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We present estimates for the hadron masses in lattice QCD obtained in the approximation

of neglecting dynamic-fermion loops. Both light- and heavy-quark systems are considered

and their dependence on the coupling constant and the quark mass is studied. Some results

for the decay amplitudes are also given. We discuss how the g' mass can be computed to
lowest order in nf, the number of dynamic fermion flavors.

I. INTRODUCTION

Recently some numerical estimates for the parti-
cle spectrum of lattice gauge theories' have been ob-
tained using an approximation in which the effects
of dynamic-fermion loops are neglected. This
corresponds to setting nf, the number of fermion
flavors, equal to zero in the fermionic contribution
to the probability measure used in generating
gauge-field configurations by Monte Carlo
methods. From this point of view the method has
the advantage of not having to include in the statis-
tical factor the determinant of the Dirac operator (a
highly nonlocal object) which arises once the fer-
mion degrees of freedom are integrated out. Al-
though several viable techniques have been suggest-
ed for including, at least in an approximate way, the
effects of the determinant, '" they still seem to re-

quire perhaps an order of magnitude more comput-
ing time than a loca1 bosonic action would imply.
Typically the bosonic update requires matrix ele-
ment of fermionic operators which are themselves
computed by a stochastic method with diverging re-
laxation times in the small-quark-mass limit.

On the other hand the inclusion of fermion-loop
effects has been studied in two-dimensional gauge
theories, where it can be shown that, at least for
some quantities, like the average plaquette energy or
the fermion propagator at the origin, the feedback
changes indeed very little. ' ' Simulations in four-
dimensional @CD tend to confirm this picture. In
this case the approximation is justified in the large-
N, limit (where fermion loops are suppressed by a
factor of 1/N, with respect to gluon loops), and ar-
guments can be given for the smallness of these ef-
fects for finite N=3 both at weak (go«1) and
strong (ge »1) coupling. Indeed if one excludes

special cases like the q' mass, which is believed to
arise mostly because of the anomaly induced in the
isoscalar axial-vector current by the presence of
fermion-annihilation diagrams, ' one might expect
that the inclusion of these effects would change
hadron-mass estimates only by a few percent.
Phenomenological considerations can also be given
in support of this statement. It is conceivable that
for the heavier hadrons the inclusion of the loops
will mostly reflect itself into a readjustment of the
unphysical length scale a (the lattice spacing), leav-
ing most mass ratios unchanged.

The plan of the paper is as follows. In Sec. II we
define our notation for the lattice action and remind
the reader of the different ways in which the Dirac
operator can be transcribed on the lattice, and dis-
cuss briefly the advantages and drawbacks of the
various formulations. The two options that we con-
sider are Wilson's form for the action, ' which is
known to avoid the problem of fermion species dou-
bling both at weak and strong coupling at the price
of breaking chiral symmetry completely in the mass-
less case, and the Kogut-Susskind-type form, '

which preserves a chiral symmetry but introduces
four flavors on the lattice for each flavor in the con-
tinuum theory. Since we actually have, in our ap-
proximation, zero flavors we have still avoided a full
confrontation with the doubling problem.

A brief description is then given of how to com-
pute meson and baryon propagators on a finite lat-
tice and the importance of cutoff-dependent correc-
tions to the continuum-theory results. %e will ob-
tain masses and amplitudes by looking at the large-
distance falloff of the propagator, or, equivalently,
its small-momentum behavior.

Our estimates for the hadron spectrum of @CD
(limited to flavor nonsinglets) are presented in Six:s.
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III and IV. We have now considerably increased the
statistics and have analyzed 393 independent gauge-
field configurations, to be compared with the 50
configurations of our earlier work, Ref. 2. Also re-
sults on larger lattices (up to 6 X12 sites) are in-
cluded. We have three parameters that we can vary:
the bare coupling constant go, the quark mass m,
and the size of the lattice. In order to verify that we
are actually computing physical quantities in the
continuum theory, we have studied their dependence
on the coupling go and found agreement with the
scaling behavior predicted by the renormalization
group. (In Ref. 2 we did not follow the
renormalization-group behavior of the masses as a
function of go, since we limited ourselves to

go
——1.) Since our cutoffs (proportional to a ')

vary (exponentially) with the bare coupling, chang-
ing the latter corresponds to exploring different
inass regions in the spectrum. Thus for stronger
couplings we obtain estimates for the lighter had-
rons (m., p, p, . . .), whereas for weaker coupling we
move into the region of charmed states (i)„J/g, . . .).

We will consider in detail the pseudoscalar (0 +),
vector (1 ), scalar (0++), axial-vector (1++), and
tensor (1+ } mesons, some of their lowest radial ex-1+ 3+
citations, and the —, and —, baryon states. The
only parameters we have to use as input in. our cal-
culation are the lattice spacing at a particular value
of go (it sets the absolute scale for the masses), as
determined, e.g., from the Regge slope or the p-m.

mass difference, and the quark mass (m„, md,
m„. . .). Since this last quantity is not known from
experiment, we will trade it for a physical mass like
the pion mass, and from the latter estimate the
quark masses.

In Sec. IV we will give our results for the decay
amplitudes, which can be extracted from the meson
propagators. The amplitudes can then be used to es-
timate, for example, leptonic decay widths.

Finally in the last section we show how to com-
pute the mass of the g' to lowest order in nf,

without having to include the effects of dynamic-
fermion loops in the simulation.

II. DESCRIPTION OF THE METHOD

We will write the lattice QCD action (for one fer-
mion flavor) as"

S=SG+Sp,
1

SG ——
z Q Tr(Un@Un +y„v Un +v,pUnv) ~

2gO n, p, ,v~I

S~=kg/„[(r y„}U—„„P„+„
n, p

+(r+y„)U„„,„P, „]

g4.P.—~ (2.1)

m=1/2k . (2.3)

The continuum Dirac fields and related to the above
lattice fields by

g„„,(na) =(2k/a')'~ f„. (2.&)

It is instructive to look at the free-fermion propaga-
tor obtained from SF (with U = 1),

Here SG is the pure gauge action, go is the bare cou-
pling constant, and the U„„'s are 3)&3 complex ma-
trices, elements of the group SU(3). SF is the fer-
mion action with four-component spinors P,f. It
depends on a parameter r that interpolates between
Wilson (r =1) and Kogut-Susskind-type (r =0) fer-
mions, and on a hopping constant k (in general dif-
ferent for different flavors) related to the bare quark
mass by

m =in[1+ —,(1/k —1/k, )] (2.2)

1

and k, = —, for go ——0 (free fermions) and r =1,
whereas for r =0 the fermion mass is

—~«(2n )4 1 —2ikgy&sinp&a 2krgcosp&a—
P P

(2.5)

For r =1 (in fact for any r&0) there is no symmetry
that prevents k, from getting renormalized"
but the dependence of k, on go is not known except

I
around go

——0 (k, = —,) and go= 00, (k, =—,). In this
formulation one has, in order to approach the mass-
less limit, to adjust k so as to at least partially cancel
the mass term with the r-dependent counterterm. In
this formulation the chiral-symmetry-breaking

I

terms are of order (pa) for small pa, and give im-

portant contributions only for momenta of the order
of the cutoff. We therefore expect reliable estimates
of large-distance behavior of correlation functions
(determined by the pole in momentum space) as op-
posed to more local quantities like (fg), the fer-
mion propagator at the origin, which should at least
require a subtraction.
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4n =&.T.

T„=(y)) "(y2) (y3) '(y4) ' .

(2.6)

The fermionic action then becomes (after rescaling
the fields by V'2k)

SF gg„[——(D„p)„+(—) "(D 1t )„+(—)
" '(D,f)„

+( )'—*(D,f)„+mg„], (2.7)

where D& is the covariant version of the central first
derivative 8&. In this framework there is no prob-
lem in computing a local quantity like ($1(t), but,
because of the increased lattice periodicity (2a in-
stead of a), in the case of the staggered fermions a
larger lattice in the "time" direction is required in
order to extract masses from the exponential decay

For r =0 the theory has a full chiral symmetry,
but is known to describe 16 flavors instead of 1.' '
By an appropriate canonical transformation the fla-
vors can be reduced to four, maintaining at the same
time the invariance of the theory under a set of
chiral symmetries. Qne sets

4n = Tn&.

of the correlation functions. The separation of
operators with different spin-parities seems also
slightly more cumbersome in this formulation, espe-
cially for baryons.

Since P and P are anticommuting variables, they
are not suited for numerical simulations. After in-
tegrating them out we get an effective probability
measure for the gauge fields

dp[U) =e [det(8+ m)] ~dUH, (2.g)

where 8+m is the lattice Dirac operator and dUtt
is the Haar measure for the group SU(3). The ef-
fects of the fermion determinant can be included in
a Monte Carlo simulation by using the methods of
Ref. 7. Since the procedure is rather time consum-
ing, we choose to set as a first approximation
ny ——0 . In this way the feedback of the fermion
dynamics on the gauge-field configuration is ig-
nored.

Once a set of gauge-field configurations have been
generated, e.g., by the Metropolis Monte Carlo
method, ' (Pg) and the correlation functions of
composite operators that do not have the flavor
quantum numbers of the vacuum are computed by
averaging appropriate fermionic Green's functions,

( P(0)I'g(0) =fdp[A]Tr[1 G(0,0;A )],
(q(x)rq(x)y(0)ry(0)) =fdp[A]Tr[G(x, OA)I G(O, x;A)I ],
(P(x )g(x)P(x )f(0)g(0)g(0) ) =fdp[A]Tr[G(x, O;A )G(x,O A )G(x,O A )],

(2.9)

where we have suppressed flavor, spinor, and color
indices, I is a y matrix (in the case of the Kogut-
Susskind fermions it is a suitable linear combination
of factors ( —)", the components of n being either
zero or one) and G(x, O;A ) is the inverse of g+m in
a background A& gauge-field configuration. For
operators that do have the flavor quantum numbers
of the vacuum (i.e., J=S=B=0) additional contri-
butions to the propagator are present in the form

& P(x, t)=[(—)'8+m]P;(x, t)+ r)(x, t ),
i =1,2, (2. 12)

vhere g is a Gaussian stochastic white noise

((q(x, t)g(x', t')) ) =25(t —t')5(x —x')

and the average (( ) ) is over the noise. One then
obtains

fdp[A]Tr[G(x, x;A )I G(0,0;A )I ] . (2.10) lim ((P&(x,t)Pz(y, t)) ) =G(x,y;A) . (2.13)

(8+m)G(x, OA)=5(x) . (2.11)

In the Langevin approach " one writes down the
equations

The propagator G(x,O;A ) can be computed using
the Monte Carlo (MC) method [some care is needed
since 8+m is not a positive-definite operator; a
suitable action is

~ ~(P+m)P~
~ ], the Langevin equa-

tion or the relaxation method. When using the re-
laxation method to compute correlation func-
tions ' ' one has to solve the equation

The stochastic methods (MC and Langevin) are par-
ticularly useful for local quantities because of their
speed, whereas the relaxation method has some ad-
vantage when computing the large-distance behavior
of correlation functions since it does not superim-
pose intrinsic fluctuations on the gauge-field varia-
tions. Typically the calculation of the fermion prop-
agator with one source point fixed to a precision
which is at worst one percent takes an amount of
time comparable to several hundred MC sweeps.

As was done in Refs. 2—5 it is actually convenient
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to define a new correlation function obtained by
summing over space positions. Define

Mr(x, O) = (g(x)1 g(x )i((0)I P(0) ) .

Then the propagator

(2.14)

Mr (t,0)=+Mr(x, t;0) (2.15)
X

projects out the zero-momentum state, and the
large-time behavior is given by

(2.16)Mt (t, O) = Ae
f~ oo

where m is the mass of the lowest state that is creat-
ed from the vacuum by the operator QI i(. For t not
too large one expects that additional higher-mass
states that can be excited from the vacuum by the
operator gl g will contribute subdominant correc-
tions

Mi (t,O)=+A„e (2.17)
n

We will exploit this circumstance to compute radial
excitations of the mesons.

Because of the periodic boundary conditions im-
posed on the system the behavior of the correlation
functions Mr on a lattice of extent L in the time
direction is expected to be of the form

M„(t,O)~ '+A ' "—+——
(2.18)

We will take these corrections into account when we
estimate masses.

To generate the gauge-field configurations we
used the Metropolis Monte Carlo method' with ten
hits per site. Between 3000 and 4000 MC sweeps
were used to allow for the system to reach thermal
equilibrium. The size of the lattice was 5&5&5&(8
in most cases, and 6)& 6)&6)& 10 and 6&6)&6g 12 in
a few cases, except for four checks on the masses
done on a 4X4&&4X6 lattice. The large size of the
lattice in the time direction was necessary in order
to separate the uninteresting short-distance pertur-
bative contribution (x '""s") from the large-
distance exponential decay, and also to decrease the
effective temperature (T= 1lL,) of the system. In
each run the meson and baryon correlation functions
were averaged over several (6—10) configurations
separated by mostly 100 MC sweeps. Both ordered
and disordered starting configurations were used at
the three values of P (P=6/go ) explored in more
detail (P=5.6, 6.0, and 6.4). At each value of P we
used between three and four completely statistically
independent configurations (in Ref. 2 we had only
used one starting configuration, on which, then, suc-
cessive MC iterations were performed). In part this
was done in order to reduce the statistical correla-
tions present between successive configurations in

the same MC run, which we found surprisingly to
be rather strong, accounting for 10—20% systemat-
ic effects on the masses. When using the relaxation
method the source point was chosen at random and
the number or relaxation iterations was 100/500.
Typically the correlation function G(x,O;A) was
evaluated to a relative precision of one part in 10 at
the midpoint (t =L,l2) or better in the mass region
we have explored (with the exception of the points at
P=6.0, k=0.1525 where the convergence is some-
what less accurate). For small fermion masses
[m~ & 3/S, where S is the spatial or transverse ex-
tension of the lattice, m & 0.1, or
(k —k, )/k, &5)&10 ] the relaxation method starts
to converge more and more slowly and fluctuations
in the density of eigenvalues of the matrix 8+m be-
come increasingly important. (See discussion in the
next section). We have therefore tried to limit our-
selves to a region of masses where the fluctuations
are still contained.

III. HADRON-MASS ESTIMATES

We will now present our results. In the case of
the Wilson fermions we have computed the masses
of the (flavor-nonsinglet) pseudoscalar (I =y&,J =0 +), vector (y„,l ), scalar (1,0++), axial-
vector (y5y&, 1++), and tensor (o'qv, l+ ) meson1+ 3+states and of the —, (octet) and —, (decouplet)
baryon states, as a function of P=6/go and k (or
m). The number of (almost) independent gauge-field
configurations in each case is shown in Tables
II—IV for each (P,k). For small quark mass an in-
creasing number of configurations is needed in order
to get reliable estimates of the masses. This is be-
cause correlations within a gauge-field configuration
become increasingly important. The qualitative
behavior of k, (P) as obtained by studying a
2g2&(2g4 lattice is shown in Fig. 1. E, is deter-
mined by the vanishing of the pion mass or the ap-
pearance of a zero eigenvalue in g+m. At P= 0o,

1 1k, = —, and for P =0, k, = —,. It is known that the
crossover region in the pure SU(3) gauge theory is
around /3=5. 3 and beyond this point the string ten-
sion starts to follow the asymptotic-freedom predic-
tion. ' From the string-tension data of Refs. 6 and
25 we get an estimate for the cutoff a(P), using as
input the Regge slope a'=0.90 GeV. This last
quantity is related to the string tension T (in a rela-
tivistic string model) by T = I/(2ma'). We shall use
therefore V T=420 MeV. Table I contains, for the
values of P we have studied the values of the cutoffs
and of the scale parameter Ao of lattice QCD,
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0.26

0.24

0.22

0.20

O. I 8

O. I 6

O. I4

I

329
(P=6.0), and 5 (P=6.4). The details on how the
masses are extracted from the correlation functions
and the error estimates will be discussed in the fol-
lowing paragraphs. At P=5.6 we have good con-
trol over the light-meson and baryon masses. I.et us
tentatively try to fit all the masses by linear plus
quadratic functions of m. This is of course not the
only way to analyze the data. We will later
reanalyze the same data at all three values of P in a
different way, that will not rely on any fitting pro-
cedure, in part to check the consistency of our re-

sults. We estimate k, =0.175 and for small m we
can fit the data by

O. I 2
0.0

I

0.5

(I/8)(I+O. I279 )
I I

I.O l.5 2.0

2
—r1/2ro' 1Ao= ('Yogo } e"p

a 27ogo

I/g
FIG. I. Qualitative behavior of k, as a function of

1/gp . The expected strong- and weak-coupling behavior
is also shown.

mp ——4.3ma '+O(m ),
m '=07« '+3 orna '+

m~ —1 10a
—+3 3ma +

mz ——1.6a +2.9ma '+
mT ——1.7a +2.8ma '+
m„2—mi i=2.0a +O(ma '),
my —my =2.5a +2 2=

(3.3}

yo ——
3 (N/16m ),

yi ———,(N/16m. )

(3.1)
m~ ——1.0a '+5m+0(m a),
m~ ——1.35a '+3.9m+

(with N =3), and the corresponding values of AMoM
(MOM refers to the momentum-subtraction scheme)
obtained by replacing go by goMoM (Ref. 26),

6 6
2

—2.741,
gOMOM go

(3.2)

and multiplying the Ao by ~. We decide that Ao and
v T are related by Ao-0.0078 v T (Ref. 25) (which
corresponds to AM~M-205 MeV and AMs-70
MeV, where MS refers to the minimal-subtraction
scheme). The table contains also the corresponding
anomalous dimensions (3as) /", with

as ——3/2m(P —2.741), that will be used to compute
renormalization-group-invariant quantities.

Our results for the masses are reported in Tables
II—IV and are shown in Figs. 2 (P=5.6,), 3 and 4

and at this value of P a '=915 MeV (from the
string-tension data or from the p-m splitting). The
statistical error in the data for the masses is of order
ten percent (slightly better for the P, V states and
slightly worse for the S,A, T and baryon states}.
Also, finite-size effects seem in our case in general
to lead to an overestimate of the mass. Especially
for the nucleon and b, there are in addition sys-
tematic errors due to the small box size at this value
of P (see the discussion below). For the radial exci-
tations the error is around 30%.

At P =6.0 the masses seem to scale in agreement
with the predictions of the renormalization group:
they become smaller in lattice units. We find
k, =0.158 and a fit to our data with increased statis-
tics (for details see Table III) is given by

TABLE I. The QCD scale parameter in lattice units, the inverse lattice spacing (the high-
momentum cutoff being m/a), an anomalous-dimension factor, the size of the box in the space
direction in fm, and the inverse size in the time direction (the effective temperature in MeV),
as a function of P=6/go'.

Ap ~MOM a —1
( 3~ )4/11 L, =5a I, '=(8a)

5.6
6.0
6.4

0.00362
0.00235
0.00149

0.231
0.151
0.098

915
1380
2050

0.78
0.74
0.71

1.1
0.73
0.49

110
170
260
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TABLE II. Masses (in lattice units) of the pseudoscalar, vector, scalar, and axial-vector

mesons and spin- —, and spin- —, baryons as a function of k at P=5.6. The second column lists

the number of configurations used.

0.120
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170

Conf.

3
6
3
6
3

16
13
36
36
3

mp

2.30
1.96
1.84
1.70
1..58
1.37
1.31
1.08
0.82
0.72

mv

2.31
1.98
1.86
1.74
1.62
1.44
1.42
1.27
1.08
1.01

2.85
2.19
1.95
1.80
2.05
1.82
1.88
1.43
1.32
1.1

mg

3.00
2.22
1.83
1.75
1.98
1.71
1.91
1.53
1.34
1.4

mN

3.81
3.43
3.13
2.90
2.95
2.44
2.32
1.91
1.71
1.4

3.82
3.44
3.14
2.93
2.99
2.50
2.35
2.01
1.86
1.7

mp =3.1ma '+3.6m2+O(m'),

mv'=o 30a '+2.3m+0(m'),

ms ——0.5a +2.3m +2 — —2

0.65a 2+2.3m +
mT ——0.7a +2.3m+2= —2

mp —mp ——1.0a +2 2= —2

mv' —mv =17a +'''2 2= —2

(3.4)

mv —mp ——0.17a

ms —m p ——0.6a2 2= —2

mg —mp ——0.8a2 2= —2

mT —mp ——1.0a2 2= —2

(3.5)

heavier-quark systems. For k, we find =0.156 and
in the region of the charmed states (r)„J/f, . . .)

which corresponds to m=0. 43a ' (k=0. 133) we

find

g~ ——0.7+3 5m+. . .

m~ ——0.9+3m +
with again a statistical error in the data points of or-
der 10 to 20%, except for the radial excitations P'
and V' for which the error is of oder 30 to 40%.
We note that because of the higher statistics we have
now been able to separate more accurately than in
Ref. 2 the different terms in the expansion in m. At
this value of the coupling constant a '=1380 MeV
and the box size is therefore =1 fm.

For P=6.4 the cutoff is rather high a '=2050
MeV and we expect to get reliable estimates for

ms =(3cxs ) m (3.6)

is, and we shall use this quantity instead. To take
data at different values of P is crucial in order to.
test if we are in the scaling region where the hadron

with a 10—20% error on the mass difference, except
for the last, mass difference for which the error is
more around 30%%uo.

When we multiply the dimensionless masses by
the appropriate power of the lattice spacing we ob-
tain formulas that express the physical hadron
masses in terms of m. This quantity is not a
renormalization-group invariant but

TABLE III. Same as in Table II, but at P =6.0.

0.100
0.120
0.125
0.130
0.135
0.140
0.145
0.1475
0.150
0.1525

Conf.

3
6
3

16
16
26
26
26
31
12

mz

2.64
1.97
1.69
1.63
1.48
1.13
1.01
0.89
0.75
0.68

2.64
2.02
1.70
1.65
1.52
1.18
1.08
0.97
0.90
0.80

ms

2.65
2.02
1.82
1.81
1.59
1.38
1.18
1.13
0.96
0.82

2.65
2.08
1.87
1.83
1.62
1.43
1.31
1.23
1.10
0.96

4.20
3.19
2.60
2.59
2.21
1.72
1.57
1.35
1.32

4.20
3.20
2.61
2.61
2.23
1.76
1.65
1.46
1.44
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Conf.

TABLE IV. Same as in Table II, but at P =6.4.

0.130
0.135
0.140
0.145
0.150

23
27
27
13
13

1.60
1.39
1.24
0.92
0.6

1.62
1.45
1.33
1.03
0.7

1.86
1.66
1.37
1.04

1.90
1.78
1.50
1.04

2.70
2.23
2.0
1.5

2.71
2.26
2.05
1.6

O. I 2
I

O. I8
(

masses (if measured in GeV at a fixed value of
renormalization-group-invariant mass ma or of the
pseudoscalar mass) are P-independent.

Now . in order to transform the data (Tables
II—IV) we have obtained into hadron inasses in
MeV we have to analyze them. Of course the final
result will depend on the prejudices of the analyzer;
in certain cases we will be able to give a definite pre-
diction for the masses, in other cases we will show
the compatibility of our results with the experimen-
tal situation in the real world.

As usual our data are affected by two sources of
error: statistical and systematic. The masses on the
graphs are computed using the average value of the
correlation function of the operator with the same
quantum numbers as the particle. For the baryons
we used their SU(6) wave functions in the time
direction. The masses are estimated by fitting the
correlation functions at the largest value of the time

t =L,/2 to A cosh(L /2 —t)m for mesons and

A exp( —tm) for baryons. The difference between

baryons and mesons is due to the fact that in the fer-
mionic propagator at zero spatial momentum in the
higher components positive-parity states propagate
in the positive time direction and negative-parity
states propagate backwards. The baryon propagator
should be fitted to

A+ exp( tm+ )+—A exp[ (L, t )m —]—. (3.7)

We see clearly from our data that m &m+ and
therefore the contribution proportional to A can be
neglected at t=L/2 (we have not attempted to give
a precise estimate of m —m+). In producing the
fits we have tried to include the effects of the excit-
ed states. This gives rise to a small downward
(-5%) shift in the meson masses, but overall al-

ready the simple one-hyperbolic-cosine fit gives
reasonable results, which is not unexpected since ex-

perimentally it is known that the radial excitations
are high in mass for the mesons. On the other hand

a two-mass fit is mandatory for the baryons, for
which the simple exponential fit tends to overesti-
mate the masses by as much as 20—30%. Again

O. I 2 O. I4 O. I 6
I

= 6.0

O. I 8
I

N
—

I

-0

I I I I
P

0.8 0.6 0.4 0.2 0.0

FIG. 2. Meson masses squared and baryon masses (in

lattice units) as a function of k and the quark mass rn [de-
fined in Eq. (2.2)] at P=5.6. P (0), V (6), S (+ ), and

()&) label pseudoscalar (J~=O +), vector (1 ),
scalar (0++), and axial-vector (1++) states. N and 4 (~)

label the nucleon ( ~ ) and b, ( ~ ) states.
1+ 3+

A

S

I I I I P
0.8 0.6 0.4 0.2 0.0

—0

FIG. 3. Same as in Fig. 2 bui at P =6.0.
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FIG. 4. An enlarged view of the small-mass region at

P =6.0. Notation as in Fig. 2.

6 V~
'

CC 6C exp( mL )/L, — (3.8)

where Vis the Yukawa potential between two 8 par-
ticles at rest and is a function of the distance. Equa-
tion (3.8) can easily be obtained from the theory of
images. Since the constant C is in general not ex-

O. I 3 O. I 4 O. I 5

CU

2

0.6 0.4 0.2

A
S
VP

0.0

FIG. 5. Same as in Fig. 2 but at P =6.4.

this is not expected since the mass difference among
radial recurrences is smaller for the baryons than for
the mesons. This is the first source of our systemat-
ic errors. The second one comes from finite lattice
effects in the spatial direction. For large lattices of
space dimension L we have a shift (5E) in the energy
of a particle at rest which is equal to

pected to be small, one should always try to keep
m„L large. We should remember also that the sys-
tem is at a temperature T=1/aL. If T becomes
greater than the transition between confined and un-
confined vacuum, the long-range tail of the quark
potential is seriously modified and the masses of the
light states may get drastically changed.

A different source of error which is present in the
Wilson formulation, but not in the Kogut-Susskind
formulation for the fermion, is due to the fact that,
mathematically speaking, the average value of quan-
tities like the meson propagator is strictly infinity
for any k& —, and for a finite volume. We have

considered lattices where the bosonic degrees of free-
dom N are of order 10 . The energy density is not
fixed and there are oscillations of order N ' . This
means that the probability of having a configuration
of zero energy (pure gauge) is of order exp( —N),
which is clearly very small but not zero. Since for a
pure gauge configuration (free case) the Green's
functions are infinite for k & —, , one expects to find

divergent results in this range. In practice this hap-
pens only if the number of gauge configurations
sampled is of order exp(10 ) for our lattices, which
is not definitely our case. However let us consider

1

what happens at values of k larger than —,. In a
rough approximation k, ——, is proportional to E
and one expects fluctuations in k, from configura-
tion to configuration with a Gaussian distribution
and a width proportional to N

P(K)exp[ —A(k —k, ) /Nk, ] . (3 9)

This means that we must stay in the region where

N, «exp[A(k —k, ) /Nk, ], (3.10)

N, being the number of gauge configurations one is
considering.

Unfortunately the fluctuations in the value of k,
are larger than what one would expect from a pure
energy argument (we estimate A —10 ). This can be
seen by large memory effects. In performing the
Monte Carlo iterations the correlation from the en-

ergy after N steps and after N+M steps is practical-
ly negligible after M=10. On the other hand there
is a strong correlation at this value of M, and in or-
der to have independent measurements of the
Green's functions and minimize the statistical errors
we have considered sets of configurations separated
by 100 Monte Carlo steps (with ten hits per site)
(some correlation among configurations is unfor-
tunately still present). We hope to have in part re-
duced these effects by using completely statistically
independent starting configurations, thermalized
with -3)& 10 Monte Carlo steps. It is conceivable
that these effects are due to hopping between config-
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urations with different topological number (which is
a slow process), but we do not know how to substan-
tiate this suggestion. In our previous work (Ref. 2)
we were not aware of this strong correlation and we
were not careful in intercalating many unused gauge
configurations between the ones we used, and this
caused an underestimate of our statistical errors and
a general overestimate of the masses in lattice units
at P=6.0. (This effect may also be one of the
reasons for the discrepancy of our results with those
of Ref. 28.)

Of course all these systematic effects vanish when

k goes away from k, and we have taken most of our
data in what we believe to be a safe region. In par-
ticular we have chosen not to take any more data at
P=6.0, k=0.155 because of possible finite-size ef-
fects and the closeness of k, .

After having obtained the true mass at a given
value of P and A:, one still must extrapolate to
P~ 00, and this can be done using the renormaliza-
tion group. We notice however that after we have
adjusted the value of k to have a preassigned ratio
for the masses of two particles (e.g., m. /p), the
masses of all the other particles, (e.g., in units of the

p mass) must show a systematic dependence on P
which vanishes like exp( —cP) for large P. This is
in contrast with ratios like mz/A~o~ which have
corrections proportional to inverse powers of P. The
size of these effects can be partially estimated by do-
ing computations at different values of P (unfor-
tunately also the other systematic effects are strong-
ly P-dependent).

Let us go back to the statistical errors. Their
direct estimate is not a simple matter. The most
straightforward procedure is to compare mass esti-
mates obtained by averaging the correlation func-
tions over different sets of, say, ten configurations,
each separated by 100 to 200 Monte Carlo steps, and
where by different we mean obtained from different
starting configurations. One should keep in mind
that the process of averaging the correlation func-
tions and then computing the masses is not the same
as averaging masses.

As far as we have used different configurations
for different values of k, and since we believe that
the masses are smooth functions of k, the oscilla-
tions of the estimated masses when we vary k is a
good estimate of the error, as long as the configura-
tions are independent of each other. The use of
correlated configurations was, as we explained, the
reason for the underestimate of the errors in Ref. 2.
A careful study of the statistical errors at P=6.0
(using a total of 32 gauge configurations at
k=0.130, 0.145, 0.1457, 0.150, and 0.1525 on lat-
tices 5 )& 10 and with up to 100 relaxation iterations)
will be reported in Ref. 29.

Let us now turn to a discussion of the pion mass.
We will assume that m vanishes linearly at k, like
k —k, . This is certainly reasonable from our data at
P=5.6. The fits give, for small m,

mp ——4.2m, k, =0.175, P=5.6,
mp ——3.1, k, =0.158, P=6.0 .

(3.11)

The error in k, may be roughly estimated at 10
and that on the slope should be around 10—20%.
Now if we introduce the renormalization-group-
invariant mass mz ——(3a~) "m we get

mp' ——S(P)mg

with

(3.12)

S(5.6)=3.3, S(6.0)=2.3 . (3.13)

Since S has dimensions of a mass, S(P)/A~o~(P)
should be a constant. Using Table I we find

S(5.6)/Ao~(5. 6)= 14,

S(6. ) )/&MOM(6. 0)= 15
(3.14)

which is constant inside the errors. Using the value

A~pNL =210 MeV we get the estimate

pygmy -(1600 MeV)(my+my ) . (3.15)

(md+m, )/2=77 MeV (3.17)

Using alternatively the current-algebra relations

md lm„=1.8 and m, /md =2.01 (Ref. 30) we find

m„=4.5 MeV, md-8 MeV,

m, =160 MeV
(3.18)

in agreement with phenomenological estimates. The
goodness of the scaling between P=5.6 and P=6.0
can be seen by plotting Nlp (Fig. 6) or m~ (Fig. 7)
versus mz on the same graph and using physical
units (MeV). The points should lie on the same
universal curve. This happens inside the errors in
our data, especially in the region of small masses.
We see that for small masses mz is proportional to
m~' and changes to a linear dependence at higher
masses.

We are able to consider explicitly the case of
strange particles, and the masses of the lighter states

Where we have replaced mR ~(m~+m~)/2 and a
and b label the quark flavor. This implies for the
average value of the renormalization-invariant up
and down quark masses, using the pion mass as in-

put,
(m„+m~)/2=6 MeV . (3.16)

Using the kaon mass (mq ——495 MeV) as input we
find from the graph at P=5.6 or the above formula
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~ P = 6.0
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k, =0.156/0. 157. At this value of P the mass gap
(the glueball mass) is =1300/2050=0.6 in lattice
units, and this should allow us to still get reasonable
estimates for the charm states. We hope (but of
course it would be useful if the results could be
checked on larger lattices) that since the J/P spec-
troscopy is sensible to the quark potential at
moderate distances the final results are not affected
by the relatively small box size. Our estimates for
the masses of some of the cc states are shown in
Table V. For the mass of the charmed quark we

find

m, =1300+100MeV (3.19)

IO
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2mR( MeV)

I I I I 1 1 I I

IO4

FIG. 6. Pseudoscalar-meson mass in physical units as
a function of the renormalized mass. The data at P =5.6,
6.0, and 6.4 have been combined together. The line is

only intended as a guide to the eye.
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FIG. 7. The behavior of the pseudoscalar-meson mass
for small quark mass. Data for different values of P and
different actions (W =Wilson action, KS=Kogut-
Susskind action) have been combined. The line is only in-

tended as a guide to the eye.

are obtained by extrapolation. Deviations from
linearity in the mass squared of the pseudoscalar
particles going from the strange to the up and down
quarks is proportional to the violations of the Gell-
Mann —Okubo sum rules, which are known to be
small.

The points we have at 13=6.4 are for masses that
are not small enough to see mz ~ m, and our esti-
mate for k, is more shaky. We can fix k, by requir-
ing that S(P) continues to scale with P, and find

TABLE V. Masses of cc mesons, in MeV. Experimen-
tal numbers in parentheses.

JPC ce

0—+

1

0++
1++
1+—

q, (29S0)
J/f(3097)

gp( 3414)
P, (3507)

3000+30

3400+50
3500+50

3600+100

which is slightly lower than potential-model esti-

mates. '

Let us now study the p mass. A first possibility
would be to do the same plot of mi versus k as in

the case pseudoscalar. In this case a linear (or linear

+ quadratic) fit in a wide k range is rather good
(see Figs. 8 and 9), giving for the extrapolated value

at k, 0.84 at P=5.6 and 0.55 at P =6.0, with an er-

ror of about 10%. Translated in MeV this gives a
mass about 750 MeV.

The situation is not so nice however if we consid-

er data at k not too close to k, . To see it clearly we

can study the dependence of mv —mp or mz .2 2 2

This number is in the physical case practically con-
stant when one goes from the p to the J/f The.
data are shown in Fig. 10. One can clearly see that it
does not scale for large mass and is compatible with

an extrapolation at zero mass of about 0.6 GeV.
Only for larger P (P=6.4) there is a signal of ap-
proximately mass-independent splitting. The fact
that the spin splittings do not come right until the
pseudoscalar mass becomes of order one or less in

lattice units should not come entirely as a surprise.
Spin effects in the masses using the Wilson action
are strongly suppressed if one is not near enough to
the continuum limit. This means that we have to go
to masses of the quarks of order 0.2/0. 3 in lattice
units in order to see in a decent way the spin-spin ef-
fects. Analogous plots for the other mesons are
shown in Figs. 11—14.

Spin forces are also responsible for the splitting
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FIG. 10. Mass squared difference, in physical units,
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FIG. 8. Same as Fig. 6 but for the vector.

between the J= —, (Figs. 15 and 16) and J= —, (Figs.
17 and 18) baryons. Since again the spin-spin ef-
fects vanish when the masses are large, it is better
for baryons to consider the difference in mass
squared versus the pseudoscalar meson mass (with
of course the same average quark mass in both
cases). In Fig. 19 we show m3/2 —m~/2 versus

mp . The data are fluctuating so that it is not clear
how to perform an extrapolation to k =k, or
mp ——0 (it will depend on the functional form as-
sumed}. Our data seem to indicate a value between
0.6 and 0.7 GeV, but we prefer to show for compar-
ison the experimental points. (We have used the
mass of the p and b for the light-quark case.} In or-

(m3/2 m 1/2 )I (mv —ms }=1.1+0.3 (3.20)

to be compared with the experimental value of 1.11
for the 5-N-p-rr case.

I.et us finally consider the splittings between the
I.=1 and I.=0 multiplets. %e do not have enough

der to know the mass of a state containing three
strange quarks, we have used:- and A for the octet
and estimated the mass of such an object to first or-
der in SU(3) breaking giving a mass of about 1495
MeV for the octet. The experimental data are clear-

ly compatible with the theoretical ones.
In our search for a quantity stable as a function of

mz we have computed the ratios
(m 3/2 m ]/2 )/(m~ —mz ). The spin splittings are
small for both mass differences, but their ratio
seems to be remarkably constant (within our large
error bars). We show this quantity in Fig. 20. Our
data seem to indicate

2.0—
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~ p =6.0KS
o p = 6.4 W

Ol

IO
Vl

E
SCALAR
o p= 56
~ p=60
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FIG. 9. Same as Fig. 7 but for the vector. E are the
experimental masses for p, K, and P.
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FIG. 11. Same as Fig. 6 but for the scalar meson.

IO4



27 NUMERICAL ESTIMATES FOR THE SPECTRUM OF QUANTUM. . . 219

2.0
2.0—

l.5
~15—
E

I.O
o P=64W I 0— P = 6.0W

o P=6.4W

0.5
0.0

I

0.5
I

I.O

2mR(GeY)

I

l.5 0.0 0.5
I

1.0
2mR(GeV)

I

1.5

FIG. 12. Same as Fig. 7 but for the scalar meson. E
are the experimental values for 5 and e.

FIG. 14. Same as Fig. 7 but for the axial vector. E are
the experimental numbers of the A ~, Qq, and E.

and

m~ ——950+150 MeV (3.21)

mz ——1100+150MeV . (3.22)

As a consequence of using the Wilson action the
spin splittings in the L =1 multiplet die off rather
quickly when the mass increases.

The ratio (mz —ms )/(m~ —mp ) seems again

statistics to estimate the splitting between the 5 and
A~ in a clear way, although we see than the A~ is
heavier than the 5. If we extrapolate the masses of
the scalar and axial vector at mz ——0 (see Figs. 12
and 14) we obtain

more or less independent of Alp and we find a value
of 0.7+0.3, using again our data at all three values
of P. Still one should keep in mind that by elemen-

tary considerations the radius of the L =1 states is
expected to be larger than the L =0 states, and de-
creasing the size of the box from 1.1 to 0.5 fm in go-
ing from P=5.6 to P=6.4 may affect the mass
splittings. However we do not have a simple way to
estimate this effect.

We have also looked at the mass of the 1+ (ten-
sor) state. With our errors we cannot clearly see it
split from the axial vector. All we can say in gen-
eral is that in the small-mass limit it seems to be
higher in mass, by an amount that is comparable to
or less than our errors (-100 Me&).

From the subdominant corrections to.the pseudo-

10

IO

4P

Io

E

AXIAL VECTOR

o P= 5.6
& P=GO
& p=64

0) 3
IO

z
E

NUCLEON
o p= 5.6

p= 6.0
Cl P=6.4

2
IO IO4

2mR IMeV)

FIG. 13. Same as Fig. 6 but for the axial-vector meson.
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FIG. 15. Same as Fig. 6 but for the nucleon.
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FIG. 16. Same as Fig. 7 but for the nucleon. E are the

experimental points for N, X, :-, and A, .
FIG. 18. Same as Fig. 7 but for the h. E are the ex-

perimental points for 5, X*, :"*,and Q.

scalar and vector propagator we have tried to esti-
mate the mass of the first radially excited states.
We find values in the 1.2—1.9 GeV range in qualita-
tive agreement with experiment, but some care must
be used because the masses are relatively high with

respect to the inverse lattice spacing.

solve) in the baryon sector, especially with

respect to the distinction of baryons with I= —, and
3I=—2'

The main quantities that we study are the meson

propagator

IV. THE r =0 CASE
Msr(n) = g I Gq (n)

I

ab

(4.1)

In this section we will study what happens when

we use the fermions with r =0. We mentioned be-

fore that it is possible in this case to diagonalize the
fermion propagator and reduce the number of fer-
mion flavors from 16 to 4. The existence of 4 fer-
mion species does not give rise to any problem as far
as the mesons are concerned. However it gives us

serious problems (which we have not been able to

I04

and the baryon propagator

Ms(n)= g g e''e' 'G~" (n)G& (n)Gz'(n) .
abc a'b'c'

(4.2)

Let us first discuss the meson case. Particles with
different spin-parities sit at different corners of the
Brillouin zone for the propagator MM(n). It is
therefore convenient to set the external momentum
equal to zero (mod n ) and consider the four kinds of
corners of the spatial Brillouin zone. We define, fol-
lowing the suggestion of Ref. 20,
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I I I I
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FIG. 17. Same as Fig. 6 but for the b, .
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FIG. 19. Mass difference squared, in physical units,

for the 6 and nucleon, as a function of the square of the

pseudoscalar mass. The lines are only intended as a guide

to the eye. E are the experimental points for 5/N and Q.
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MM'(n, ) =
flz, 5,

llew

[(—1) ' '+( —1) ' '+( —1) * "]MM(n),
)le, llew, llew

MM(n, )= g ( —1) " " 'M~(n) .
nr, n&, nz

MM(n, ) = g MM(n),
Nz, 5y, Ng

MM(n, )= g [(—1) *+(—1) «+( —1) *]Msr(n),
(4.3)

If we go back to the original action (before diagonal-
ization) it is easy to see that for large n, we have

I

via the equations of motion

BqAq
——mqPZpQ, (4.6)

MM(n, )=exp( —mpn, ),0

Msr(n, )=exp(mt n, )+(—1) 'exp( m—Tn, ),
Msr (n, )=exp( m t.n, ) +—( —1) exp( mz—n, ),2 n,

MM(n, )=exp( mzn—, )+(—1) 'exp( msn—, ),

(4.4)

+8[ exp( —n„)
+exp( —12+n, )m ] . (4.5)

The value of A is connected to (0
~ gyqg ~

~), and,
I

where mp, mv, mq, mq, and mT are the masses of
the lightest particles with the quantum numbers of
m, p, 5, A, and8.

The analysis in the case of the staggered fermions,
as we see, is more complicated because each propa-
gator contains more than one particle. To measure
the masses we have collected the data by generating
altogether eight gauge-field configurations (com-
pared to four in Ref. 2) on a 6 lattice at P=6.0,
separated by 100 Monte Carlo iterations (with ten
hits per link). The quark propagators have been
computed for mz ——0.3, 0.2, and 0.1 on a 6 X 12 lat-
tice, where the gauge-field configuration in the time
direction has been doubled. The mass of the pion
has been measured by fitting the pion propagator
MM to a form0

MM(n, ) = A [exp( —n, m„)+exp( —12+n, )m ]

to f . The fit is rather good and the error on m

coming from the fit can be estimated at a few per-
cent.

The statistical error is harder to estimate. The
two mass fits cannot be done on a single configura-
tion. The simplest, but not the most rigorous, esti-
mate can be obtained by considering as approximate
mass (to be corrected later)

1 G(4)+G(8)
—, arccosh

2G 6

The masses do not seem to be too strongly correlated
and the statistical error estimated with the standard
ruled should be again of a few percent. Although
larger runs seem to be needed in order to decide
whether the configurations in the sample can be
considered really statistically independent, the fluc-
tuations in m could be smaller than in the r =1
case. This circumstance would lead us to confirm
the hypothesis that the oscillations in the latter case
are due to fluctuations in k, (i.e., mass renormaliza-
tion), whereas in the r =0 case k, = oo for all P as a
consequence of the y5 invariance. The error in m ~

and fn. is of course larger.
When we estimate the other masses it is not possi-

ble, due to the smallness in the time direction of our
lattice, to consider radial excitations. The simplest
method that we have devised is to consider the ratio
R (n, ) =M'(n, )/M (n, ) and fit it to

exp( —m~n, )+(—1) 'exp( m, n, )+(—n, ~12 n)—
R, {n,)=

exp( mpn, )+(n,~—12, n)— (4.7)

In this way we obtain the results shown in Table VI
and in Fig. 21. The error in the vector mass can be
estimated (in the same way as the pseudoscalar) to a
few percent (and neglecting of course the systematic
errors coming from our biased procedure) and for
the other masses to at least ten percent.

For the baryons we do not see any striking differ-

ence between different corners of the Brillouin zone
(and we are puzzled by the assignments). We there-
fore quote only the value of a common baryon mass.
There the errors are somewhat larger, both statisti-
cal and systematic.

The baryon mass has been computed by studying
the ratio of the baryon equivalent of M~ to MM (for
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FIG. 20. Ratio of the difference in mass squared of the
5 and nucleon over the same quantity for the vector and

pseudoscalar. The stars are the averages of the points at
P=5.6, 6.0, and 6.4. E is the experimental ratio. The
line is only intended as a guide to the eye.

vantages of both methods. The choice of the best
value of r is rather important and could be studied
both empirically and in an analytic fashion in the
framework of lattice perturbation theory. It is how-
ever interesting to note that the value of the p mass
at k =k, seems to differ only by 10% at p=6.0,
while at p=O this difference was a factor of about
100 o.

V. DECAY AMPLITUDES

From the long-distance falloff of the correlation
function we can estimate, besides the mass of the
state, also the amplitude of the wave function. For
large time separations a meson propagator at zero
lattice three-momenta will behave as

the J = —,). These results are also shown in Table
VI. The last two lines i.n the table show the extrapo-
lated results for the masses at ms

——0 in units of the
lattice spacing and in MeV (assuming a =1500
MeV, which is about 10% higher than the lattice
spacing in the Wilson case).

Thus the mass. spectrum for the mesons turns out
to be rather satisfactory. On the other hand the
mass of the baryon seems to be definitely too large.
It is conceivable that we have not chosen the nu-
cleon channel, and that our fitting procedure was
too arbitrary. We leave this problem to a further
theoretical investigation. However, especially in this
case, as for the Wilson fermions, larger lattices
would be helpful.

In conclusion it seems that the r =0 case gives
rise to more stable and reliable estimates for the
mesons (within our limited statistics}, while difficul-
ties are present for the baryons. The r =1 (Wilson)
case presents no difficulties in the internal
quantum-number assignments, and gives rise to
correlation functions that do not have an oscillating
part, but seems to suffer both from fluctuations in

k, and rather small spin-spin forces at not-too-small
m. It would of course be interesting to see if an in-
termediate case, like r = —,, shares some of the ad-

Mr(t, O} — et» 1 2P?lp
(5 1)

1+tn2}&OI 42ysft I
I'&=~2famp

(5.2)
(tnl ttt2)&o10241 I

&&=fstns'

&OI42yi 4i I
I'&=fv 'mv'e„

&oI 42ysyt. fl ~~ & fA tnt ep,
where &,S, V,A label the different spin-parity states.
For the pseudoscalar we find therefore fp

where A~ is some numerical constant which is slow-

ly varying in mt. We have computed some of these
constants as functions of the masses mr at p=5.6,
6.0, and 6.4. In Table VII we display our results for
the quantities yr ——2k+At obtained using the Wil-
son fermion action. The factor 2k arises because of
the connection between lattice and continuum fields
in the Wilson formulation [see Eq. (2.4)]. The sta-
tistical errors in the y s is estimated at about 30%.
In general an overestimate of the masses will lead to
an overestimate of the amplitudes, so the errors in
the two quantities are correlated. From the numbers
in the table we can estimate the decay amplitudes.
The couplings of the states to the currents are de-
fined as follows:

TABLE VI. Quark mass; masses of pseudoscalar, vector, scalar, axial-vector, tensor, radial
excitation of the pseudoscalar, baryon; and pseudoscalar decay constant at P=6.0 using the
Kogut-Susskind fermion action on eight gauge-field configurations. All are in lattice units. In
the fourth line the extrapolated values at m =0 are in lattice units, and in the last line in MeV,
using a '=1500 MeV.

P?l v

0.3
0.2
0.1
0.0
0.0

1.21
0.94
0.60
0
0

1.35
1.10
0.77
0.51

750

1.48
1.24
0.91
0.65

970

1.61
1.37
1.01
0.75

1120

1.71
1.45
1.11
0.82

1230

1.57
1.32
1.04
0.78

1170

2.26
1.93
1.5
1.13

1700

0.226
0.191
0.156
0.120

177
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p=6.0
KS

show some estimates in Table VIII. Again the
agreement seems generally bad. In part this situa-
tion could be explained by one-loop corrections,
which have not been taken into account. It is also
quite possible that we have underestimated our sys-
tematic errors. From the decay amplitudes of the
vectors one can then estimate their leptonic width,

N

E
I ( V~e+e ) = —,(aeq) mv

4m
2

V

(5.4)

(The charge factor eq is already included in the
number quoted in Table VIII.) Through the Van
Royen —Weisskopf formula fv is related to the
wave function of the qq pair at the origin

0.3 0.2 0.0
il((0) i

=mv fv /l2 (5.5)

FIG. 21. Meson masses squared in lattice units as a
function of the quark mass m at P=6.0 obtained using
the Kogut-Susskind fermion action. The lines are only in-

tended as a guide to the eye.

=gym/(mz a ) and for the vector and axial-
vector states we use fz ' ——y(a /mz ). The pseu-
doscalar decay constant is shown in Fig. 22 as a
function of the pseudoscalar-meson mass squared.
We can extrapolate our data to the small-quark-
mass region and for the pion we find therefore

k =0.051+0.02 GeV (5.6)

Bearing on our experience with the meson case, we
would expect this number to be above its true value,
perhaps by again as much as a factor of 2, because
of systematic effects due to not large enough P.

Finally we should mention that we have attempt-
ed to compute the value of the proton wave function
at the origin. This number is of interest for proton
decay in grand unified theories. The evaluation of
the amplitudes proceeds as in the meson case. At
P =6.0 we find for the usually quoted parameter

f =150+50 MeV (5.3) VI. THE MASS OF THE g'

which is in not too good agreement with the experi-
mental value 93.5 MeV. For the other states we

In this section we will present some preliminary
estimates for the mass of the ri'. By setting the fer-

TABLE VII. Amplitudes yr/V 12 for the pseudoscalar, vector, scalar, and axial-vector
mesons as a function of P and k. The number of configurations used is the same as in Tables
II—IV.

p=5.6 0.150
0.155
0.160
0.165

0.36
0.37
0.30
0.24

0.29
0.30
0.27
0.22

0.21
0.28
0.10
0.23

0.17
0.20
0.14
0.19

P =6.0 0.130
0.135
0.140
0.145
0.1475
0.150
0.1525

0.25
0.24
0.21
0.20
0.16
0.11
0.11

0.22
0.22
0.19
0.16
0.15
0.10
0.08

0.17
0.15
0.14
0.13
0.14
0.10
0.12

0.15
0.13
0.13
0.10
0.10
0.10
0.08

p=6.4 0.130
0.135
0.140

0.24
0.24
0.23

0.21
0.21
0.19

0.19
0.19
0.15

0.16
0.20
0.14
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400

300

P(D)=M= —gP, ),1

V

F"(0)=X=-
@

x

(6.2)

200

l00— E

E

In the following we shall regard nf T,ln(J)+m) as
an external field term and treat it to lowest order in

nf.
I.et us consider the I meson (I =1, y5, . . .). We

will write for its mass

mr mr——, ynfmr, +O(nf ) (6.3)

0
0

I

2

mp (GeV )

FIG. 22. The pseudoscalar decay constant (in MeV) as
a function of the pseudoscalar mass. The lines are only
intended as a guide to the eye. E are the experimental
points for m and E mesons.

where

TABLE VIII. Decay constants (with appropriate

charge factors included).

This calculation Experiment (Ref. 32)

—1

rq
1

fJlp

0.5+0.1
0.2+0.1

0.3+0.1
0.2+0.1

0.19
0.075
0.11

0.083

mionic determinant equal to a constant, we have ex-
cluded from the theory all effects that are due to
dynamic-fermion loops. In particular we have ex-
cluded meson annihilation diagrams which are be-
lieved to be responsible for the nonconservation of
the isoscalar axial-vector current and the large g'
mass. ' In this section we will show how one can
compute the effects on the meson masses of a class
of annihilation diagrams, which are calculable in the
no-loop approximation, that are leading to lowest
order in the number of fermion flavors.

As an example to illustrate our strategy consider
the free energy of a spin system in a field. For small
field it is known in terms of zero-field correlation
functions,

F(h) =F(0)+hF'(0)+ —,h'F"(0)+O(h'),

(6.1)

with
Ar=Ar, +nfAr, +O(nf ) .

To lowest order in nf we then have

~r,

p +mr p +mr

+n' p'+mr'

(6.5)

Ar mr,
2

(~2+ m 2)2

+O(nf ) .
In position space the terms ~ nf become

~r, —mr lx I1 p

2mr,

(6.6)

2Ar mr, —mr )x)
(6.7)

4mr

and in the pseudoscalar case the term proportional
to mr ' is dominant since mr ~0 when the quark

0 0

mass is taken to zero. At zero external momentum
we have

1 + [x/e
mr,

Ar mr 2

,
' =—((M,'),—(M, ),')

mr 4 (6.8)

with

M„=gy (x)ry (x), (6.9)

where the superscript dots denote contraction. The
symbol ( ) U means average over gauge-field config-
urations whereas

1( (x)rq (x)= tr r(G, x,x;A). (6.10)
spin
color

and its propagator in momentum space is given by

Ar
z
——g e'~"(1(|(x)rg(x)g(0)rg(0) ) U

p +mr x
(6.4)
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Let us define a susceptibility X~ associated with the
state I,

in the preceding sections and a '=915 MeV we
find, indicatively,

Xr ———((Mr )U —(Mr)U ) .
V

(6.11) m ~-200+100 MeV . (6.14)

It is not a problem to compute it by Monte Carlo
methods without having to include the effects of
dynamic-fermion loops in the statistical factor.
Then we have, for I t,

2 2 2 2m = l1fm ~
—m& +2mlt„ (6.15)

The g' mass can then be computed by diagonalizing
the pseudoscalar mass matrix, with m, as off-
diagonal matrix element, and using the relation

4+pm p
mi (6.12)

Experimentally one has mz ——958 MeV, whereas we
find m&-300 MeV and m& -700 MeV.

In terms of Feynman diagrams, I
&

contains the
effects of correlations between two separate fermion
loops at zero external momentum, with additional
loops within the loops ignored. A~ is equal to yz,
which has been computed in the previous section for
different values of p and small m. Let us now dis-
cuss the pseudoscalar case. In order to compute m
one has to determine Xz for different values of mc
and show that it diverges like mo

We have tried to estimate m
&

in the pseudoscalar
case at p =5.6 in the region 1.5 & m„& 0.5 using the
Monte Carlo and the Langevin method on two
gauge configurations with 6000—8000 pseudofer-
mionic sweeps for each value of k on a 5 X 5 X 5 X 8
lattice. We find the following values

VII. CONCLUSION

We have shown in the preceding sections how
reasonable estimates for the spectrum of QCD can
be obtained in the approximation of neglecting
dynamic-fermion loops.

A significant reduction in the statistical errors for
the masses would require several orders of magni-
tude more computer time. At this level systematic
effects associated with the smallness of the lattice,
among others, will become important. Moreover, it
becomes now crucial to investigate the effects of the
inclusion of the fermion determinant into the mea-
sure factor. Work in this direction is in progress.

&P~~SO m1 (mv —mp )
2 2 2
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0.155
0.16
0.165

0.0030
0.0244
0.0942

0.09
0.18
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0.029
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