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This paper is an investigation of field theories that satisfy the following two criteria. (1)
Among the propagating modes is a pair of massless particles with helicities +2. (2) The
canonical commutation relations are conformally invariant. This study of “linear confor-
mal gravity” is motivated by the belief that conformal invariance may be the key to a future
theory of quantum gravity. Our first conclusion is that the fields of linear conformal gravi-
ty include a tensor field of rank 3 and mixed symmetry, and a symmetric tensor field of
rank 2, tentatively interpreted as a torsion field and a metric field. The free quantum field
operator is constructed explicitly, and the propagator is calculated. The Fourier transform
is of dimension p %, which is encouraging for renormalizability. The field inevitably carries
along a nonunitary ghost, similar to the one that turns up in linearized Weyl gravity. Our
main result is that the ghost can be exorcised by imposing constraints on the external
sources and boundary conditions on the physical states.

I. INTRODUCTION

Many people believe that conformal invariance
may be the key that will some day solve the problem
of quantum gravity. Since the early work of Weyl,'
conformal field theories have been investigated on
the level of classical fields governed by nonlinear
differential equations. In order to carry out quanti-
zation, and to study renormalizability and related
questions,> one needs a meaningful expansion and
a linear approximation. The free quantum field, and
the propagator, can then be constructed in terms of
a space of solutions of the linear, free-field equa-
tions. A certain subset of these free modes becomes
the space of one-particle, propagating states. The
remaining free modes (including ghosts) have to be
prevented from interacting or from propagating, in
order to save the unitarity of the theory. The
dynamical content of the theory is thus to a large
extent fixed at the linear level; for this reason we be-
lieve that the linear approximation ought to reflect
the conformal invariance of the original, nonlinear,
classical field theory. Otherwise, one can hardly ex-
pect to recover conformal invariance in the full,
nonlinear, quantum field theory.

Experience with gravitation’ and with other con-
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formal field theories has shown that quantization
via the linear approximation often leads to a renor-
malizable quantum field theory, but the construction
does not guarantee or even suggest that it is unitary.

In this paper we look into the unitarity of confor-
mally invariant, linear theories of gravitation. We
require conformal invariance, not only of the field
equations, but also of the free-field commutation re-
lations. This implies that the conformal group &
acts on the space V of free-field modes and on the
space of physical, one-particle states. The question
of the unitarity of the theory is intimately related to
the properties of this representation D (V) of €.
However, in gauge theories this relationship is a sub-
tle one, and one of our main tasks is to determine V'
and D (V). It turns out that V inevitably contains,
besides the physical modes and analogs of the scalar
and longitudinal modes of electrodynamics, a set of
ghost modes. Scalar and longitudinal modes may be
prevented from propagating in the usual way, with
the help of conservation laws for the current. Elim-
ination of the ghost is a more difficult problem; it is
solved here for the first time, as far as we know.

Our approach is thus the reverse of the usual one;
it is designed to make sure of the unitarity of the
theory from the outset. We first determine the
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free-field modes and find the equations that they
satisfy. Then we formulate an action principle that
describes interactions with external sources. Next
necessary and sufficient constraints are found to
guarantee that only physical modes propagate. Fi-
nally, we hope that the theory is the linear approxi-
mation of a complete, necessarily nonlinear, theory
of interacting fields.

The physical one-particle states, the states that ac-
tually propagate and interact, are described by a sub-
set of the free-field modes. In quantum gravity they
must include two massless particles with helicity
+2 and —2. Each carries a unitary, irreducible rep-
resentation of the Poincaré group &, and each of
these two representations of & has a unique exten-
sion to a unitary, irreducible representation of ¢ .*

The conformal group ¥ is locally isomorphic to
SO(4,2) and its compact subgroup is SO(4) ® SO(2).
The generator of SO(2) is the conformal energy and
will be denoted Lsy,. It is normalized so that its
eigenvalues have unit spacing. Let D(Eg,j;,j,)
denote the irreducible, projective representation of
% that is defined (up to equivalence) as follows: the
lowest eigenvalue of Ls, is Ej, and in this eigen-
space so(4) =su(2)®su(2) acts irreducibly by the rep-
resentation (j;,j,) of dimension (2j;+1)(2j,+1).
Then the representations of € that extend the mass-
less, helicity *2 representations of & are D(3,2,0)
and D(3,0,2). We call these the physical representa-
tions. They are very singular, highly degenerate rep-
resentations that can be realized in field theories
only as subquotients of nondecomposable represen-
tations; that is, they occur only in gauge theories.

The physical representations are thus expected to
be imbedded in nondecomposable representations. It
is well known that the irreducible subrepresentations
and subquotients of a nondecomposable representa-
tion must all have the same values for the Casimir
operators. Among the irreducible representations
that have energy spectra bounded below there are
precisely six that have the same values for the
Casimir operators as D(3,2,0), and another set of
six that are similarly related to D(3,0,2). Please see
Fig. 1. Eight of these representations are needed to
define the free quantum field operator.

In Secs. II and III we determine the tensor struc-
ture of the fields of linear conformal gravity. The
result is surprising: in the Dirac six-cone notation,
the only tensor field that carries the physical repre-
sentations of € is a tensor field of rank 3 and mixed
symmetry. In particular, linear conformal gravity
cannot be formulated in terms of a symmetric six-
tensor of rank 2. In Sec. IV we find the minimal
representation of € that must be carried by the free
field, as well as the equations satisfied by the free
modes. The free quantum field operator is defined

Eo 1,00,
/
at 7 e (3/2,12)
/
/
,3" -» (2,0) physical
/
-2 —— = — = ———
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FIG. 1. The six points indicated are the lowest weights
of the positive-energy representations that have the same
values for the Casimir operators as D(3,2,0). Each point
represents a D(Ey, ji, j2), with (j, j,) indicated. The bro-
ken lines are the intersections between the Weyl reflection
planes and the plane of the figure. A similar set of six
Weyl equivalent weights is found by helicity conjugation:
(Eo, j15 j2)—>(Eo, j2, J1)-

and the free field homogeneous propagator deter-
mined. A reader who cares only for the results may
skip all this and go directly to Sec. V, since the rest
of the paper is reasonably self-contained.

In Sec. V we formulate an action principle and
find the boundary conditions that must be imposed
on the physical states, and the constraints that must
be satisfied by the external current, in order that the
theory be unitary in the linear approximation. Then
we verify explicitly that the propagating modes are
exactly the same as in Einstein’s theory of gravita-
tion (linearized). Finally, in Sec. VI, we speculate on
the problem of discovering the full, nonlinear
theory.

II. TENSOR STRUCTURE

It is necessary to have a very efficient means of
carrying out calculations; we find Dirac’s six-cone
formalism® indispensable. The final result will be
reexpressed in familiar Minkowski notation, in Sec.
V.

The conformal group does not act globally on
Minkowski space, but this defect can be fixed by
adding points (a three-cone) at infinity.® One gets a
compactified Minkowski space that is a homogene-
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ous space for ¢’; it is equivalent (as a homogeneous
space) to Dirac’s projective cone. In R, with coor-
dinates yy, . . . ,ys, consider the cone

Y=y =yt =yt =yt =yl +ysi=0,

and identify Ay with y for As£0. This is Dirac’s pro-
jective cone; the mapping to Minkowski space will
be given in Sec. V.

It will be assumed that the fields of linear confor-
mal gravity are tensor fields. A symmetric tensor
field of rank 2 would seem a natural choice, but this
does not work, as we shall now show.

A homogeneous tensor field of rank n and degree
N is an n-linear function of n vector variables:

Y2y - e Zy)=Uep... 0228 -+, 2.1)

Ny=Ny, N=y-d=yp3/3y° . 2.2)

We consider tensors of specific symmetry type that
are transverse, divergence-less, and traceless, that is,

Va¥ap--- =0, Grady,g... =0,
1p¢1¢7119~ ..=0 ’ 2.3)

Grad,=y,3*— (2N +4)3, . 2.4)

The operator Grad,, unlike d,, is intrinsic on the
cone; that is, it is a well-defined operator acting on
fields that are defined on the cone y2=0."

We need an intrinsic wave operator that maps ten-
sor fields on tensor fields with the sime rank. Such
operators exist only in exceptional cases, namely, for
tensor fields of degree —1,0,+1,...:

degree of field: -1, 0 , +1 ,...,
(2.5)

intrinsic wave operator: 9% , (3%%, (3%)?,..., .

Field theories with other (anomalous) dimensions,
that do not have differential wave operators,® are in-
teresting but will not be considered here. The opera-
tors 9%, (3%)?,. .. will consistently be applied only to
tensor fields of the appropriate degree, since they
make no sense otherwise. Thus, if i is of degree
zero, then 3*Grad,¥, (3%)%, and (3%)’y, all make
sense, but 3% does not.
The action of ¥ takes the form

TAY(y,2) =P A"y, A7 12),
with A in SO4,2). The action of the basis elements

(Leg=—Lpg,) a,B=0,...,5 of the Lie algebra is
given by

Laﬂd): (Maﬂ+SaB)¢’

Maﬁzi(yaaﬁ_yﬁaa) ’ (26)

Sap=i3(2;40/02f —2,,53/32) . Q.7
k

The second-order Casimir operator is
Q=7LogLas - (2.8)

For tensors satisfying (2.3) the value of Q is deter-
mined by the rank », the degree N, and the symme-
try type. We find

TMogMog=N(N +4), MgSeg=—2n,

TSapSap=n1(n1+4) +ny(ny+2)+n3 .

Here n; >n, >n; >0 are integers that label the sym-
metry type according to the lengths of the rows of
the Young diagram. For a symmetric tensor field of
rank 2 we have

Q=N(N+4)+8.

The value of Q for the physical representation is 9;
therefore it cannot be carried by a symmetric tensor
field of rank 2 unless the degree N =—2+5!2
(Even then we think it is impossible.) ’

The requirements Q =9 and N =—1,0,1,... are
satisfied only in the following three cases:

degree of field: +1, 0, -1,

symmetry type: B, Bj, E, (2.9)
symbol: A, Y, R.

For typographical reasons, the symbols A, ¥, and R
will be used throughout to designate the respective
symmetry types, as well as the tensors themselves.
We conclude that linear conformal gravity must be
formulated in terms of fields of these three types.
[Relaxing the subsidiary conditions (2.3) gives noth-
ing substantially new. If the physical representation
is lost by imposing, for example, Yqqg... =0, then it
is in fact carried by the tensor field ¥j... =Vgqp. -
of lower rank.]

Absolute ground states

Next, we shall list the absolute ground states of
these three tensor fields. An absolute ground state is
a field that is an eigenstate of the energy operator
L5, and that is annihilated by the energy-lowering
operators Lo;—iLs;, i =1, ...,4. The calculation is
very simple provided the most efficient notation is
used.” Tensors will be expressed as polynomials in
vector variables, as in (2.1). Instead of z, . . .,z4 we
use z, £, z, £ and the abbreviations
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zij=2;;—2j&1, Zijx =ZijZ » (2.10)
Zijkl =ZijZkl -

These three quantities have symmetry types (2.9),
and this is passed on, automatically, to tensor com-
ponents. In this notation,

Lsyy=—y,0,+y_0_+ """,
Y+=ystiyg,...

Lo—iLs=y 8;+20_+ " ,
—(Loi+iLs;)=y_0;+2y;0,+ - ,

where ellipses stand for similar terms involving z
and £. The complete list of absolute ground states is

Ao=2y +2iMy; 21D

YA =y + —22(y +Ziky + =Y +Zij 4 Vi M
(2.12)

Ro=y 2y + @y + — 2z 1y My - (2.13)

The sums are over the cyclic permutations of the
first three indices following. The M’s are numerical
polarization tensors; they have the same symmetries
as the z’s defined in (2.10), and besides they are
traceless. These properties of the M’s fix the SO4)
representations as (1,0)(0,1), (2, 3 )63(7,%) and
(2,0)9(0,2), respectively. The Ls, eigenvalues are
—1,0 and +1. The absolute ground states are
therefore cyclic vectors for the following representa-
tions:

Agy: (—1,1,0)$D(—1 0,1),

S D(0,5,7)eD(0,5,3),

12072
Ry: D(1,2,0)8D(1,0,2) .

None of these is unitary. See Fig. 1.

The ground states of the physical representations,
if they exist, can only be relative ground states. An
eigenstate ¢ of Ly, is called a relative ground state if
there is an invariant subspace V), such that the states
(Lo;—iLs; ), obtained by pushing down on ¥ with
the lowering operators, are in V), while ¢ itself is
not in V. Such states are ground states of subquo-
tients of nondecomposable representations. In the
next section we shall calculate the relative ground
states, and among them we shall find those of the
physical representations.

III. GAUGE FIELDS AND PHYSICAL STATES

The K structure of a representation of SO(4,2) is
its restriction to the compact subgroup

K =80(4)®8S0(2) .

The K structure of D(E,,j,,j;) is easy to calculate
except at the “reduction points” (defined below).
The raising operators transform (under the adjoint
action) according to the representation (3 > ; ) of

so(4)=su(2)®su(2);

therefore the representation of so(4) that appears at
energy Lsg=Ey+n, n=0,1,..., is in the generic
case

n

nn n n
272

21,2

5 > ®--- |. (3.1

(jl’j2)®

In the case of a representation D(Eg,j,j,) at a
reduction point, only a subrepresentation of (3.1)
occurs. A representation with minimal weight
(Eg,j1,j2) is said to be at a reduction point if, within
the generic K structure, there appears a weight
(Eé),],l ’1,2 ) such that D(Ez)’.]ll ,Jé ) and D(EO’jler)
are Weyl equivalent, that is, they have the same
values for all the Casimir operators. All the irredu-
cible representations of interest to us are at reduc-
tion points. We shall obtain information about non-
decomposable representations by studying the ap-
proach of irreducible representations to the reduc-
tion points.

Tensor fields of type A

The first case is the simplest and explains our
method, though it fails to reveal the physical repre-
sentation. The fields

A0(€)=y+ _52y+zijM,~j

are absolute ground states for
D(e—1,1,006D(e—1,0,1) .

The K structure is given, when O<e <1, by (3.1).
Pushing up with the energy-raising operators one
finds, among other states, the following with
weights (€, 7, Z ) and (€, 5 =53 3):

Ae)=y, """y zyy My

The numerical coefficients M;j; have the same prop-
erties as in (2.12). However, this happens only as
long as €0, for one obtains A; multiplied by €. In
the limit e=0 the states of the finite-dimensional
representation

D(—-1,1,006D(—1,0,1)
form an invariant subspace V. The limit of A,

A=y, "2y zyy My 3.2)

is not in Vy; it is a relative ground state for
1

D(0 ,2,2)63( ,2,2)
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and it is cyclic for the nondecomposable representa-
tion

[D(0,5,5)—>D(—1,1,0)]
®[D(0,5,5)—D(—1,0,10]. (3.3)

Notation. If A,B are representations in spaces ¥,
Vg, then A—B denotes a nondecomposable repre-
sentationin V@ V3, such that B is realized in Vj
and A is realized on the quotient (V& V3g)/Vy. We
say that A leaks into B and that A; leaks down to
Ao

The K structure of (3.3) has lower multiplicities
than that of

D(e—1,1,0)6D(e—1,0,1) .

One may therefore inquire about the remaining
states and especially about additional relative
ground states. However, it is easy to see that the
physical representation cannot occur. Definition: the
helicity of a representation (j;,j,) of SO(4) is the
number h =j;—j,. The ground state (and as a
matter of fact all the states) of D(3,2,0) has helicity
+2, and that of D(3,0,2) has helicity —2. Now
(3.1) shows that the highest value of |h | in
D(Ey,j1,jz) is j1+Jj2, so D(E(,1,0) has no states
with helicity h = +2. It is also easy to show directly
that no mode of a symmetry type A tensor field can
have helicity higher than 1. To find the physical
states we must investigate the other two cases. Be-
fore getting to that we makg: aluseful digression.

The representation D (0,5, ) has appeared in two
ways: first irreducibly on W tensors with the abso-
lute ground state (2.12), and again as a quotient of
(3.3) on A tensors with the relative ground state
(3.2). There is an interesting coboundary operator
that maps one to the other.

The coboundary operator d

Definition. The coboundary operator d acts on
tensors of symmetry types A and V¥ to give tensors
of symmetry types ¥ and R, respectively. If A,p is
antisymmetric, and ¥, has mixed symmetry and is
antisymmetric in a,f, then the action of d is defined
by (compare Ref. 9)

(dA)opy=MixAogy=2Aupy—Apgya—Ayap >

(3.4)
(dA )aByS = BOX‘I’aﬁy,a
= waﬁy,& - Waﬂ&,7+ \I/‘y&l,ﬂ_ \1’7’55111 .

(3.5)
The index that follows the comma should be inter-
preted as in

Aaﬂ:YE GradYAaﬁz [yyaz —( Zﬁ +4)8,,]Aa3 .
(3.6)

Applying d to the relative ground state (3.2) one ob-
tains the absolute ground state (2.12). The leak is
plugged because d annihilates the fields that carry
the finite-dimensional representation

D(_I,I,O)Q(D(_lyoyl) .

The absolute ground state WS and all the fields
generated from it are exact (in the image of d). It is
easy to check that

dod=0. (3.7
We shall find the physcial representations in the
cohomology space Ker d/Im d.

Tensor fields of type ¥
Next, consider the fields
Yole)=y IE\I’(C,;A .

This is exact only if €=0, and helicities higher than
1 can occur. In fact, this is an absolute ground state
for

D(e,3,7)8D(€7,7),

in which the highest helicities are +2 (if €540).
Pushing up with the raising operators one finds
(among others) the states

‘I’l(e)=y_2_‘Ey+z,-,-ky,M,-jk, . (3.8)

The numerical tensor M has the same properties as
in (2.13) and those properties make this a state with
helicities +2. It appears only as long as €540. In

the limit e=0 the states of
D(0,3,3)8D(0,3,7)
generated from W5 form an invariant subspace that

does not include the limit of (3.8):
We=y  “23y  zpyi M . 3.9)
This is a relative ground state for
D(1,2,0)6D(1,0,2) .

It leaks down to WS and is cyclic for the represen-
tation

[D(1,2,00—-D(0,>,%)]
®[D(1,0,2)>D(0,7,75)] . (3.10)

The fields of the subrepresentation are exact, so the
leak may be plugged by applying the coboundary
operator. Applying d to the relative ground state
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(3.9) we obtain the absolute ground state (2.13). The
field Ry and all those generated from it are thus ex-
act.
The K structure of (3.10) is simpler than that of
D(6,3,7)9D(6,5,7) -

Among the missing states we shall discover states
with weights (3,2,0) and (3,0,2) that are relative
ground states of the physical representations.

The physical states

The €—0 limit of the K structure of D(e,%,%) is
shown in Fig. 2. The states that belong to
D(O,-;—,-;—) are indicated by dots and those of
D(1,0,2) by circles. The state of lowest energy that
does not belong to either of these is indicated by a
cross and has weight (3,2,0). This shows that the
physical representations occur here. The ground
state is not an absolute ground state, so it must leak
down. The states of D(1,0,2) are too far away in
helicity, so it must leak to the states of D(O,—;—,;).
All those states are exact, while the physical states
cannot be exact, as their helicity is too high to be
carried by a tensor field of symmetry type A. The
physical ground state is thus characterized by the
fact that (Lo;—iLs;)WE" is exact, while W2H itself is
not.

Eo -
sf
.-
.-
L o e 0”7
-7 -~
-7 ~
6f T w07 e
P -~

Il

FIG. 2. The limit, as e—0, of the K structure of
D(e,%,%). The dots belong to D(O,—;—,%), the circles to the
ghost D(1,0,2), and the crosses to the physical representa-
tion D(3,2,0). Positive helicity (j, —j, >0) is indicated by
a shift to the left, negative helicity (j; —j, <0) by a shift
to the right. Thus, at Eo=3 and j;+j,~2 we have the
physical ground state (3,2,0), a ghost mode (3,0,2), and
two (3,1,1) states of which one is a ghost and the other a
gauge mode.

More precisely, the physical ground states may be
uniquely characterized as fields with helicities +2
such that (Lo;—iLs;)WEY is exact. The result of a
very long calculation is that

Vo =4 T2z +49 L Vi aZja Mg -
(3.11)

The polarization tensor M has the same properties
as in (2.13). This formula was confirmed by another
method that will be discussed in Sec. IV. We shall
also find that W5 is, very remarkably, closed.

Tensor fields of type R

Tensor fields of symmetry type R cannot carry
the physical representation. The only absolute
ground state is R, Eq. (2.13), the ground state of
the “ghost”

D(1,2,0)#D(1,0,2) .

The relative ground state of D (3,2,0), were it to ex-
ist, could not leak into D(1,0,2) because the differ-
ence in helicity is too great to be bridged by the Lie
algebra, nor can it leak into D(1,2,0) because the
values of the Casimir operators are not the same.
There is therefore just one way to realize the physi-
cal representations in terms of tensor fields. (Of
course, it is possible to write W' as the trace of a
tensor field of rank 5; but this, and other construc-
tions in a similar vein, would not seem to introduce
anything substantially different.)

The fact that tensors of symmetry type R cannot
carry the physical representations has an important
corollary, namely, that the physical modes are
closed,

dytH=0 (3.12)

a remarkable fact that was first uncovered by a la-
borious, direct calculation. The point is that d WPH
is of type R and, if not zero, would carry the physi-
cal representation. It is only necessary to verify that
dWPH satisfies all the subsidiary conditions. To do
that we first notice that the following identities
hold:

Grad,Gradg=GradgGrad, , (3.13)

Grad,Grad,=0, , (3.14)

yoGrad,= —2N(N+1),

(N +2)y,Gradg=(N +1)Gradgy, +yGrad,
+2AN + 1)V +2)845

and remember that W'Y satisfies all the subsidiary
conditions. With this, the verification becomes
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nearly trivial; for example,
Yald¥)aps=Yo(Yapy,s— Yaps,y+ VYyoa,6— ¥yo6,0)
=2(Wsg,—Vyps+ Yye)
=235Wp,=0.

IV. THE MINIMAL GUPTA-BLEULER TRIPLET

The physical states have now been found, accom:
panied by gauge modes in the nondecomposable rep-
resentation

[D(3,2,0)>D(0,+,2)]
®[D(3,0,2)—>D(0,5,3)] . (4.1)

This space of tensor fields cannot be used to con-
struct a free quantum field operator, since it does
not have an invariant, nondegenerate symplectic
structure.” It is necessary to find an additional copy
of the subrepresentation

D(0,+,2)eD(0,3,3);

the associated “scalar” modes are the field variables
that are canonically conjugate to the “gauge” modes.
That is, we must extend (4.1) to allow for quantiza-
tion or, what is the same, the existence of a (homo-
geneous) propagator or reproducing kernel.

Since the irreducible representations D (e, ; . : )
and D(e,5,7) have nondegenerate (indefinite) sym-
plectic structures, we expect to be able to extract the
required additional modes from them. In fact, the
relative ground state of the scalar representation is

\I/(S,C=1im(1/6)[\P0(e)—dA1(e)] .

Dlscardmg a constant factor and a term proportion-
al to W5 we get

WoC=y, 'Sy z My - 4.2)
This has the correct properties, as we now verify.

Pushing down on (4.2) we find the state
Wg=y+ _12y+z,-j +Mij . (4-3)

This is an absolute ground state for the finite-
dimensional representation

D(-1,1,0)6D(—1,0,1) .

Pushm§ up again from this state we find not W§©
but WA, Hence W leaks into the gauge modes, and
(4.2) is a relative ground state for another copy of

D(0,3,7)8D(0,7,7) .
[The discovery of new ground states does not con-
tradict our previous results, since they do not satisfy
all the subsidiary conditions, about which more
below.]

Pushing up from (4.2) we find ¥$™. Finally, we
must push up three times from (4.2) to look for the
physical representation. This is tricky, since it is
necessary to evade the modes of D(1,2,0) and
D(1,0,2), the ghosts. We construct an operator in
the enveloping algebra that increases the energy by
three units and that maps any (5,7 ) state to a (0,2)
state, and any (2 ) 2) state to a (2,0) state. Applying
this to (4.2) we evade the ghosts and rediscover (or
confirm) the physical ground states (3.11). There is
an a priori possibility that further application
of raising operators might reveal leakage into
D(4,5,5), D(4,3,3), D(51,0), and D(5,0,1).
That this does not in fact happen will be shown
later, after we have evaluated the propagator.

We thus finally conclude that the states (4.2) are
cyclic for two completed Gupta-Bleuler triplets,

D(3,2,0)
D(1,0,2) |—>D(0,5,3), (4.4
D(—1,0,1)

and the helicity conjugate. The five ground states
are listed in Table 1.

D(0,5,5)—

TABLE I. The important ground states.

Type of
Mode ground state Satisfies
Scalar WeC=y, 13y zu My Relative (4.5)—(4.8)
Finite Vo=y, '3y, z;j My Absolute (4.5)—(4.8)
Ghost Vet =y, 3y (ziy + Relative (4.5)—(4.9)
— 2z Y1 ) M
Physical Wi (y Zy ZijkY1 Relative (4.5)—(4.10)
+4Y + ~Viviyazjak ) M
Gauge VEA=(y, 'Sy zip Absolute (4.5)—(4.11)

=Y+ 722y 2y )M
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Equations

Covariant equations that hold for a cyclic vector
of a representation are satisfied on the whole repre-
sentation space. Inspection of Table I confirms the
following hierarchy.

(1) The entire Gupta-Bleuler triplet satisfies

(3%)°W,5,=0, 4.5)
Ya¥apytVa¥ayp=0, (4.6)
VYups=0, 4.7
Grad,¥,g,=0 . (4.8)

(2) The subspace of physical states, ghosts and
gauge fields satisfy, in addition, the stronger
transversality condition

Va¥apy=0. 4.9)

Equations (4.7)—(4.9) are the complete set of subsi-
diary conditions introduced in (2.3). The fact that
the scalar modes cannot satisfy all these conditions
was expected by analogy with electrodynamics.’
Equation (4.9) is an imperfect analog of the Lorentz
condition: it eliminates the scalar modes and cannot
be satisfied by the quantum field operator, but it
holds on a space that contains more than just physi-
cal states and gauge fields.
(3) Physical modes and gauge modes are closed,

d¥v=0. (4.10)

This is analogous to the Lorentz condition in the
sense that it defines, within the Gupta-Bleuler trip-
let, the smallest invariant subspace that contains the
physical states.

(4) Gauge modes are exact,
Y=dA. (4.11)

Within the Gupta-Bleuler triplet (and also within
some larger spaces) the space of physical states is
precisely the cohomology space Kerd/Imd; the
proof will come later.

2. The propagator and the quantum field operator

All the expressions for the ground states, collected
in Table I, suggest that ¥ may usefully be con-
sidered as derived from a traceless tensor of rank 4:

Y= <I>a37,52yazﬂy5 . (4.12)

If 3°® =0, then (3%*¥=0. The homogeneous prop-
agator for the equation 3’°®=0 is well known; it can
be written (y-y’) 1, if this formal expression is inter-
preted as a distribution with positive-energy Fourier

components. This suggests that the propagator for
V¥ is

K(y,2,62'€)=0p) Yoz TZyuzpps , (4.13)

where T is the traceless projection operator. Ex-
panding (y-y)~! as a Fourier series we get after easy
rearrangement the Fourier series for K, with ener-
gies —1,0,1,...:

K(;)=3 0m¥( )T,

=WEW + WSCUGA  WSATC+ - - - L(4.14)
Here o, =*1; both signs appear since K is not a
positive operator.

Since W5C appears here, so do all the states gen-
erated from this mode; that is, all the modes of both
Gupta-Bleuler triplets. But this is not all. It is easy
to see that (4.13) satisfies

(32K =0, y-3:K=0,
8,-8§K=0 .

This means that each mode satisfies (4.5)—(4.7), but
not all modes satisfy (4.8). It can be verified that
the extra modes are not Weyl equivalent to either of
the physical representations; therefore (4.13) can be
improved by subtracting them off, if convenient.
(Strong conditions have to be imposed on the in-
teractions to prevent the propagation of unphysical
fields within the triplets, and this will decouple the
extra modes as well.)

The distribution (y-y’)~! is the propagator for the
singleton D(1,0,0). The K structure is highly degen-
erate, consisting of weights of the form (2j + 1,j,))
only. From this it may be inferred that the space of
modes of K does not include D(4,%,%), D(5,1,0), or
their helicity conjugates, and that these representa-
tions do not occur in the Gupta-Bleuler triplets.

The free quantum field operator is defined by

(I)(y,zrg): 2 [(Ym(y,2,6)am +\T/m(y7z1§)a;n] .

(4.15)

(4.16)

The operators a,, annihilate the vacuum, a,, | 0) =0,
a,, commutes with a,, and a,, commutes with a,,
while

[am:a:]=0m8mn .

This is covariant, indefinite-metric, Gupta-Bleuler
quantization. Covariance is confirmed by the fact
that

(0| ®(y,z,6)P(y",2',€') | 0) =K(,") . 4.17)
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V. LINEAR CONFORMAL GRAVITY

In this section we shall first formulate an action
principle in Dirac’s six-cone notation,’ then tran-
scribe it to Minkowski notation.

Linear conformal gravity is described by a six-
tensor field of rank 3, mixed symmetry and of de-
gree O:

Yopy=—Ypay, X Yapy=0,
cycl (51)

ﬁ‘lr‘am,:O , ﬁsy-a .

We shall impose tracelessness, V,ps=0, as an a
priori constraint, but no others. [An alternative ac-
tion principle, with the additional constraint (4.6), is
also possible.]

The simplest choice of action is

[ dy[39-(32%—w-j] . (5.2)
Here
92=(8/3y,)?,

and integration over the cone has the usual mean-
ing.1° The kinetic term has degree —4 as required
by invariance. The external current j is a tensor
field of rank 3 and degree—4, traceless and with the
same symmetry properties as V. The field equation
is

(3% Wopy=Japy - (5.3)

We have shown, in Sec. IV, that the free-field equa-
tion (3%)*¥ =0 admits solutions that can be associat-
ed with the physical states. We must now find a set
of constraints and/or boundary conditions, suffi-
cient to ensure that only physical modes propagate.

Constraints

From (5.3) it immediately follows, by contraction
with y, that

Ya(8*VW,5,=03°Grad,¥op, =V japy »

Grad,=y,3’— (2N +4)3,, N=y,0, . G4

Similarly, applying Grad,,
Grady(8%)"Wop,=(3%),¥,p,=GCrady jag, -

(5.5)
Finally, multiplying (5.3) by ys and symmetrizing,
we get

Boxys(az)z\l’ag,;az(d ¥)apys=Boxysjapy -

(5.6)
The coboundary operator d and the Young sym-
metrizer Box were defined by Eq. (3.5).

The fields Grad-¥, y-V¥, and d¥, appearing in the
middle terms of (5.4), (5.5), and (5.6) are unphysical
in the sense that all these quantities vanish if ¥ de-
scribes a free, propagating physical state. All the
components of the Gupta-Bleuler triplet satisfy
Grad ¥ =0, so it is possible to impose this condition
as a strong constraint on the field operator. All the
modes of the triplet also have the property that the
symmetric part of y-W vanishes. Therefore, this can
also be imposed as a strong constraint on the quan-
tum field, and in fact the free-field operator con-
structed in Sec. IV does satisfy this condition. The
antisymmetric part of y-W describes the scalar
modes (and the 20 modes of the finite representa-
tion) of the triplets; they are canonically conjugate
to the gauge modes, and analogous to the scalar
modes 3-4 of QED. Such modes cannot be exclud-
ed from the free quantum field operator; they have
to be constrained by imposing boundary conditions
on the physical states, as 3-4 is constrained in QED.
The most difficult part of the problem is presented
by the field d¥. If Grad-¥ and y-¥ vanish, then
the remaining modes described by d¥ are ghost
modes. Therefore, this field also has to be con-
strained.

A propagating mode is a mode that is carried by
the field in an empty region of space-time. To
prevent all the unphysical modes, including the
ghosts, from propagating, we must impose boundary
conditions that ensure the effective vanishing of
y¥, Grad-¥, and d¥ in empty space.

We shall require that
Gradalllaﬁyza)ﬁy, Ya ‘llaﬁ.,:w,gy , (5.7
(d\li)aﬁyszsaﬂ'ys . (5.8)

All these “weak equalities” are to be understood in
the same sense, so it is enough to explain one of
them. The interpretation of w, w, and s will be dis-
cussed subsequently.

The physical in states will be required to satisfy
the following boundary condition,

(d¥—s)*|in)=0, (5.9)

where + indicates the positive-frequency part. If
d¥V—s is a free field, then this condition is preserved
by the time development, and all matrix elements of
dW —s, between states that satisfy the boundary con-
ditions, vanish. We express this by (5.8).

As Egs. (5.4)—(5.6) show, Grad'¥V—ow, y-¥V—w,
and d V¥ —s are free fields if

Ya jaﬁ‘y = aza)ﬂy’ GradajaBy =(82 )BwBy , (5.10)
BoX ysjapy=9"Sapys » (5.11)

for, in that case
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3% (Grad'¥—w)=0,
(3P(y-¥—w)=0, (5.12)
3Hd¥—s5)=0. (5.13)

It is therefore necessary that j, w, w, and s be related
as in (5.10) and (5.11). In order that (5.7) and (5.8)
have the desired implications, it is necessary that w,
w, and s, rather than j, be interpreted as the external
sources. That is, an empty region of space time is
one in which o=w=s=0. In that case the ghost
and the other unphysical field components vanish in
empty space; that is, they do not propagate. This
mechanism for preventing propagation is not com-
pletely novel; it operates in several field theories that
contain an excessive number of field variables. The
most notable example, and perhaps a very relevant
analog, is the nonpropagating torsion of Einstein-
Cartan theory.!!

The only free modes that satisfy
Grad'V=y-¥=d¥=0 are the physical and gauge
modes. Therefore, if (5.7) and (5.8) hold, then these
are the only propagating modes. To eliminate the
gauge modes we must finally impose gauge invari-
ance on the interaction term in the action (5.2). A
gauge field is a field that is exact,

Vopy=(dA)op,=Mix Grad,Ayp Agg=—Ag, .
(5.14)

The Young symmetrizer Mix was defined by Eq.
(3.4). We have

[ dyj-dA=— [ dy A-(Grad-j) . (5.15)

If this is to vanish for all A, then it is necessary
that!?

Grada( jagy-—ja,,,g)=(82)3(w,3,,—w,,,g)=0 .
(5.16)

Finally, it should be mentioned that if the asymptot-
ic in field is the free-field operator constructed in
Sec. IV, then the symmetric part of y-W~w must
vanish.

Minkowski notation

We shall now translate the theory to Minkowski
notation, and show that the dynamical content is the
same as in the linear approximation to general rela-
tivity.

The mapping between Dirac’s projective six-cone
and Minkowski space is given by

xtF=pt/Ay, p=0,1,2,3,
Ay=ys+ys .

We introduce two additional variables,
xt=InAy, xB=pXr-y)~2.

On the cone x?=0 and the variable x * drops out.
Tensors of degree N on the cone are related to ten-

sors on Minkowski space by (¥ depends on

x% ..., x%only)

Vap. D =ApMxxh - Pyp... (x),

x&=Ay(0x%/3y%), a=0,1,2,3,+,B . 5.17)
Explicitly, with =0, ...,3and a=0, .. .,5,

xXg=8—x"e, x4 =Aq,

xB=2p, /Ay —2AxE.

A “covariant derivative” may be defined by
Gradyig. .. (y)=—2(N +1)(A-p)¥ !
Xx&xp V... . (5.18)

Working this out one finds

Vla... =80g... +T0tp... + -,

Viba...=N,..., (5.19)

~ —1
Ve, ... =m

The only non-zero components of the “connection”
are

VoViba... .

ry,=-8, T5=25,,, pv=0,...,3.
(5.20)

For the sources j, w, w, and s we shall use capital
letters J, Q, W, and S to denote the corresponding
Minkowski tensors, and for the field ¥ and the
gauge parameter A we use the same letters, thus
dispensing with the tilde, as the risk of confusion is
negligible.

The main formulas now appear as follows. The
action (5.2) is

[ a*x[3v-(v,9,29—w-J] . (5.21)
The field equation (5.3) is
(VuV ) ¥ope =Jape » a,b,c=0,...,3,+,B .

(5.22)

The constraints (5.7) and (5.8) are
VaWabe =Qpe, Vipe=Wee (5.23)
(dY) sbca =BoxV gV ape ~Sgpea - (5.24)

The expressions for dA and dV¥ are exactly as in
Egs. (3.4) and (3.5), with Latin indices replacing
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Greek indices and the comma denoting covariant
differentiation with V.

To extract the dynamical content of these equa-
tions it is necessary to write them out in full detail.
As they become very long in the general case, and as
we are primarily interested in propagation in empty
regions of space-time, we shall compromise by limit-
ing ourselves to regions in which { and W vanish.
Thus

Q=Ww=0, (5.25)

VaWape =0, ¥, p.~0. (5.26)
This implies the following constraints on S:

S 1 abe=0, Suppa=0, (5.27)

VaSaabe =S pabe +(4—2n)Spgp =0, (5.28)

where n is the number of B indices among a,b,c. We
emphasize that (5.26)—(5.28) are valid only in those
regions of space-time in which Q and W happen to
vanish.

The trace Yy,p... of any six-tensor is reexpressed
in Minkowski notation by

Jaab-” E;ﬁ““b‘.. +2J+Bb~-- +2;/;B+b-" .
Thus, in particular,

Vatase =V ¥use +2V Yo +2Va9 e -

Dynamical content, constraints

If ¥ is exact, ¥=dA, then, in view of (5.26), A,
and V, A, must vanish. In this case the gauge
parameter is a complex consisting of a skew tensor
(Ayy) and a vector field (A, =Ap,), with

OuAuy+6A,=0. (5.29)
In this case the nonzero components of d A are
(dA)pp=Mix A, +6(8,0A,—8,2A,) , (5.30)
(dA)ppy= 1A+ 7@uA+3,A,) ,  (53D)
(dA)upp=70%A, . (5.32)

In view of (5.26), the field ¥ is a complex consisting
of four tensors:

valqupv).’ hva\PB;w'{"q’va ’ (5.33)
fva‘Pva._wBuv= uvB> ayE\l’yBB . (5.34)

This complex is a gauge field (that is, ¥ is exact), if
there are gauge parameters (A,,,A,) such that

1 .
val= ?T Mix alA;wv hpv=ap,Av+ avAp N (535)
1
fiv=—78Au, a,=53A,. (5.36)

Here T is the traceless projection operator.
Equations (5.26) are expressed by

O Youv+Yowu) +4hu, =0, (5.37)
3oYuvo+8fuy=0, d,hq,—8a,=0. (5.38)
The remaining content of (5.24) is
Syuvip =BoX(3,¥uwn + Buphon —Byphn) 5 (5.39)
Spvip= %az’y@v"}‘ Mixd,f 2, + 48,81 —8,0a,) ,(5.40)
Savsp=170"hyy—2(3,a,+3,a,) . (5.41)

As a good check one recovers (5.28) from these
equations.

The propagating states of the theory are described
by the space of solutions of (5.37)—(5.41), with S=0,
modulo the subspace of exact solutions defined by
(5.35) and (5.36). We shall prove that this space is
precisely the space of physical, massless states with
helicity +2 of ordinary, linearized gravity.

From (5.38) and (5.41) we get

4SBva= 9%h w— 3,9, op— apa,,h ovt avaph oo
=(d'h),, . (5.42)

This is just the linear approximation to Einstein’s
field equation, if the left side can be interpreted as
the energy momentum tensor of the source. This
equation is invariant under gauge transformations of
the type

By —>h g+ 3,4+ 3,6,
=hyy+(d'E),, . (5.43)

Equations (5.42) and (5.43) define the coboundary
operator d’, and gauge invariance of (5.42) is just the
statement
d'od'=0.

Every solution of (5.37)—(5.41) thus determines a
(traceless) solution of (5.42), and it is also easy to see
that every traceless solution of (5.42) determines, up
to an exact field, a solution of (5.37)—(5.41). (The
original six-tensor W is traceless, and when ¥,
vanishes then this implies that ¢ and A are traceless,
too.) If W is exact, then (5.35) shows that 4 is exact.
The inverse is also true, as can easily be verified;
that is, a solution of (5.37)—(5.41) is exact if & is ex-
act. The space of solutions of this set of equations,
modulo the subspace of exact solutions, is therefore
precisely the space Kerd'/Imd' of physical states of
linearized Einstein gravity.

Dynamical content, wave equation

The principal constraint Eq. (5.8) is much
stronger than the wave equation (5.3), but we do well
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to emphasize that one cannot simply postulate the
former and forget about the latter. The free modes
allowed by the constraints are not sufficient to de-
fine a free quantum field satisfying nontrivial, in-
variant commutation relations. The free-field opera-
tor does not satisfy the constraints. Calculations of
the S-matrix have to be based on the wave equation
or on the action. The constraints are to be applied
to the asymptotic in states; they allow an arbitrary
configuration of incoming gravitons while freezing
the unphysical modes. The best way to deal with
the constraints may be to use Lagrangian multi-
pliers."

Nevertheless, what we want to examine here is
whether the wave equation imposes any additional
conditions on W, beyond those fixed by the con-
straints. Equation (5.6) is, of course, implied by the
constraints, so the question is what is lost by the
mapping

jaﬁy—»Boxyajaﬁ,,EkaB,,;, .
The associated Minkowski tensors are related by

K,u,vlp=0’ KprA‘:le,u ’

Kpupr=—Jpurn—JIBau -

The kernel of this mapping is therefore the antisym-
metric part of J,,, and J,,gg. The information that
is lost from (5.3) to (5.6) is precisely the correspond-
ing components of (5.3). These are fourth-order
equations for f,, and for a, and they merely limit
the choice of gauge. .

The dynamical content of the wave equation may
be found by applying 82 to (5.39)—(5.41). Thus, in
particular,

(8% 3y — 88,3 P gy + 3D ) =0

in empty space. This equation is consistent with the
wave equation of linearized Weyl gravity,? since
h,,=0and 3,9, A,,=0.

V1. SUMMARY AND OUTLOOK

The main input into this construction of linear
conformal gravity was to insist that the propagating
modes must be a pair of massless particles with heli-
cities +2. Our first conclusion is that there is just
one possible choice of tensor structure; the confor-
mal field tensor (in Dirac’s six-cone notation) can
only be a tensor of rank 3 with mixed symmetry and
with degree zero. The wave operator is a fourth-
order differential operator. A free quantum field
operator that satisfies conformally invariant com-
mutation relations was constructed explicitly, and
the propagator was calculated. The Fourier
transform is of order p —*, which hints at better re-

normalizability of our theory as compared to usual
linear gravity.

It turned out that the field operator inevitably
carries along a nonunitary ghost (besides the expect-
ed gauge and “scalar” modes). This is quite similar
to the ghost that was turned up by Stelle? in his in-
vestigation of higher-order renormalizable theories
of gravity. Our main result is that the ghost can be
exorcised by imposing suitable constraints on the
external current, and boundary conditions on the
physical states. The constraints that are specifically
directed against the ghost are Egs. (5.9) and (5.11).

What should be the next step? It would certainly
be valuable to reach a better understanding of this
linear theory. First of all, the geometric interpreta-
tion is not entirely clear. The basic fields (in Min-

_kowski notation) are a symmetric tensor of rank 2

that may be a metric, and a mixed-symmetry tensor
of rank 3 that may be a torsion field or a connec-
tion.

It should also be very instructive to study a con-
crete model of the external sources. The final equa-
tion (5.42) obtained for the “metric” field is just
Einstein’s linearized field equation, and the source
term must be related to an energy-momentum ten-
sor. This source term is a part of a larger complex
that in Dirac’s notation is a six-tensor of rank 4,
subject to the constraint (5.11). A distinct obstruc-
tion is the fact that the source term in (5.42) has
conformal degree —3, while the energy-momentum
tensor of any conformally invariant field theory has
conformal degree —4. This discrepancy was antici-
pated, since Einstein’s theory has a dimensional cou-
pling constant. It is a strong indication that all in-
teractions with matter violate conformal invariance.
Only self-interacting gravity can be conformally in-
variant.

The search for a genuine interacting field theory
that respects the constraints must eventually lead to
a nonlinear theory with gravitational self-
interaction. It is strongly suggested by our experi-
ence with the analogous problem in ordinary gravity
that the nonlinear theory must have a non-Abelian
gauge group; the discovery of this group would be a
key to the theory. The gauge parameters of the
linear theory is a space of antisymmetric, Dirac six-
tensor fields,

Agpg=—Apas @,B=0,...,5.

The finite-dimensional representation of the confor-
mal group that is associated with such fields is just
the adjoint representation, which suggests that the
non-Abelian gauge group may be a local extension
of the conformal group. Such an extension is de-
fined infinitesimally by the Lie algebra of differen-
tial operators of the form
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A=Agg»)Lag ,

where (L ,p) are the operators of any representation
of so(4,2). However, this identification of A with
the Lie algebra of local conformal transformations
is obstructed by the fact that the degree of homo-
geneity (essentially, the conformal degree) of A is
+ 1, rather than zero. If A and A’ have degree N,
then the commutator [A,A’] has degree 2N. Hence,
either N=0, or we have a Kac-Moody extension of
the local conformal algebra. The question of recon-

ciling the degrees thus intrudes once more, this time
on a much more fundamental level.
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