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A counterexample to the entropy bound proposed by Unruh and Wald and by Page is
described. The bound states that the entropy S of any system with energy E and volume V
cannot exceed the entropy of an equal volume and energy of unconfined thermal radiation.
The bound is found to be violated by thermal field systems whose various dimensions differ
by an order of magnitude or more, the violation occurring at intermediate energies. Unruh
and Wald used the bound in an argument establishing the validity of the generalized second
law when a box containing some entropy is lowered to near a black hole, then opened, and
withdrawn open. If the box is thin in one direction, the failure of the bound for its contents
makes it appear that a violation of the second law is possible. We show that, in fact, for a
thin box the buoyancy effects on which Unruh and Wald’s argument relies cancel out. As a
result, the second law is fulfilled despite the failure of the bound. It appears from the
second law that the bound must nevertheless hold when applied to box plus contents, but a
direct proof of this is still lacking. We also consider the alternative entropy bound
S <2mER /ic (2R is the largest dimension of the system) proposed earlier. For field systems
it is shown to fail at very low energies, but to be valid for complete systems (i.e., box plus
confined fields). Further, we show S <27ER /#c is a necessary condition for fulfillment of
the second law when a thin system is dropped into a black hole (even in the face of buoyan-
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cy) in the sense that if the bound failed, the law would be violated.

I. INTRODUCTION

The ordinary second law of thermodynamics re-
quires a system of given geometry and energy to
evolve to a maximum-entropy state. The law does
not restrict this maximal entropy. Recently, howev-
er, the possibility of setting a general upper bound
on the entropy in terms of the system’s energy and
dimensions alone has been raised in a number of
studies' ™ of the applicability of the generalized
second law®’ (GSL) in black-hole physics. One sug-
gestion' is that the entropy S of an arbitrary system
of proper energy E which may be circumscribed by
a sphere of radius R should satisfy (k =c =G =1)

S <2mER /% . (1

The need for (1) may be understood as follows.
Drop the system into a Schwarzschild hole
(M >>E). Provided R>#E~! (Compton length)
and R <2M (hole size), Hawking radiation pressure
is found not able to arrest the fall. Thus the black-
hole entropy 4mrM?/# grows by 8mME /#; this must
exceed S (GSL). If R is not tiny compared to 2M, a
bound like (1) is a must, though our simple argu-
ment cannot pin down the numerical coefficient.

A second suggestion, made by Unruh and Wald?
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(UW) and, in a closely related form, by Page,’ is that
the entropy S of an arbitrary system of volume V
and proper energy E should not exceed the entropy
S, of an equal volume and energy of wunconfined
thermal radiation in the same gravitational field.
Unruh and Wald argue that this principle is suffi-
cient for the GSL to be satisfied in processes where a
box containing a given system is lowered towards a
black hole, and then dropped or emptied into it.
According to UW, the buoyancy of the box in the
“acceleration radiation”® felt by it supplies a
mechanism whereby the black-hole argument lead-
ing to bound (1) may be sidestepped. Their con-
clusion is that bound (1) is not necessary for the
GSL to hold.

The fact remains that bound (1) is supported by
direct statistical arguments! (aside from a point re-
lating to the choice of zero for the energy which will
be discussed forthwith). The status of the principle
of UW and Page is less clear. It seems reasonable
(though not proved) that thermal radiation should
maximize the entropy of a given energy confined
within given boundaries. The principle, however,
compares a confined system with unconfined radia-
tion, and is thus not a corollary. The comparison
with unconfined radiation is crucial in UW’s specif-
ic application of the principle’: they assume the en-
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tropy of a system to be bounded by the entropy of
the ambient radiation it displaces near the hole.
Their assumption that the ambient radiation’s ther-
modynamic variables (temperature, pressure, ...)
depend only on energy density is reasonable only if
this radiation is regarded as unaffected by nearby
surfaces, i.e., unconfined.

If generally true, the principle should be valid in
flat spacetime. Now, in three-dimensional flat
spacetime the energy E, and entropy S, of a volume
V of unconfined thermal radiation at temperature
B! are given by the Boltzmann formulas

E,=Nm*B~*V#3/15, @)

S,=4BE, /3, 3)
so that

S,(E,,V)=1.201(NE,*V#3)/* 4)

In the above N is the effective number of (massless)
field species (scalar fields enter with weight %, fer-
mions with weight %). For flat spacetime the prin-
ciple thus requires that the entropy S and energy E
of any system of volume V comply with the follow-
ing Page-Unruh-Wald (PUW) bound:

S<S,(E,V). (5

Is (5) generally valid? By calculating explicitly S
and E of noninteracting thermal fields confined in
boxes of various shapes, we shall show (Sec. II) that
the PUW bound, when applied to the fields only,
can be violated whenever the various dimensions of
the system differ by an order of magnitude or more
(thin systems). The violations occur at intermediate
energies in the energy scale set by the large dimen-
sion of the system. The above calculations also dis-
close violations of bound (1) at extremely low ener-
gies in the same scale. This possibility was evident
earlier and suggestions on how to cope with it have
been made* and criticized.>>> How is one to
reconcile the above violations with the belief, now
widespread, that the GSL is generally valid? Taken
at face value, UW’s arguments' imply a violation of
the GSL is possible whenever a system violates the
PUW entropy principle. Since the principle can fail,
what other factor intervenes to enforce the GSL?

In what follows we present an analysis which
reconciles the general validity of the GSL with the
mentioned exceptions to bounds (1) and (5). The
treatment is confined to thin systems, the only ones
for which UW’s original treatment is fully applic-
able.* We find it useful to distinguish between a
thermal field system, and that system together with
the inert box that confines it. The status of bounds
(1) and (5) is different for the two cases. We show in

Sec. II that the mentioned violation of (1) for
thermal fields at very low energies is removed if one
applies the bound to the complete system (field plus
box). The argument does not depend on details
about the box, but only on the assumption that the
system cannot be smaller than its own Compton
length. The mentioned violations of the PUW
bound at intermediate energies may possibly be
avoided by applying it only to complete systems.
However, no direct argument for this is known.

Turning in Sec. III to the problem of a system
which is lowered and then dropped bodily into a
hole, we show that bound (1), as applied to the com-
plete system, is a necessary condition for the GSL to
be satisfied, despite the role played by buoyancy.
Thus, both statistics and the GSL argue for the va-
lidity of bound (1). The original UW argument
shows that the PUW, as applied to the complete sys-
tem, also cannot be violated without the GSL being
violated. 'Thus the PUW bound should always be
valid for a complete system. However, as men-
tioned, a direct (i.e., statistical) proof of this is still
lacking.

In Sec. IV we consider a thin box containing
thermal fields which is lowered towards a black
hole, then opened and withdrawn open. This stra-
tegy, proposed by UW, relieves one of the need to
consider the mass of the box itself in the energy bal-
ance for the process. We find that buoyancy has no
net effect on the problem. As a consequence, UW’s
result for the overall entropy change must be modi-
fied. The GSL is found to be satisfied despite viola-
tion of the PUW bound. Thus neither buoyancy nor
this bound are generally necessary for the GSL to
work. We also indicate why no contradiction exists
between the argument demonstrating that bound (1)
is a necessary condition for validity of the GSL, and
the violation of the bound for fields at extremely
low energies.

In Sec. V we show that bound (1) may be applied
to complete systems with a very large number of
fields. Violations, if any, can occur only for some
10® fields or more. It is quite possible that the
bound actually applies to an arbitrary large number
of fields. Our conclusions are summarized in Sec.
VL

II. EXCEPTIONS TO THE ENTROPY BOUNDS

Consider some noninteracting massless fields in
flat spacetime confined to a rectangular box of di-
mensions a Xb Xc. The eigenenergies of the fields
are

€hum =7Hik?/a? 402 /b2 4 m? /22, (6)

where k, n, and m are non-negative integers, not all
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of which may vanish.” In a thermal state with in-
verse temperature B, the fields have mean energy
and entropy

E= g™ Tt )
S=BE+S +gIn(1Fe %), (8)

where i runs over species as well as (k,n,m), upper
(lower) signs apply to bosons (fermions), and g;
denote degeneracy factors. The Boltzmann formu-
las (2) and (3) are obtained from (7) and (8) by ap-
proximating sums by three-dimensional integrals in
the well-known fashion. This passage is meaningful
if B#iw/a, Bfimr /b, and Bfim /c are all small compared
to unity.

We shall have occasion to consider boxes for
which a and ¢ are of the same order while b <<a.
For these a range of S8 exists for which

B#imr/a and Bhir/c <<1, 9)
Bfim/b>>1 . (10)

Evidently when (9) and (10) are valid, modes with
n=£0 are strongly suppressed in sums (7) and (8) by
the smallness of exp(—p¢;). Then one can approxi-
mate (7) and (8) by two-dimensional integrals, taking
n =0 everywhere. Thus, in effect, the fields become
two-dimensional. One then obtains (Appendix A)

E=N¢r(3)8 3act~%/m (11)
S=3BE/2, (12)
S=1.089(NE%ac#=2)'/?, (13)

where {r(Z) denotes the Riemann zeta function,
§r(3)=1.202, and N is a new effective number of
species (scalars do not contribute, electromagnetic
and neutrino contributions are 1 and %, respective-
ly). It is instructive to contrast (11)—13) with
(2)—4).

Do (11)—(13) conform with the PUW bound (5)?
Constraint (10) with B as given by (11) tells us that

b << [m*NEg(3)achE 1)1/ . (14)

But since V =abc, the PUW bound (5) with (14) tak-
en into acccount would predict

S << 1.476(N/*N3/4E%act~2)173 | (15)

Now N and N are not very different. For example,
for an admixture of one scalar, electromagnetic, and
four neutrino fields (N /N )!/*=1.06; it is thus clear
that the true S given by (13) exceeds the PUW
bound provided only that (10) is not merely a mar-
ginal inequality. Hence the PUW bound, as applied
to the box contents, can be violated for a thin box,

even by large factors.

To ascertain how small b/a must be for a viola-
tion to occur, we have explicitly carried out sums (7)
and (8) for a thermal electromagnetic field enclosed
in a box of internal dimensions a X b Xa with vari-
ous b/a ratios. The sums were performed with a
programmable calculator, and included several hun-
dred to several thousand modes in order to achieve
good convergence. Allowance was made for the fact
that all eigenenergies are doubly degenerate, except
for those with one of k, n, or m vanishing; these are
nondegenerate. Modes with two or three of k, n, or
m vanishing are forbidden by the usual boundary
condition (tangential E vanishes). Table I displays
the results for b/a=0.1 and various temperatures.
Columns 1 and 2 give the temperature B~ and cal-
culated energy E in units of #/a. Column 3 gives
the calculated dimensionless entropy. For compar-
ison column 4 gives the PUW bound on S computed
from (5) with N =1 using the E for each entry. It is
seen that the PUW bound is violated for an inter-
mediate range of energy 1<Ea/#<130. As b/a
decreases for given B8~!, E and S hardly change be-
cause the field is already effectively two-dimensional
and “unaware” of the dimension b. By contrast, the
PUW bound (5) decreases as b'/* so that the viola-
tion becomes larger than in the case displayed in
Table I, and extends to a wider range of energy.
Thus one passes to the cases described by (9) and
(10). We conclude that the PUW bound is violated
by pure field systems for intermediate energies
whenever various dimensions of the system differ by
more than an order of magnitude.

How does bound (1) fare in the comparison?
Column 5 of Table I gives S(ER /#)~" where S and
E are the computed values, and R E‘;—( 2a%4+p2)12
is the circumscribing radius. According to bound
(1), entries in this column should not exceed 2.
The tabulated results bear this out for the wide
range 10~° < Ea /% <250. The bound also works for
larger E; this is easy to see. For B~ much larger
than in Table I, conditions (9) as well as B#ir/b << 1
will be satisfied (for b/a=0.1). Then (4) may be
used to show that

S(Ea /#)~1~0.68(#/Ea)"/* «< 1 (16)

so that bound (1) is easily satisfied. However, for
extremely low energies (Ea /%< 10~°) bound (1) is
violated. This was expected, for S/E has no upper
bound if the ground-state energy of the system in
question is taken as zero.!

In Ref. 1 we proposed to extend the validity of
bound (1) to all energies by including in the energy
the vacuum state’s contribution on the assumption
that it would always be positive. Because negative
vacuum energies appear in some calculations, this
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TABLE 1. Energy and entropy as functions of temperature for a thermal electromagnetic

field in a box with dimensions @ X a X 0. 1a.

2265

B~ la/# Ea/#% S Spuw(E, V) S(ER /#)~!
0.20 1.00x 10~° 5.23%10~° 1.20x 107 7.37
0.25 8.50% 108 3.59x 107 3.36 106 5.96
0.50 6.26x10~* 1.39x 1073 2.67x1073 3.14
1 6.80x 1072 8.18 1072 8.99x 102 1.70
2 1.426 0.9298 0.8810 0.92
3 6.359 2.865 2.704 0.64
4 17.69 6.068 5.825 0.48
5 39.96 10.98 10.73 0.39
6 80.04 18.23 18.07 0.32
7 146.6 28.42 28.45 0.27
8 249.9 42.16 42.44 0.24

suggestion has been attacked.>!! The basic idea is,
however, still viable. One realizes that the vacuum
energy is as much a property of the field as of the
box which confines it (the box’s geometry deter-
mines the vacuum energy). If in endeavoring to de-
lineate a complete system, we include the vacuum
energy, we must also include the minimum mass the
box must have in order to be able to confine the
field. It is plausible that the complete system (field
+ box) always has positive energy.® It is equally
plausible that this energy is sufficient for the
system’s dimensions to be larger than the corre-
sponding Compton length (otherwise the box could
not be localized). Thus, for the complete system the
energy is E +E, where E, as always, is the thermal
energy computed from (7), while E; is a minimal
“ground” energy never smaller than about #/R. It
is seen from Table I that, for the complete system,
bound (1) is easily satisfied for @/l B. This is actual-
ly true in general. There exists a detailed argument!
showing that if the lowest energy of a field system
of arbitrary shape is not very small compared to
#/R, that system obeys bound (1) for all energies.
Thus although bound (1), as applied to the fields
only, breaks down for extremely low energies, it is
generally valid when applied to a complete system.
The violation inherent in the PUW bound is not
so easy to correct because it is not confined to very
low energies. If we try to apply this bound to a
complete system, we find that requiring E, to be no
smaller than #/R, or even than #/b, does not suffice
to make the bound work. For as we raise the
thermal energy, but insist that the system be thin,
i.e., that condition (10) remain valid, we must make
b smaller, but the decrease need not be steeper than
that of E~!/3 [see (10) and (11)]. Thus an E, of or-
der #i/b can soon become a negligible part of the to-
tal system energy, and cannot much raise the value
of the bound. The bound is still violated. By com-

paring (15) with E—E,+E with (13) we see that
violations of the PUW bound will be avoided if E,
must always be at least of order E. It is not un-
reasonable that this should be required: the box
might have to be that massive to avoid bursting
under the pressure of the (relativistic) fields it con-
fines. However, we have not found an airtight way
of seeing this.

III. DROPPING THE BOX INTO A BLACK HOLE

Bound (1) was suggested by a Gedankenexperi-
ment! in which an entropy-bearing system is
dropped into a black hole in such a way as to mini-
mize the energy added to the hole. The bound was
found to be a necessary condition for the validity of
the GSL (if it is violated, the law is violated). Un-
ruh and Wald called attention® to the importance of
buoyancy due to acceleration radiation in a version
of the Gedankenexperiment in which a rectangular
box bearing entropy S is lowered on a string from
infinity to near a Schwarzschild hole of mass M,
and then dropped in. According to UW the buoyan-
cy of the box so affects the energy balance that the
need to invoke bound (1) in order to enforce the
GSL no longer arises.

Their reasoning is as follows. Buoyancy effective-
ly lightens the box so the energy that can be gotten
by lowering it in the hole’s field is reduced from the
naive result."® Eventually the box “floats” in the
acceleration radiation and no more energy can be ex-
tractg,d. The minimal unextracted energy is found
to be

eminszhSr(Er =E, +E, V), (17)

where T\, =7/87M is the black-hole temperature,
and S, is the entropy of the radiation displaced by
the box at the floating point. This occurs when?*
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Eo+E=E, , (18)

where E,+E is the total proper energy of the box,
and E, the proper energy of the displaced radiation.
Now, if the box is dropped from the floating point,
it will increase the black-hole entropy by

ASvh=€nin/Ton=S,(Ex+E,V) . (19)

Thus UW’s entropy principle [S <S, when (18) is
valid] is found to be sufficient for the GSL to be
respected (ASy, —S >0). If the drop is made from
another point, ASy; can only exceed (19) and we
again have AS;, —S > 0.

There seems to be no need here to invoke bound
(1). However, as we show below, bound (1) is still a
necessary condition for the GSL to hold in the logi-
cal sense: if bound (1) failed, consideration of buoy-
ancy could not “save” the GSL. Thus, although we
need not invoke bound (1) explicitly, its truth is im-
plied by the GSL. This is consistent with our con-
clusion (Sec. II) that bound (1) holds for each com-
Dplete system (box + fields). Note, however, that be-
cause bound (1) is a necessary condition for the
GSL, it cannot be used to provide a proof of the
GSL. Providing such a proof was one of UW’s ob-
jectives. However, since we have given counterex-
amples to the PUW bound for fields in flat space-
time, doubt has been cast on the crux of their argu-
ment. [Is

S<S(Eq+E,V)

at the floating point even for a thin box?]

We now examine all these points. We focus on a
box with arbitrary contents of dimensions a X b X¢
with a ~c but b <<a, because it is for such geometry
that the PUW bound is in doubt. An additional
reason is that UW’s analysis culminating in
formula (17) is valid only if at every stage of the
descent of the box, the gravitational potential
X[X=(1 —2M /r)"/? for Schwarzschild geometry] is
essentially constant throughout the volume it dis-
places.>* If I denotes radial proper distance, this
implies that

b(dx /dl) <X (20)

holds.»* (We shall consider the box to be lowered
with its short side in the radial direction.) It turns
out that (18) can be satisfied only if b <<a.* Fur-
ther, since the box is to fall into the hole we demand
R <M.

The radiation displaced by the box is all at essen-
tially uniform local temperature which we may
write as Ty X~ This allows us to rewrite
UW’s result (19) in an alternative manner. Using
relation (3) for unconfined radiation we have
S,=4E,XTy,~'/3 at the floating point. In view of

(18) and (19) we get
ASph=4Xo(Eq+E) T~ '/3 , @1

where X, denotes the gravitational potential at the
floating point. To determine X, we write down the
floating condition (18) explicitly with help of (2):

Eo+E=NmTy* X~ *V#3/15 . (22)

Solving for XTy, ~' and substituting in (21) we get
ASy, =1.201(Eo+E)[Nabc# Ey+E)~'1"*#~1 .
(23)

Evidently, the box must be larger than its Compton
length, i.e., i(Ey+E) < R. Because

2R =(a*+b2+cH)1?
one finds that
abe <(5)7°R?.
Hence
ASy, < 1.338NV4Eo+E)R#A ! . (24)

The GSL (ASy, —S >0) is now seen to place an
upper bound on S which, for realistic N, is below
bound (1) as applied to the complete system.!?
Hence bound (1) for a complete system is a necessary
condition for validity of the GSL: despite the role
played by buoyancy, violation of bound (1) would
imply a violation of the GSL. This conclusion is at
variance with that of UW.?

We now check whether we have respected condi-
tion (20) in our discussion. Solving (22) for X, gives

Xo=0.0358[ Nabc#(E,+E)~"1"*M~1 . (25)

Again because the box must be larger than its
Compton length, but smaller than the hole (R < M),
we see that for realistic N, X( << 1, i.e., the box floats
very near the horizon. In that region X ~I/4M
where / is the radial proper distance measured out
from the horizon. Thus the box floats at

[=1,=0.143[Nabc#H(E,+E)~1]'/* . (26)

We note that /y <<R for realistic N. For a given
box, condition (20) is harder to satisfy the smaller /
is. Let us thus check it at /;. With X =~//4M we
find that (20) is equivalent to b «<l,. If we now
make use of (26) we find the requirement

b <<0.075[ Nac#H Ey+E)~']'/3 . 27)

For realistic N this requires b to be small compared
to a or c. We have kept to this assumption
throughout.

Another point to check is our implicit assumption
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that no entropy is produced outside the hole. Be-
cause the box is dropped very near to the horizon, it
disappears into the hole quickly, and there should be
no time for any entropy production processes (i.e.,
turbulence in the acceleration radiation) to act. In
their first version of the problem, UW considered
dropping the string with the box. This is, of course,
unnecessary. After the box falls, the string may be
withdrawn and any energy drawn from lowering it
must be repaid. Hence, the string does not enter
into the energy bookkeeping. But will it not pro-
duce entropy as it relaxes upon being relieved of the
box? Not necessarily. If the box is dropped from its
floating point where it does not tug on one string,
the latter undergoes no sudden change in tension, so
no entropy need be produced. It seems, then, that
the entropy balance involving only S and ASy, is
complete.

We now see that UW’s result (19), which implicit-
ly assumes (20), is directly relevant only for a thin
box. Yet we know that PUW’s entropy principle, as
applied to the fields alone, may fail for a thin box.
What happens to the principle when applied to box
plus contents? Reconsideration of UW’s argument
as summarized in Egs. (17)—(19) shows that if the
principle were violated for the box plus contents, the
GSL would be violated. Hence, to the extent that
one today has confidence in the GSL, one can vouch
for the applicability of the principle to complete sys-
tems. This assertion can be extended to the PUW
bound in flat spacetime since we always considered
the situation in which X is nearly constant
throughout the box. We note, however, that since
no independent proof has been produced for the
PUW bound, one cannot very well use it to con-
struct a proof of the GSL as UW attempted to do.

IV. OPENING THE BOX NEAR
THE BLACK HOLE

The need to consider the mass of the box itself is
a drawback. It prevents us from confronting the
GSL with the entropy bounds applied to a pure field
system. To get around this obstacle we fall back on
a strategy proposed by UW.2 It calls for lowering
the box from infinity only to the floating point of
the box’s contents alone (E =E,), and then opening
a port in the box’s underside to allow free passage to
its contents. The process is completed by hauling
the open box back to infinity. According to UW, if
the box’s walls have negligible volume, the open box
is not buoyed up, while the buoyant force acting on
it when closed can be ascribed to its contents alone.
Thus the energy extracted at infinity from lowering
the box itself must be repaid upon hauling it back;
the box plays no net role in the energy balance. By

this reasoning, UW conclude that the minimum in-
crease in Sy, is

ASy, =S, (E,V) (28)

which is just Eq. (19) with the box’s mass excluded
(recall, vacuum energy is associated with the box).

The paradox is clear. If, as we have good reason
to believe (Sec. II), it is possible to have S > S,(E, V)
for a thin box’s contents, then (28) implies that one
can violate the GSL by carrying out UW’s prescrip-
tion with a thin box. Is this conclusion correct? We
shall now show it is not; due to a subtlety in the
buoyancy of a thin box, Eq. (28) is incorrect when-
ever the PUW bound breaks down. A detailed argu-
ment shows the GSL is respected.

The first point to check is whether the violations
of the PUW bound in flat spacetime (Sec. II) extend
to the present context. Again, our model is a thin
box enclosing noninteracting thermal massless
fields. Assuming X is nearly constant inside the box
[condition (20)], we realize that the interior tempera-
ture as measured by local observers, 8!, must be re-
lated to the proper thermal energy E in the box just
as in flat spacetime. Specifically, if B! satisfies
conditions (9) and (10), we expect results (11)—(13)
to hold for our box near a black hole. For the am-
bient radiation at local temperature Ty, X ~', the en-
ergy and entropy densities should be given by the
Boltzmann formulas (for a short discussion see Ref.
4). Thus (4) gives the entropy of the displaced radia-
tion. Then the reasoning following Eq. (14) tells us
that it is possible to have S > S,(E, V), i.e., the PUW
bound can be violated in our black-hole context as
well.

The second point to check is whether, as UW con-
clude, the open box experiences no buoyancy. This
is certainly correct for a box which is not thin in the
sense of (10). For it the interior pressure is distri-
buted just as the exterior one, and thus the outside
pressure on each wall is compensated for: the box is
not buoyed up. For a thin box whose interior is in
contact with the ambient radiation through a small
opening this is not true.!> Provided that condition
(10) is observed, the proper energy in the box does
not depend on b for fixed entropy [see (13)]. By the
principle of virtual work, this implies that the fields
do not exert pressure in the b direction: the fields
have become two dimensional and “do not care”
about the thin dimension. Thus the external pres-
sure difference between upper and lower walls can-
not be balanced by interior pressure. (There is, of
course, interior vacuum pressure, but this is unaf-
fected by whether the box is open or not; hence its
contribution to the energy balance cancels between
the trip down and the return trip.) We conclude
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that for a thin box satisfying (10), full buoyancy is
felt by the open box as it is hauled back up. Thus,
the simple formula (28) cannot hold.

To derive the appropriate result we first check
that the fields in the box continue to satisfy condi-
tion (10) after the box is opened. Initially, by as-
sumption, Bfir/b >>1. Once the box is opened the
fields reach the ambient temperature T\, X~ where
X corresponds to the point where E =E, before the
box is opened. Writing this condition out using (2)
and (11) (we assume the same species inside and out)
we get

NEr(3)B 2act 2 /mr=Nm*T X~ *abet3/15 ,
(29)
or, equivalently,
xlhv/bTbF1.'813(N/ﬁ)‘/4<3h7r/b)3/“>>1 .

(30)

Thus the analog of (10) is satisfied after the box is
opened which means (11)—(13) may be used with the
replacement B~ — Ty X ~!.

Let us now denote by (E,S,B) and (E;,S;,B,) the
values of (E,S,B) for the box when still closed, and
immediately after being opened, respectively.!* Evi-
dently, the overall change AS in exterior entropy is
just S (B=Ty,~')—S; the first quantity is just the
entropy still remaining in the box when it arrives at
infinity. By using (12) we may write

~~ Ty ™!
AS=3B.E,/2—3BE /2+ fﬁ=ﬂ] ds(p). (31

Since the effects of buoyancy cancel out for the
round trip, one may identify the overall change in
black-hole mass, AM, with the negative of the sum
of changes in E, each weighted by the appropriate X
(recall E is proper energy):

Ton™

1
pp, XYAEB) . (32

AMZ—(EI—E)XI—
Of course ASy, =AM /Tyy,.
Recalling that for the open box S=XTy, !, and
that at X =X, we may use (11), we obtain
3

AS+ASy=EB(Z?/24+4Z71—3)

Ton ™!
+ [5p, 14S(B)-BAE(B)]  (33)

with Z=PB/B.

Now, on thermodynamic grounds dS/dE =p3
so the integral vanishes. Further, for real Z the
form Z?/2+Z ‘1—% is non-negative. Hence
ASy,+AS >0, and the GSL is satisfied despite the
failure of the PUW bound for the thin box. In the
present example the bound and buoyancy are ir-

relevant.

How do we reconcile the failure of bound (1) for a
pure field system at low energies with the argument!
showing bound (1) to be a necessary condition for
the GSL? First we note that the argument assumes
the system in question can be dropped into the hole
from a point adjacent to the horizon. However, this
cannot be done here.

Let us assume that the box originally has E so low
that it violates bound (1)—Table I presents a case in
point. Because of buoyancy one can lower the box
with the fields only down to the floating point where
X=X, (see Sec. III). In an attempt to dump the
fields only into the hole one then opens the port.
The box’s interior then acquires a local temperature
T Xo~!. From (25) we now find

aTyXo~ % '=1.11a**[Nbc#H Eq+E)~1]~1/*,
(34)

where E refers to the thermal energy before the box
was opened. Because c~a, #(E, +E) '<b, and
b <<a we see that for N not too large,

aTth()_lﬁ_l > 1 .

Table I makes it clear that bound (1) will be satisfied
in such a case and that E and .S are now large com-
pared to the values for the closed box (say, the first
entry in Table I). Hence entropy has flown from
hole to box, rather than in the opposite direction as
required by the argument. Therefore, it cannot be
applied, and no contradiction arises.

V. THE PROBLEM OF MANY SPECIES

Bound (1) has been criticized®* because it fails if a
large number of particle species are present. The
number required to evade it has, however, been seri-
ously underestimated.> An obvious temptation is to
compare bound (1) with the Boltzmann formula (4)
for entropy of thermal radiation. If one does this,
one finds bound (1) to be violated when

N >T49ER*#~1y—1, (35)

However, for such N Boltzmann’s formula (2) indi-
cates that

B#r/R > 14.80 . (36)

Yet the condition for applicability of the Boltzmann
formulas is rather B#im/R <<1. Hence the result
(35) involves an inconsistency. One must go back to
first principles, i.e., to (7) and (8).

An example of a precise calculation is Table L
For one species we found that bound (1) fails for en-
ergies below 10~%%a~! or equivalently, below
7x1071%R ~1. Now, for N species a given S/E is
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reached for a fotal thermal energy a factor N larger
than for one species. Hence, only if N> 1.4Xx10°
will bound (1) be violated for energies >#R ~!. If
we insist on applying the bound only to complete
systems (box plus fields) we know that the energy
scale begins at some E,>#R ~!. Hence bound (1)
cannot be violated with fewer than a billion species.
This is well above UW’s estimate of N =10 for a
violation.?

To see that the above large N is not atypical, we
turn to a system of N fields of various types con-
fined to a box of arbitrary shape. Let us divide up
the box’s energy (including vacuum energies) E|
equally among the N fields. At this point we adapt
a result of Ref. 1. For g an arbitrary real number
larger than 4, we have, rigorously,

S/(E+Eq) <max[NT(q)¢r(q)ex(qg —1)Ey 114,
37)

where I" and {z are the gamma and Riemann zeta
functions, k labels the field species, {; denotes the
kth field’s zeta function

Sk(p)= i 8ki€ia’ (38)

i=1

(notation of Sec. II), and the maximum is taken over
the field species. Let us focus on ¢ >10. Then,
since {z(10)=1.001, and {r is monotonically de-
creasing in its argument, we approximate {z by uni-
ty. Likewise, we approximate £, (p) by gx1€xf. For
example, for the electromagnetic field in a cube this
entails an error on 1.8% for g =15. Finally we ex-
press Ej and €; in terms of the natural energy scale:
Eo=a#iR "' and €;=y#R ~'. Then (37) reduces to

S/(Ey+E)<[NT(g)yg,/a]"Ry='%~!, (39)

where 7, @, and g, already refer to the kK which max-
imizes the expression in (37).

We now look at the example of N scalar fields. A
general theorem! tells us that ¥ >. Unless there is
an accidental degeneracy g;=1. Because the box
must be as large as its Compton length > 1. Tak-
ing g =15 we get

S/(Eq+E)<1.84NVVR#™! (40)

which shows that bound (1) is satisfied even for
N =108 Thus the bound holds for any N relevant
in nature, and probably also for N large enough to
be relevant in the subject of 1/N expansions.

The point can also be made that bound (1) on
S/(E +E,) probably holds for arbitrarily large N.
Consider N fields of the same type (i.e., all vector
fields) confined to a box with effective radius R. If
the vacuum energy of one field is negative, we ex-
pect the mass of the box itself to compensate for it

in such a way that the total E, is non-negative.*
Barring the case where E, exactly vanishes for one
field, we thus expect Eyx N for N fields. On di-
mensional grounds we expect Ey/N to be of order
#/R. In fact, all available calculations show the
proportionality coefficient not to be very small.!%!!
This means that in (39) N/a is independent of N,
and not too large. Since y is never smaller than 2,
one immediately sees (by taking, say, g =15) that
S/(Ey+E) complies with bound (1). The argument
is evidently simpler if each field has positive vacu-
um energy. One can also extend it to situations
where one does not know, a priori, which fields are
present.*

VI. SUMMARY AND CONCLUSIONS

All our results are consistent with the belief that
the GSL is generally valid. But one is some distance
from UW’s goal of showing the GSL to be a
straightforward consequence of buoyancy, even for
the comparatively simple case of a thin box lowered
towards a black hole. One finds the PUW entropy
bound, the pivotal part of their argument, to break
down if applied only to thermal massless fields—
which are possible contents of the box. Interesting-
ly, this violation has no deleterious effect on the
GSL when the box is opened near the hole: the law
avoids violation because of the way the entropy and
energy changes of the thin box are related. Buoyan-
cy does not here play a central role.

Since the PUW bound can fail for the box’s con-
tents alone, and since no direct argument has been
given for its validity when applied to box plus con-
tents, one has at present little confidence in the argu-
ment? which uses the bound to show the GSL is sa-
tisfied when the box drops bodily into the hole. One
is in the uncomfortable position of having to assume
the GSL always holds in order to establish the
bound for a complete system.

The status of bound (1) is different. It is violated
only at very low energies when applied to thermal
fields. However, a statistical argument shows it is
valid for all energies when applied to a complete sys-
tem. For a thin box one can check that if it did not
comply with the bound, the GSL would be violated
when the box was dropped into a black hole, even if
the effects of buoyancy were allowed for.

Evidently, entropy bounds are not the exclusive
reasons for the GSL’s validity. Thus any program
seeking to demonstrate the law’s validity by starting
from a single phenomenon, such as buoyancy, and
relying on an entropy bound, can only have partial
success. The GSL, like any fundamental physical
law, is not really susceptible to general proof. At
present it seems more fruitful to assume the GSL’s
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validity in a particular situation to derive an entropy
bound for material systems. The original “deriva-
tion” of bound (1) for a complete system! is an ex-
ample of this procedure; we have seen that con-
sideration of buoyancy does not alter the original
conclusion, at least for a thin box. Another example
is the derivation of the PUW bound for a complete
thin system (Sec. III).

It would be of great interest to see how thick
boxes fit into the scheme. It seems likely on statisti-
cal grounds that fields in such boxes do obey the
PUW bound. However, UW’s result (19) for the
minimal change in black-hole entropy when the box
is dropped is not applicable for thick boxes.* One is
forced to modify it, and the modified formula®? re-
quires knowledge of the energy distribution inside
the box. Thus the problem is more complicated
than those considered here.
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APPENDIX

Consider a thermal massless field confined to a
box of dimensions a Xb Xc¢ with b <<a and b <<c.
We assume conditions (9) and (10) apply. Then
eigenvalues, given by (6), for which ns£0 are strong-

ly suppressed in the thermal sums (7) and (8). Fur-
ther, the values of Be for adjacent eigenvalues are
close together so that (7) may be approximated by

E=g [7 [ " elePs1)~'dkdm, n=0, (A1)

where k and m are now regarded as continuous vari-
ables and g is assumed constant for all modes. Set-
ting x=k/a and y =m /b and going over to polar
coordinates with radial coordinate

rEBﬂﬁ(x2+y2)‘/2 ,
we have
E=(gacB=*f%/2m) [ " rHe’F1)"ldr . (A2)

The integral is 25z(3) for the boson case, and
3£x(3)/2 for the fermion one."

For an electromagnetic mode with one of the
quantum numbers k, n, and m vanishing, g=1.
Modes with g=2 (knm=£0) are thermally
suppressed, and modes with two vanishing quantum
numbers are forbidden. Hence the electromagnetic
field contributes unity towards N in (11). A scalar
field mode obeying Dirichlet boundary conditions'®
must have knm 0. Hence scalar fields are thermal-
ly suppressed and they contribute little towards N.
A left-handed neutrino field has g =1. Because its
thermal integral (A2) is % of the boson one, it con-
tributes % towards N.

The sum for S can be reduced to an integral in
like manner. An integration by parts leads to the re-
lation S =3BE /2.
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