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An effective spin-dependent interaction Hamiltonian for low-lying gluon modes is calcu-

lated to P(a, ) in the MIT bag model. We give expressions for the energy shifts of low-lying

glueballs.

I. INTRODUCTION

From considerations based on QCD one expects
hadrons consisting only (or mainly) of glue. ' The
possibility of identifying as glueballs the states
t(1440) and 8(1660) recently discovered in itt~yX
(Refs. 2 and 3) has made it even more interesting to
get precise predictions from QCD. Since one still
cannot compute the hadron mass spectrum from
first principles one must resort to phenomenological
models keeping as many as possible of the properties
of the full theory. In the case of glueballs, it is of
special importance that the model can handle mass-
less particles, and also treat gauge invariance in a
satisfactory way. One such model, and the one to
be used here, is the NIT bag. The aim of this work,
which is in essence technical, is to calculate to
0 (a, ) the spin-dependent energy shift due to
gluon-gluon interactions in the bag. Several authors
have already dealt with the properties of glueballs in
the bag model, and we shall comment on our re-
lationship to their work below.

Following the argument of Ref. 7, we will assume
that spherical glueballs exist in the bag model.
Hence we can use the static-spherical-cavity approx-
imation which has been successful in the case of
low-lying mesons and baryons. The effective Ham-
iltonian in the n-gluon sector takes the form '
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where H;„, has a nontrivial color and spin depen-
dence. The first two terms (volume and kinetic en-

ergy) are well known, and the gluon-gluon interac-
tion H;„„which also includes self-energies, is the

subject of this paper. The "center-of-mass" term
(C, /R) can be estimated using the method of
Donoghue and Johnson, ' but it is still not clear
whether the zero-point or "Casimir" energy
(Cc„/R) is of importance. [In earlier works, the
two last terms in Eq. (1) were lumped together with
the self-energy part of H;„, in a purely phenomeno-
logical term Zo/R with Zo- —l.8.]

In this paper we shall derive explicit expressions
for the two-gluon-interaction part of H;„, in Eq. (1).
This involves calculating the diagrams shown in
Figs. 1 and 2. The color magnetic and electric fields
generated by the interaction must, of course, satisfy
the appropriate bag boundary condition. The in-
teraction magnetic fields generated by each consti-
tuent gluon do satisfy the boundary condition, thus
causing no problem. The same is not true of the in-
teraction electric fields. Only the sum of the electric
fields generated by all the constituent gluons in a
color-singlet glueball can satisfy the boundary con-
dition. Hence we must include (at least) the static
Coulomb self-energies in order to have the energy
shifts due to all the electric fields needed for the
boundary condition. This is exactly analogous to
what was found when the quark-quark interaction
mediated by gluons was considered for mesons and
baryons in Ref. 9. Incidentally, the electric energy
shift is in general exactly zero for a quarkic hadron
with all quarks in the same cavity eigenstate; the
analogous statement is not true for glueballs.

Several earlier workers have dealt with spin-
dependent splittings among glueballs in the bag
model. Thorn, as reported in Ref. 7, calculated the
splittings for the (TE) 0++ and 2++ states. He
considered only the magnetic energy; to his results
should be added the Coulomb interaction energy and
self-energy. It happens that for the 0++ (TE)2 [or
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(b) (c)

FIG. 1. Gluon-gluon interactions to order a, . The
dashed line represents a Coulomb interaction.

(b)

(c)

/
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(TM}, incidentally] glueball, the Coulomb interac-
tion energy and static self-energy cancel exactly. So
we agree with Thorn's 0++ result, but not his 2++
result. (Our magnetic energy alone does agree with
Thorn's 2++ result. }

Konoplich and Schepkin calculated the spin-
dependent mass shift for 0++ (TE) and 0 +

(TE)(TM) glueballs. They also considered only the
magnetic energy. We agree with their calculation as
it stands (taking note of the approximateness of
their numerical evaluations and of their definition of
a„which differs from the standard one by a factor
of 4) but note that the Coulomb interaction energy
and the static self-energy should be added. While
the Coulomb interaction energy and static self-
energy cancel for the 0++ (TE), they do not cancel
for the 0 + (TE)(TM).

Barnes, Close, and Monaghan considered the
spin-dependent splittings for 0++ and 2++ (TE)2
and 0 + and 2 + (TE)(TM) states. They do in-
clude the Coulomb interaction energy but do not
consider the self-energies. Since the gluon modes do
not individually satisfy the n.E=O boundary condi-
tion (cf. their Appendix 3), the Coulomb interaction
energy obtained by integrating p;PJ (charge density
times scalar potential, with i and j labeling dif-
ferents quarks) is gauge variant. Including the static

Coulomb self-energy, the case when i and j are the
same, makes the result gauge invariant. However,
the gauge-variant contribution is the same for any
states made from the same gluon modes, so we may
compare some of our energy splittings to Barnes
et al. We do agree on the differences of energy
shifts between 0++ and 2++ (TE) glueballs and
(after some omissions and numerical errors in Ref. 5

are corrected) between 0 + and 2 + (TE)(TM)
glueballs.

To our knowledge, the (TM) and (TE) glueballs'
mass splittings have not been previously considered.
Also, Konoplich and Schepkin and Barnes et al.
calculate via a truncated mode sum. Our technique
is rather different and should correspond to having
done the whole sum. We do find agreement between
the two methods when calculating the same quanti-
ties.

The next section outlines the calculation of the ef-
fective Hamiltonian leaving most of the technicali-
ties to the Appendices. In the last section we con-
sider some special cases of phenomenological in-
terest.

II. 0(a, ) GLUON-GLUON
EFFECTIVE HAMILTONIAN

The QCD interaction Hamiltonian density of
0 (g ) is in Coulomb gauge given by"

HI ——HI +HI +H

gfabcpa pic+ g2fabcfadegbgc~d~e
J k j k

+ g2fabcfadey b ~cD pd pc

where the operator Dc,„i is defined below. The
bag-model interaction Hamiltonian

Ht f d xHt(x——) (3)

operates on n-gluon cavity states (1,2, . . . , n),
which are direct products of one-gluon "cavity
modes"

~i)= ~a;, 1;,m;,X;),
where a denotes color, (I,m} orbital angular momen-
tum, and 7 radial quantum number as well as TE or
TM (transverse electric or transverse magnetic). We
shall consider the / =1 modes only, for which

~
a, l, m, X)—=

~
a,a,X),

where a is the polarization index. A general n-gluon
state built from these modes is specified by wave
functions

FIG. 2. Annihilation and self-energy diagrams.

(g) (g)
P(SM)='ga& a&0(SM) +a&(X1) ' +a&(XtV ) ~

(4)
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where (R) and (S,M) denote color and spin, respec-
tively. The relevant cavity modes A are given in Ap-
pendix A.

Now, write the effective interaction Hamiltonian

H;„, in Eq. (1) as, '

H,„,= g H „+gH'"'. (5)

Although we shall compute the effect of the interac-
tion terms H „shown in Figs. 1(a), 1(b), and 1(c),
the self-energies [Figs. 2(c)—2(e)] might be impor-
tant as will be briefiy commented upon later. Using
lowest-order perturbation theory Eqs. (2) and (3) im-
mediately yield

0
H „=H's+H s+H „"=( i)—S~ f dr f dsxd'y(m'n'~A s(x, t)A 's(y, O) ~mn)

+S, f d x(m'n'~A s~ mn)+ST d'x(m'n'~A '"'~mn). (6)

Here X=X' but in general a'+a and a'&a. Thus H~„ is still an operator in color and spin space although for
notational simplicity we suppressed the corresponding indices (aN, az, aN, etc.). The Bose-statistics factor is
Sz ———, for identical modes, and otherwise Sz ——1. The diagrams corresponding to the three terms are shown in

Fig. 2. Now introduce the current and charge-density operators'

j„'=( i)A—'jk gf' (2F——kA' AB Ak)— .

p'=( i)A'p=—gf' FokAk,

where A' is the ath color generator. The corresponding antisymmetrized matrix elements are given by

j „=(m
f j [n) (n

f

—j fm),

p „=(m /p/n) (n —]pfm) .

(7a)

(7b)

(8b)

(10)

(1 lb)

After some algebra and after carrying out the t integration one gets

H s =—A' A', Ss f d x d y [j ~(~x)D(x, y;co)j,„(y)+j (~x)D(x, y;coj)„~(y)],

H „=—A' A'„Ss f d xd y[p (x)Dc,~(x, y;co)p«(y)+p „(x)Dc,„~(x,y;co)p„(y)],

where the "exchange" term j~„j„~is absent for identical modes. Here the "confined" propagators D and Dc,„~
differ from the "free" ones by boundary terms. ' ' Instead of using explicit expressions for the cavity propa-
gators, we follow the original MIT approach and directly calculate the potentials '

a „(x)=—f d yD(x, y;a))j „(x), (1 la)

4mn(x)= —f d 3'Dcoul(" y'~)pmn("}

subject to the boundary conditions

r" (V'X a) =0, (12a}

da
dt

'
. on the surface .

r V/=0,

(12b}

(12c}

%e can then write H~„as

„=—A'A'„S, f d x[j~~(x}a«(x)+.j~„(x) a„~(x)]—A~A'„Sz f d x(mn ~H s(x,O) ~mn)
bag

+AmAnSB f d'x[p~~(» )4«(x )+p~.(x )0.~(x }l (13)

Since we consider the lowest TE and TM modes
only, there are just three possible combinations
(TE)(TE), (TE)(TM), and (TM)(TM). The wave
functions (A ) are given in Appendix A, the rele-

vant current and charge densities ( j and p) (as cal-
culated in Appendix C) in Table I and the corre-
sponding potentials (a and P) in Appendix D. Sub-
stituting all this in Eq. (13) we get (see Appendices
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TABLE I. Current and charge densities j „and p „for I=1 gluon modes.

TE-TE EE R3g, j&'(xEp)~XS
pXE

EE R 2—2g -j) (xEp)(U ——,I)
XE

1VM R NM RTM-TM g—,[4j, (x~p) j, {x—~p)]rXS 2g j,(x—Mp)[J'2(x~p)+4j p(xMp)]U
pXM XM 3

+ 3
[J'2 (xM p)+2J'p'(xM p)]I

TE-TM
NENM—g R [f2(p)[r(r" S) ——,S]
XEXM

XEXMR(XE+XM)—lg j&(XEP)
3XEXM

+j,(p)T+fp(p)S] + [2J'p(xM p ) —j2(xM p )]r ' S

+b,E(self)+b, E(ann) . (14)

E and F) the general result

a a as +, +

H~„= —A1A2 (a~„S1 S2+b~„T12+cm„I12)mn

a a
HMM A1A2[ MMS1 S2+bMM( 12 4I12)]R

aMM
——a+M +a+M ——0.247,

bMM ——bMM' ———0.007,

(17)

For specific color-singlet glueball states, this be-
comes the following:

(i) (TE) glueballs

as a a
HEE ~ A1A2[aEESI'S2+bEE( T,2

—4I12)],

aEE =aE)+aE) =0.263,

bEE =bEE" = —0.041;

= 2where a, =g /4m, S is the spin operator, and T12 is
a symmetric tensor operator in spin space which can
be given by

T12 ——2[(S1 S2) —I12]+S1 S2 . (18)

We will also quote some results for (TE) glue-
balls, noting first that the annihilation diagrams il-
lustrated in Figs. 2(a) and 2(b) now can contribute.
These are calculated in Appendix F, and then for
this fourth case, we obtain the following:

(iv) (TE) glueballs

(1i) (TE)(TM) glueballs

as
~1~2 EM S1 S2+bEM ~12R

CXs

HEE ——— aEE $ A;A S1 S.
l (J

+ CEM
CEE +CMM

+bEE 18I12+ g A,'AJ T(&

2bEE 2bMM I12

0!s
dEE ~ ~SA~1

(19)
aEM ——0.2S5,

bEM ———0.017,

cEM & (cEE+cMM) =+0.077;

(iii) (TM) glueballs

(16) dEE ——0.529

with aEE and bEE given above.
The above expressions for the energy shifts are

gauge invariant. %e have included the static
Coulomb self-energies. In addition, there exist the
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TABLE II. The coefficients a, b, and c for the various cases. (The undetermined constants
in e are not indicated since they self-cancel for color-singlet glueba11 states. ) The notation
C= + refers to the symmetry of the color wave function in the (TE)(TM) case. Energy shifts
are given by

b, E=—A;Az —'[aSi S2+bT~]+cI,z]+b, E(self)+b, E(ann) .
R

See text, Eq. (14).

(TE)'

(TM)

(TE)(TM)
C=+

(TE)(TM)
C=—

3g
4g

Coul

Total

3g
4g

Coul

Total

3g
4g

Coul

Total

3g
4g

Coul

Total

0.34069
—0.07762

0.263

0.32788
—0.08084

0.247

0.36197
—0.03432
—0.07287

0.255

0.21091
—0.01144
+0.07287

0.272

—0.04076
—0.041

—0.00715
—0.007
—0.07725
—0.01074
+0.07130
—0.017

0.07725
0.01074

—0.07445

0.014

—1.15490
—1.155

—1.5333
—1.533

0.15794
—0.02568
—1.39727
—1.265
—0.15794

0.02568
—1.10581
—1.238

magnetic and the nonstatic Coulomb contributions
to the self-energy. The magnetic and electric fields
leading to these contributions satisfy the bag boun-
dary conditions with no difficulty. Nonetheless, cal-
culating them ab initio is technically difficult and
must for now be deferred. Some work has been re-
ported on the full self-energy calculation for
ground-state quark modes. '

As explained in Appendix B, the general form of
the effective Hamiltonian involves three linearly in-

dependent tensors in two-particle spin space.
The above results expressed in the tensors S~ S„and
T „can easily be transformed to any other basis by
using the formulas in Appendix B.

Note added. It a~pears more common' to use a
traceless tensor T& T2 related to ours by

T)-Tp ———,T)2 ——,I(2 .

If we write

and
2c=c+ b. —
3

The (TE)(TM) coefficients listed in Table II are
valid for the 1 + as well as the 0 + and 2 +. If
we are interested only in the latter two states, then a
shuffling of coefficients is allowed,

a~a'=arbitrary=a +(a' —a),
b ~b'=b +(a' —a),
c~c '=c —2(a' —a) .

This facilitates showing agreement between our-
selves and Ref. 5 (as corrected), where the results are
only applied to the 0 + and 2 + states. (See also
Appendix 2 of Ref. 18.)

bE= —A;A2 [a Si.Sz+b Ti T2+cIi2)
R

+ b E(self) +b E(ann),

then

a =a, b=2b

III. LEVEL SPLITTINGS
IN LOW-LYING GLUEBALLS

We close by using Eqs. (14)—(16) and (18) to get
the energy shifts for the lowest-lying glueballs, made
from the lowest-lying 1=1 TE and/or TM modes.
The relevant states are the color singlets
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O( 7)+
2(T)+

—3
—3

—2
1

TABLE III. Expectation values for the operators

A~A&, S~ S~, and T~~ for the lowest-lying glueball states.

A)Ap S) Sp ~12

self-energies are different for different gluon modes
(most successful bag calculations for quark-based
hadrons have quarks only in the lowest state so the
mode dependence is often not mentioned). Glueballs
containing gluons in the same mode have, of course,
the same self-energies to the extent that the radii are
the same. Thus one can for example predict

(i) (TE) J =0++ 2++

(ii) (TE)(TM), J =0 +,2 +,
(iii) (TM) J =0++,2++

(20)

for which the expectation values of the operators
A&Az, S& Sz, and T~z are listed in Table III. Thus
we have

M —M =hE —AE =2.45

(22)

Further predictions are possible after considering
the vacuum-0++ mixing and the self-energies; this
work is sufficiently extensive to be reported
separately.
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With an increasing amount of group-theoretical
labor similar calculations can be performed for a
general n-gluon state. For (TE)3 glueballs, we have
J =0++, 1+,and 3+ and

APPENDIX A

The wave functions for the lowest I= 1 TE and
TM modes with P= + and P = —,respectively, are
given by

(iv) (TE), bE ++ =1.33 A~(r, t) = — j~(xsp)(r &(e~)e, (Ala)
NE

hE, + =0.28 (21d) A (r, &) = [jz(xsrP)(~, r"——,e~)

= 1.74

There are two dangers in obtaining the splittings
among the physical glueball states by simply adding
the above energy shift to the lowest-order terms
One is that there will be mixing between the listed
states and the nonglueball states with the same
quantum numbers. This mixing problem is prob-
ably most severe for the (TE) 0++ state, which is
expected to mix strongly with the vacuum. ' The
second uncertainty comes from the O(a, /R) spin-
independent energy shifts and the self-energies. The
value of R, and hence the spin-dependent splittings
[Eq. (21)], depends on these contributions. Also, the

+ —,jo(x~p)e,]e, (A lb)

where

3 1 &E

R jo (xE) xs —2

z 3 XM

8~ R jo (xsr)

(A2a)

(A2b)

also R is the bag radius, co+[~)——x&[~)/R,
xz ——2.744, x~ ——4.493, and p=r/R The spher. ical
unit (or polarization) vectors are denoted by e and
r =r e . The relation to spherical harmonics is
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' 1/2

Y|(Q)=
4m

The corresponding magnetic fields

(A3)
g E(T) q XA E(T)

are given by (t=O)

8 (r)= [2j &(xzp)r" r (—pj's(xzp))(r X(r Xe ))]
XEP Glp

=N&[jz(xsP)(r" r , e —)+—,j o(xx—P)e ], (A4a)

8 (r) = NMj —i(x~p)(r Xe ) . (A4b)

APPENDIX B

In this appendix we define the various operators
acting in spin space and also give some useful rela-

tions.
First consider operators 8'ap acting in one-particle

spin space with (polarization} vectors ea. In addi-

tion to the usual antisymmetric spin vector operator

pressed as

Tiz ——2[(Si Sz) —I|z]+S|Sz . (86)

(S'SJ—, 5'JI), (S'S—J —,5'JI)z=—(S, Sz) ——,I,z,

One can, of course, use other basis than Eq. (84). If
we, e.g., use the "quadrupole-quadrupole" tensor

~A A
Sap= gaea Xep

we also use the symmetric pseudovector

(81)

T tt i(rttrXe ——+r r Xeit} (82)

Ilz 5agys ~

S| Sz——Sap Sys=5as5py —5ay5tts,

(85a)

(85b}

and the symmetric tensor operator

Uap =rar p —,5ap— (83)

r is the a component of the unit vector r . Since
dOT~p ——0 and r.T~p ——0, we can conclude that

T p has purely =2 orbital angular momentum, and
the same holds up for Uatt. On the other hand, Sap
obviously has 1=0 only. A useful expression for
T~p ls

T it=( —i)[(r S)r XS+r XS(r S)] p, (84)

where the order of the spin operators is important.
Next consider scalar (r-independent) operators

i~&~ acting on the direct-product spin space
with vectors e ep. There are three linearly indepen-
dent operators of this type, namely, 5a+ys, 5agtts,
and 5~$5yp A more convenient basis is

aSi Sz+bTiz+c =(a+b}S,.Sz

+2b[(Si Sz} ——,]

+c+—,b, (88)

APPENDIX C

Here we calculate the current and charge densities

j xx, pEE, etc. The current operator in Eq. (7a) can
be written as

j =ig[AXB (A V)A—] . (Cl)

The antisymmetrical expectation value ofj [cf., Eq.
(8)] which is an operator in spin space, takes the
form

p=lg[A XBtt+B XAtt+ P' X(A XAp)] .

where I&2 is understood in the constant terms. In
Appendix E we also need the angular integral

1 4
dQTi Tz —„—5 T|z . ——

4m

Tiz 5s5py+5 Pits, —— (85c) (C2)

where Ii2 is the unit operator, while Ti2 can be ex-
l

(i) The TE-TE current:

E E E EA XBp+8 XA$= —
z jf [(rXe )Xrrtt (rXep)Xrr ]= —2i

z j, r—XS p,
XE P XE P

(C3)
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where the last step follows from Eq. (82) and we introduced the notation j|=ji(xEP),j i
——ji(xMp), etc. ,

2g 2 2g
V'X(A Ap)= j i &X[(rXe )X(rXep)]= i—

z j, rXS ~.
pXE PXE

So for the current j we get (suppressing polarization indices)

2
~ EE NE ~
j =3g

2 j1 rXS.
pXE

(ii) The TM-TM current:

2

A". XBP+B.XAP ———2l-
2 j1 r"XS.P

2 2

V XA XA& ——,V X If(p)[r(r" S &)—S &]—ig(p)S &I,

(C4)

(C5)

(C6)

(C7)

where f (p) and g (p) are defined as

f(p}=—,iz (2jo —i 2

g(p}=-, (2io —jz }'.
The current j is then given by

~ M'
2=g, (4il iz )r"XS-.

XM p

(iii) The TE-TM current:

(C8a)

(CSb)

(C9)

XE
(Clo)

A p XB~=i R I a&(p)[r X(r XS~p)]+az(p)T~p+a3(p}S(gpI
3XM

where we used the definitions Eq. (81},(83), and (86) and

a&(p)=J2Jo +i zoo —i 2J2

a2(p} J2i 0 i 2i 0

a3(p) (4Joio 2joj 2 2j 2jo +j 2j 2

A XA p —— R jffj 2 r~rpr+ , (2j o jz )r5~~—3(jo—+j 2 )r~e—],
XEXM

(Cl 1)

(C12a)

(C12b)

(C12c)

(C13)

XEXM XMp p P XM

For the current j we thus get

j E~= —g— R Ifz(p)[r(r".S)——,
' S]+f,(p)T+fo(p)SJ

XEXM

where

fz(p)=x~JA +xEizi 2

1»(P}=3x«Jz Jo JzJ2 —2JzJo }, —

fo(P}= 3 (x~J tJi +2xEJoJo —xEJzJz } .

(C14)

(C15)

(C16a)

(C16b)

(C16c)
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(iv) The TE-TE charge:

hT 2~EEXE~E~EXiE
p p=2g A Ap= —2g j) (U p ,—8 —p),

R xE

where U E is defined in Eq. (83}.
(v) The TM-TM charge:

2
2 M2

p.E =2g A. AE=2g [j—2(J&+4jo)U.E+ , (J~-+2jo + p].
R xM 3

(vi) The TE-TM charge:

EM E+ M E, M XE+ M .E M M ~.
PaP =g' A 'A

&
———igNEXMR J'~(2J'o —j2 )r S p.

R 3XEXM

(C17)

(C18)

(C19)

APPENDIX D

In this section we calculate the potentials a and

X Pi (Q)F(' (Q'), (D3)

where ~R =x =xM —xE.
(i) The TE-TE case. From Eqs. (C5), (Dl), and

(D2) we get

2 3
EE NE R 1 E Ea =g —J& (p)+pN& (p) r XS,

XE P

where

J, (p)= f ding j, (xEg),

Nf(p)=a~+ f dg —
j& (xE() .

The constant a I is determined by the boundary con-
dition Eq. (12) and found to be

(D5a)

(D5b)

1. The a potentials

Generally one has

a(x}=f d yD(x, y;co) j(y) . (Dl)

We use the free Green's functions and impose the
boundary conditions later The. currents j and

j have no time dependence and hence the ap-
propriate expression for D ( x, y;co) in Eq. (D 1) is

I

D(x y m)= g (+1 elm(Q)elm(Q }21+1 y',+I ™
(D2)

whereas in the TE-TM case one has

D(x, y;co)= —cog jI(xp )n((xp )

a)= —,J)(1) . (D6)

where

Ji (p)= f, dt's'[4J '«Mk) J2'(x—MC)]

(D7)

(D8a)
1

NP(p)=aP+ f dg [4J' '(x—MC) J'2'(xMk—)] .

(D8b)

The boundary condition [Eq. (12)] gives

M & JM(1)

(iii) The TE-TM case. Here we face the compli-
cation that j is not transverse (V j &0).
Care must be taken because in the Coulomb gauge
the vector potential a z satisfies the equation

—(V' ')-' = 'M= 'M —V
'

V
p2

EM ~j EM (D10)

Note that

EM v yEM (D 1 la)

where coR =xM —xE and P is given in Eq. (D22)
below. A1so

r jl ——0 (Dl lb)

on the bag surface.
Rather than calculating arEM directly we first

compute a™defined by

(V2+~2)~aEM ) EM (D12a)

and then obtain a T from

(ii) The TM-TM case. From Eqs. (C9), (Dl), and
(D2) we get

2 3
M NMR Ma =g, —2J) (p)+pN, (p) r"XS,

3xM P
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~EM ~EM vV ~ vV.~EMaT =a —V 2%a
V

a &M+ P g aE.M+ 'P—yEM (D12b)
CO

I

(This procedure is equivalent to first calculating the
vector potential in Lorentz gauge and then returning
to Coulomb gauge using a gauge transformation. )

We get

a z
——g Rz [jz(xP)Nz (P)+nz(xP}Jz (P)]T

XEXM

+ j z(xp)N (p)+n, (xp)J (p)+, [—,fz(p)+fo(p)] [(r".S)r ——,S]

+ —jo(xp)N (p)+no(xp)J (p)+, [—,fz(p)+fp(p)) S+—&p
N

(D13a)

where

Jz (p)= f dggjz(xg)fz(g), (D13b)
1

N z (p)=a z + f ding nz(xg)fz(g), (D13c)
PJ' (p}= f, 40'[-, jz(xk)fz(k)+jo(xk)fo(k))

(D13d}
1

NET( )= EM+ f dggz[
i

( g)f (g}
P

+no(xk)fo(C)]

(D13e)

Gz(p)= f ding J'i'(xE(), (D16a)

H, (p)=s, + f dg j i (xEg—) (D16b)

Go(p)= f ding ji (xsam),

Hp(p)=sp+ f dggji (xsg) . (D16d)
P

Following the same procedure as above the con-
stants so and s2 should be determined by the boun-
dary condition [Eq. (12)]:

r P'/=0 for p=l . (D17)

(D16c)

This equation gives for the "tensor" contribution to
The constants a 2 and a are determined by Eq.
(12) and given by

sz ———,Gz(1} . (D18)
nz(x)+xn z (x)

a z ——— Jz (1),jz(x)+xj z (x)

a =—. J (1}.~EM i EM

ji(x)

2. The P potentials

(D13f)

(D13g)

For the unit tensor term in P, the condition (D17) is,
however, identically fulfilled, which means that the
constant so remains undetermined. This is related
to a residual gauge freedom as discussed in the main
text.

(ii) The TM-TM case Using .Eqs. (C9), (Dl), and
(D2) we get

Generally one has

P(x)= f d yDC,„~(x,y)p(y) . (D14)

(i) The TE-TE case. Here both the 1=2 and 1=0
waves in Eq. (D14) contribute and we get

N R
=2g — G(p)+p H (p—) U

XE 5 P
J

—Go(p)+Ho(p} I2 1 E E
3 p

where

NM' R' 1=2 ——G (p)+pH ( ) U
xM 3 5 p3

+ —Gp (p)+Ho (p) I
P

J

(D19)

(D20a)

(D20b)

(D20c)

where

Gz (p)= f, d(A(xMk)

Hz (p)=sz + f dg g(x~g), —

Gp (p)= f dg'g h(x~g),
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Ho (p)=so + f dggh(xMg),

and

(D20d)

g(xMg) =j z(xMf)[Jz(xMf)+4j o(xM()] (D20e)

h(xMg) = —,[jz (xMg)+2jo (xMg)] . (D20f}

Again only s~ can be determined by the boundary
conditions [see Eq. (D17)]. One finds

M & GM(1) (D21}

(iii) The TE-TM case Fr.om Eqs. (C19), (D2),
and (D14) we get

HE3g AaAu d3x J
EE.a EE

bag

0.'s=—A1Az aEtS1'Sz
R

where

(E2)

=0.341 (E3a)

with

aE$= , yE f—dpji (xEp) J~ (—p)+p Ni (p)
0 p

EM .g 1 3 E+ M 1 EM—,G, (p)
XE&M P

SmNE~R4

3xE
(E3b}

+pHi (p) r S,

where

Gi (p)= f dH'Jl(xE()[2JO(xM()

—jz(xMC)]

(D22)

(D23a}

1

The Bose factor SE ———, was canceled in Eq. (E2}be-

cause of the two identical terms in Eq. (9). The
four-gluon contribution HE/ is given by

H5= A', A—z2 f d x 1 i(x) ~ 1 z(x)
bag

s 4 ~
aEfSi Sz,R

where
I

(p)=&i + f dpi(xEk)[2J o(xM4)'

—jz(xM()] . and

l, (x)=2A.'XA$ (E5)

s i is determined by Eq. (12) to be

sEM 2GEM(1)

(D23b)

(D24)

aEi —
. g yE f, dpp'j i'(xEp}=—0.078 . (E6}

For the Coulomb part one gets

HEE (int) =A;Az fd x p
APPENDIX E

Here we calculate the quantities a, b, and c occur-
ring in Eqs. (14)—(16). In general, they get contribu-
tions from three sources: the three-gluon, four-
gluon, and Coulomb terms, e.g.,

as= —AiAz (bEE Tiz+CEE Tiz) .

(E7)

We may write (D15) as

a =a g+a I+a '

1. TE-TE

From Eqs. (13), (C5), and (D4} one obtains

(El)
g s +yEE g SE+yEE4 NER E

&E 4mR

(E8)

and then get

1

bEE" = ——„xE'yE f dpj, '(xEp) G, (p)+p H, (p) = 0—041—. (E9)

and

1

c EE =So TbEE 4xE'YE—f dp J,—'(xEp) [pGo (p)+p'H o(p)] =So 1.155, — (E10)
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where Ho is Ho without the sp term. In getting the
last equation we have used

fd'xp (x)=fd'x p (x)=g . (Ell)

static Coulomb self-energy is then

HEE" ———3 bEE" (4Il2
—Tl2 )

R
(E13)

The constant So is not determined, but it gives no
contributions to the energy shifts of color-singlet
glueball states. In fact, if we restrict our attention
to color-singlet (TE)" states, then cEE"' itself gives no
contributions.

We can conveniently here calculate the static
Coulomb self-energy diagrammed in Fig. 2(e). This
is most easily done by appropriately contracting the
indices on Tl2 and Il2 in Eq. (E7), letting
AlA2~A; =3, where i stands for one of the gluons,

1

and remembering a factor of —,. Then for each

gluon, we get

HEE"'(self) = ——,Al (4bEE" +c EE"')Il2 .

(12)

The sum of the Coulomb interaction energy and
l

HEE" = — bEE 6nIl2+ g A,'Aj'T J.

1+J

(E14}

for (TE)"states.

2. TM-TM

As above, one gets

Hy3 AaAa d3x j MM. a MM

bag

as= —AlA2 agMSl S2,
R

where

(E15)

for (TE) states (note that this is zero for the 0++)
and

1

alL= —,YM f dp[4j, '(xMp) —j2'(xMp)) J& (p)+p—'N, (p) =0.328,
0 P

(E16}

with

also

8nNy-R
23x~

4 a a 3-
H3IM = —A;A22 d x 1 l 12 = —AlA2 asIMSl'S2,

bag R

(E17)

(E18)

with

1 l (x)=23 &&Ap .

One obtains

(E19)

1

ASM = — 'YM
o dpP [2Jo(xM P} J2(xM p}] [4J—o (xM p}+4Jo(xM p)J2(xM p}+3J2 (xM p}]= —0 081,

36

For the Coulomb part one obtains
(E20)

HCoul(lnt) AaAa f d3x MMyMM AaAa ~ (bCoulT +& CoulI )
R

As for the (TE) case we may write

yMM g SM+y MM

4+R

where P™is P without So (and Ho will be similarly related to Ho ) and proceed to get

1

vs YMxM f, dpp J2&xMP)[J2(xMP)+4Jo(xMP)] —,62 (p)+p'H2 (p) =—0.007,p'
1

c MM So 3 bMM 3 xM YM f dp[j 2 (xMp}+2j o'(xMp)][pgo (p}+p'Ho (p}]=So —1.533 .

(E21)

(E22)

(E23)

(E24)
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Again, the constant S0 is not determined, but does
not contribute to energy shifts of color-singlet states.

The expressions for the static Coulomb self-
energy and the sum of static Coulomb self-energy
plus Coulomb interaction energy are

TE,a,a

TM, c, y

TE,b, P

TM, d, 8

TE,o, a

TM, c,y

TE, b, P

TM, d, g

Hpfsr'(self) =——,A; (4bMM'+ c sr'')I &2 (E25)

for each gluon,

(o) (b)
FIG. 3. Labeling for (TE)(TM) pairs. Latin characters

are for color and Greek characters are for spin.

Hsrsr = —3 bMM (4I)z T(z—))lQ s CoU1

R

for (TM), and

(E26)

. EM ME 3 . EM MEdx ]T 'ar = dx J 'az.

-. EM ~E -1 -~Edx j a +V Va
N

HMhf ——— bMM 6nI12+ $ A~IAJ Tfj.
1 +J

for (TM)".

(E27)
and that

ME EM
ayp = apy

3 EM ME (E29)

(E30)

3. TE-TM

From Eqs. (13), (C15), and (D10) one obtains

(E28a)

—:A1A2 (azgS I Sz+bzgTD + c sMI)g) .
R

(E28b)

The labeling implied for the color and spin indices
for the two terms is shown in Fig. 3. Notice that

We recognize the last term in Eq. (E9) as the
Coulomb (or longitudinal electric) energy. In this
case it would be simpler to directly calculate the
sum of magnetic and electric energies. For con-
sistency we quote the results separately as in the oth-
er cases. Also, in this case the 3g energy shift has a
transverse electric contribution in contrast to the
(TE) and (TM) cases.

For the two-gluon (TE)(TM) glueball, the color
wave function is of course symmetric. However, to
allow consideration of (TE)(TM) pairs within multi-
gluon states, we will also quote results for color an-
tisymmetric wave functions. We then need

YFM f, dpp' fz(p)[ j2(xp)& (p)+nz(xp)J (p)]+ 3 [ fz(p)+fo(p) l

+-', fo(p)[jo(x)NE™(p)+no(xp)J' (p)j+ '3 [ ,'f 2( p) +f (op-)]
2X

B=—,'.x7~M f, dpp f~(p)[jz(xp»z (p)+n2(xp»2 (p)l .

(E31a)

(E3lb)

a@/(+)= —,yEM f dp[4J') (xMp) jp (xMp)] —Jf—(p)+p Nf(p) + —,(2 , B)=—D 2—864+0.0755, .
0 P

(E32a)

b&g(+) =+
2 (A , B)=+0.077, ——

c a(+)=+(A+B)=+0.158 .

The (+) refers to the color symmetry of the (TE)(TM) pair, and

Sm.WE%MR
4 2

j EM
3XEXM

For the 4g interaction one has

(E32b)

(E32c)

(E33)
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HE4= AiA2 f d~xl 1 i (x}1 2 (x)+ 1 i(x) 1 2 (x)]=—AiA2 (aEQSi S2+bEIIrTi2+cELIi2),R»s R

(E34)

where

I;M( )=&EX&M &M—X&E

Then we find

(E35}

aEQ(+ }= (2+1)=—0.0114(2+1),
24

bEQ(+) =+(—,~ A ——„B)=+0.011,

c~EM(+) =+(—„A+—,B)=+0.026,

where now
1

~ =—1'EM fo dpP lJi(XEP)] [2Jo(XMP) J2(XM—P)]
1B=—1'EM f dpp lJ i(xEP}l J2(xMP)[4Jo(xMP)+J2(XMP)1

For the Coulomb part we get

(E36b)

(E36c)

(E37a)

(E37b)

~Coul Pa~a 3 MM EE+ EE MM+ EM ME ~a~a s Coul S S +~ CoulT + Coull
2 2P 1 2 R EM 1 2 EM 12 CEM 12

(E38)
Note that the first two terms of the integral above would be identical if the gluons individually satisfied the
n E=0 boundary condition. The coefficients are

1

aEM (+} + 7I 1EM(XE+XM) fo dpj i(XEP)[2Jo(XMP) J2(XMP)l[Gi (p)+p'&i (p}]=+o073

(E39a)

1

bEM ( —) 7EMXEXM fo dpJ2(XMP)[ JO(XMP)+j 2(XMP}] 62 (P)+P ~2 (p} EM ( —}
P

= —0.002+0.073, (E39b)

cEM (+)= , (So+So —) , bEM"'(+—)+—,aEM"'(+—)

7EMXEXM fo dpI Ji'(XEP)b Go (P}+PHo (p)]

+ U2 (XMp}+j2o (XMP)]lPGo(p}+p IIo(P)]I
= —,(So +So )—1.2515+0.1457 . (E39c)

Again the undetermined constants So and So are canceled when the energy of a color-singlet state is calculat-
ed.

These coefficients are summarized in Table II.

APPENDIX F

In this appendix we calculate the contribution to
H~„due to s-channel annihilation graphs, Figs. (2a)
and (2b). These contributions can be obtained by
crossing from the t- and u-channel graphs previous-
ly calculated. We note several items before quoting
our results.

(a) The most naturally occurring spin-spin opera-

tor is now (see the labeling in Fig. 3)

S y Sgg ———2P1

where P 1 is the projection operator on spin-1 states.
Projection operators for spin-0 and spin-2 states
may also appear.

(b) Similarly for color, use

A'„A~ ———3P8g,
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where Pz&' is the projection operator on antisym-
metric color states.

(c) The gluon-exchange graphs [Fig. (la) and (c)]
are the sum of t an-d u-channel contributions. To
get the s-channel results crossing we must use only
the t-channel (or only the u-channel} piece. For the
(TE} or (TM) cases, the t and-u-channel contribu-
tions are equal so we can simply divide by 2.

(d) For the Coulomb diagram, the charge densities
vanish identically for the (TE) and (TM) cases; the
results are, for (TE} and (TM),

H „(ann)= — PP„'Pt d „,R

dye ding+
——3aE) = —0.296 —0.234

= —0.529

dMM dJ~——+3atL —0.——312—0.243

= —0.555,

where we have included a term coming from the
four-gluon interaction in Fig. (lb} although it is not
formally an annihilation contribution. Note that di-
agram (2a) gives a positive energy shift as expected
from mixing with a lower-lying, in this case dom-
inantly lowest, one-gluon, state.

For (TE)(TM) we get

Qs
Hzse(ann) = —

Ps& (dEstP't +dg~PoR

+dEMP2 ),

dEhf =de +d 4' +dE~hf

=0.223 —0.079—0.051= —0.354,

dgM =dE~ —0.275,

dE~ ——dg~ ——0.075 .
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