses was half the lattice size, namely 4 (or
sometimes 5 or 6). This is because the periodic
boundary conditions force the meson propagators to
rise after ¢ passes the lattice midpoint. The mesons
can propagate just as easily in either direction in
time. Thus the propagators are fit to
A coshm(L /2—t) at the midpoint (¢=L /2) rather
than a pure exponential 4 exp(—mt). Of course,
such a fit assumes that all higher mass states have
already died out by =L /2, an assumption that
does not appear to be quite justified for the range of
parameters used in Refs. 1 and 2. When we attempt
to repeat their calculation at 1/g,*=1.0 (3=6.0)
and Wilson® K=0.145 on an effectively much
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longer lattice (see below), we find that the pseudos-
calar and vector-meson propagators are not saturat-
ed by the lowest-mass intermediate state before a
distance of 7 or 8 lattice spacings; we determine
masses about 20—30 % lower than those quoted in
Refs. 1 and 2. Similar discrepancies are also found
at higher K values (lower quark masses).” When
Hamber and Parisi try a two-mass fit to the meson
masses at the lattice midpoint, they find only a 5%
reduction. We believe this shows the inherent diffi-
culty of such fits, especially, in the case of periodic
boundary conditions, for mesons near the lattice
midpoint. The propagator there is a sum of approx-
imately flat hyperbolic cosines which cannot easily
be distinguished from each other.

For baryons, the situation is slightly better since
the lowest-mass states, created at zero total momen-
tum by the upper components of a combination of
quark operators, propagate only forward in time.
(Backward-moving states can be created with signi-
ficant amplitude by upper components only with
large relative momentum and hence with higher
mass.) Thus, one might expect the baryon propaga-
tors at the lattice midpoint to be a sum only of fal-
ling exponentials. A two-mass fit, which Hamber
and Parisi again perform at the midpoint, might be
expected to work better here than for mesons.
Indeed, although we again find that one must go out
to a distance of 7 or 8 lattice spacings (at
1/g¢>=1.0, K =0.145) for the lowest-mass state to
dominate, the mass we find is only about 10—15 %
lower than those determined in Refs. 1 and 2 from
fits at a distance of about 4 (or slightly greater).

From the above discussion, it is clear that one
wants to examine the hadron propagators at large
distances. To accomplish this without resorting to
lattice sizes much bigger than those used by Hamber
and Parisi (which would be impractical), we imposed
nonperiodic boundary conditions on the quarks in
the time direction.® (Periodic boundary conditions
were kept on the quarks in space and on the gauge
fields in all directions.) In general, the nonperiodic
choice was “free” boundary conditions. The quark
field at sites just beyond and just inside the edge of
the lattice in the time direction are defined to have
the same value. This effectively doubles the lattice
size in the time direction, since all hadron propaga-
tors now behave as a sum of falling exponentials
across the entire lattice. Of course, one must check
that the boundary conditions do not do violence to
the quantities calculated. We did this by holding
gauge field configurations fixed and then calculating
the hadron propagators (K =0.145, 1/g,*=1.0) for
a variety of boundary conditions on the quarks:
“free,” “fixed” (the quark field set equal to zero at
the sites beyond the edge of the lattice in the time

direction), periodic, and “free on a sublattice” (i.e., a
new boundary imposed well inside the original lat-
tice boundary). In all cases, large variations in the
masses (up to 20%) were found right on the boun-
daries, but already at one site in from the boundary
effects were typically only 2—3 % (the maximum
even seen was 6%), and in the interior the effects
were almost always much less than 1%. The boun-
dary effects on noninteracting quarks were also cal-
culated and were found to be very small everywhere
in the interior. Of course, as the midpoint of the
lattice is approached, there are always large differ-
ences between periodic boundary conditions and all
the other choices, but this is due to the nature of the
periodic boundary conditions, as explained above.
In our analysis, we always throw out the points on
the boundary. We keep the points one in from the
edge, but one should be aware that there is a slight
(2—3 %) systematic downward pull on those points
in the data presented here. One should also be
aware that as the hadron masses decrease (increasing
K toward K_.) the boundary conditions will have
larger effects. In the range of K in which we are
working (which is essentially the same as that used
in Refs. 1 and 2) this does not appear to be a prob-
lem. The region very close to K,, where the boun-
dary conditions might be expected to cause more
severe problems, is inaccessible to the present matrix
inversion techniques.

Our data at 1/g,>=1.0 was taken on lattices of
size 6°X 10 and 6°X 13, with two different starting
configurations on the 6°X 10 lattice. At least 700
Monte Carlo passes with 15 metropolis hits per site
were performed before taking data; approximately
half the data comes from lattices that had more
than 3000 passes (beyond 500 passes no systematic
trend was apparent). There were, in general, 100
passes between configurations on which propagators
were calculated, but we twice waited more than 1000
passes to ensure more complete statistical indepen-
dence among groups of runs. A straightforward
Gauss-Seidel”*~%!=2  iterative matrix-inversion
technique was used. We stopped iterating when the
quark propagators changed by less than 1% over the
previous 4 iterations (about 50—100 iterations total
at the values of K investigated); hadron masses were
changing by less than 0.01%.

Figures 1—4 show our results for four different
hadrons at 1/g,>=1.0, K =0.145. We graph the di-
mensionless quantity m (t) versus lattice distance ¢,
where m(t) is defined by

m(t)=In (2)

G(t)

G(t—l)]

with G () given by (1). In the limit of large ¢, m (¢)
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FIG. 1. The behavior of the effective lattice mass m (¢)
as a function of lattice time distance ¢ for the pseudos-
calar (“pion”) at 1/g,*=1.000 and K =0.145. @ label
values averaged over 62 gauge-field configurations. X
and A label values averaged over considerably fewer con-
figurations for which a lattice longer in the time direction
(13 versus 10 sites) was used. The horizontal dashed line
indicates the mass extracted by Hamber and Parisi at the
same parameters.
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FIG. 2. Same as in Fig. 1 but for the p.
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FIG. 3. Same as in Fig. 1 but for the proton.

approaches the lattice mass of the hadron of in-
terest. A total of 62 configurations on the two dif-
ferent lattice sizes (6> 10, 6> X 13) were averaged to
find the propagators for ¢ <8; for ¢ > 8, just the re-
sults from the 6°X 13 lattice were used. (Since there
were only 27 configurations for t =9 and 10, and 18
configurations for ¢ =11, these points should not be
taken quite as seriously as the points for ¢ <8.) To
give some sense of the statistical errors involved, we
also plot separately the results of the 6°X 13 config-
urations wherever this subaverage can be dis-
tinguished from the average over all the available
configurations. In general statistical errors tend to
increase with ¢ since the numerical fluctuations in
the propagators decrease more slowly than the prop-
agators themselves. A horizontal line on each graph
indicates that value of the mass for the hadron of in-
terest as quoted in Ref. 2.

For the pion and the p (Figs. 1 and 2), a rather
clear leveling off of m(t) occurs at t =7 or 8. As
mentioned above, the value of m (t) when it levels
off is about 20—30% below the mass given by
Hamber and Parisi. However, our data is consistent
with theirs in the following sense. In each case,
m (t) evaluated at the maximum value of ¢ available
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FIG. 4. Same as in Fig. 1 but for the A.

in Refs. 1 and 2 (¢~4 to 5), is roughly equal to the
number quoted there.

The situation is similar for the baryons (proton
and A, Figs. 3 and 4). However the errors tend to
be somewhat larger—not surprising since they in-
volve the cube, rather than the square, of quark
propagators. Here the masses, at their apparent
leveling-off point, are only about 10—15% below
the values in Ref. 2. Furthermore, those values cor-
respond to distances of 5 or 6 on our plots. This
seems to indicate that the two-mass fit employed in
Ref. 2 “stretches” somewhat the lattice size, ena-
- bling them effectively to calculate the mass at a
point beyond where the fit is performed.

We have also taken some data (with the 6> 10
lattice only) at other K values for this same value of
1/g4% (1.0). Figures 5 and 6 present the results for
the pion and the proton at K=0.149. The effects
are similar to those seen at K =0.145. Hamber and
Parisi do not present results at this particular K
value, but our pion again seems about 20—30 %
below the value we get by interpolating their data.
For the proton, there is no real evidence yet for the
leveling off of m (#); it is clear that data on a larger
lattice is needed.
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FIG. 5. Similar to Fig. 1 except that the K =0.149.
(@) label values averaged over 39 gauge-field configura-
tions. The lattice had 10 sites in the time direction.

Finally, some attempt was also made to investi-
gate the problem also at 1/g,>=0.90. We worked
there on a 5°X 10 lattice. The effects seen there
were qualitatively similar to those at 1/g,>=1.0,
with the masses appearing to level off at smaller dis-
tances in lattice units since the lattice spacing is
larger at stronger coupling. However, the fluctua-
tions were quite large,' especially for the baryons,
even after averaging over 40 configurations. This is
perhaps due to the fact that 1/g,2>=0.90 is in the
middle of the transition region from weak to strong
coupling. We therefore do not feel ready to present
graphs like Figs. 1—4 for this coupling. The statisti-
cal errors are under study—it may be possible to get
better data by throwing out a few wildly fluctuating
runs.

It may be surprising to some readers (it was to us)
that one has to go out such a large number of lattice
spacings (7—8 at 1/g,?=1.0, K=0.145) in order to
see the hadron masses level off. To get some feeling
for the numbers involved, we examined a very crude
model in which two quarks are nonrelativistically
bound into mesons by a linear potential.
Using!! @ ='=1250 MeV at 1/g,>=1.0 and the lev-
el value of ma~0.8 from Fig. 2 gives a p mass of
about 1000 MeV at K =0.145. If we imagine this p
to be made of two quarks of constituent mass ~500
MeV, we can calculate the excited-state masses with
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FIG. 6. Same as in Fig. S but for the proton.

our crude model and ask, for example, at what lat-
tice distance m(t) would be within 20% of its
asymptotic value. We get t~3—4, which is not
wildly different from what is seen in Fig. 2.

We wish to emphasize an important point here.
While Figs. 1—4 show fairly clearly that the lattices
used were large enough in the time direction to al-
low the hadron propagators to reach their asymptot-
ic behavior, we can draw no conclusions from them
about the adequacy of the spatial size of the lattice.
Such graphs enable one to read off the mass of the
lowest state in a periodic box of the given spatial
size; they have nothing to say about the stability of
the mass to changes in this size. Indeed the spatial
dimension here is rather small (~1fm) and there
may be large finite-size effects. To investigate these
effects one must change (preferably increase) the
spatial length; work on this is in progress.

Another point that bears reemphasis is that the
results presented here refer only to hadron masses at
specific values of K and not yet to physical hadron
masses. The physical masses come only from an ex-
trapolation from lower K values toward K =K_, the
value of K for which the pion is physical (approxi-
mately massless).!> Lacking data at enough dif-

ferent K values to perform this extrapolation, we
cannot yet quote results for physical hadron masses.
We do note, however, that the values of K presented
here (0.145,0.149) are in the middle to upper range
of the values used in Refs. 1 and 2, so the 20—30 %
effects found here are expected to produce some sig-
nificant changes in their results. Our own values for
hadron masses will be presented in a future publica-
tion.

Finally, one must keep in mind that all this work
is in the context of the “quenched” approxima-
tion.*=®12 Only after the masses are extracted in a
reliable way and the finite-size effects are under con-
trol, will one be able to test accurately this approxi-
mation.

In summary, we feel that the two most important
conclusions of our work up to this point are the fol-
lowing.

(1) For typical values of the parameters 1/g,* and
K (values which are used in Refs. 1 and 2 and which
are more or less demanded by practical considera-
tions such as manageable lattice sizes, reasonably
fast convergence of matrix-inversion techniques, and
a desire to be as much as possible in the weak-
coupling regime) large lattice distances are necessary
in order to see the asymptotic behavior of hadron
propagators.

(2) In order to extend as far as possible the max-
imum available lattice, it is useful to impose non-
periodic boundary conditions on the quarks. Even if
one throws out a few sites next to the boundary,
there is a considerable advantage over periodic boun-
dary conditions on any reasonably large-sized lattice.

Note added. While this work was being written
up we received a report by Don Weingarten, Indiana
University Report No. IUHET-82 (unpublished).
He also finds some evidence, albeit at stronger cou-
pling (1/g¢2>=0.67,0.93,0.95) and with consider-
ably fewer configurations (8) than were used here,
that the lattices used in Refs. 1 and 2 were not long
enough in time direction. He gives his own version
of the extrapolation to physical masses.
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