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It is shown that the Dirac equation possesses an internal-symmetry group, which contains the
usual electromagnetic gauge group. Well-known group-theoretical results then imply that charge
is quantized.

I. THE INTERNAL-SYMMETRY GROUP
OF THE DIRAC EQUATION

jugation). So the Lagrangian (3) is preserved for the
following transformations:
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As is well known, ' ' the Dirac equation (for flat or
curved space-times) can be written in terms of a pair
of two-spinors u~ and v~ as
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The set of matrices (f,-) give the matrix represen-
tation of the group SU(1,1), the group of linear
transformations of C preserving the pseudo-
Hermitian form Iz, ['—lzzl, for (zt, z2) C C .

+ (uAvA+uAu„) .
v'2

(3)

Equations (1) and (2) have the suggestive appear-
ance of two interacting Weyl neutrino fields [this idea
can be taken much further and used to build models
for the weak interactions, etc. (see Ref. 5)]. It is
thus natural to see if these equations possess an
internal-symmetry group acting on the pair (uA, uA ).
To this end, we seek linear transformations of the
(uA, uA) which preserve the Lagrangian (3). Writing

uq = auq + bvq

ltd = Cup + dUg

with a, b, c, and d complex constants, we find

L (uA &A)=L (uA &A)

if c = b and d = u (an overbar indicates complex con-

where the spinor notations and conventions are those
of Ref. 4.

Equations (1) and (2) may be derived from the
following Lagrangian:

L (u„, uA) =i (uA'7""u„—u„V""vA )

II. CONSERVED CURRENTS AND CHARGE
QUANTIZATION

with a „„the van der Waerden symbols (see Ref. 4).
These three currents are mutually orthogonal, with

j (the Dirac probability density vector) being time-
like, and the real and imaginary parts of s (the spin-
density vector) being spacelike.

We must expect that these three conserved
currents are coupled to three generators of some
symmetry group; in fact, they are coupled to the
three generators of the SU(l, l) group discussed
above. Writing the generators of SU(1,1) as
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(note that these generators differ by a factor of 2
from the usual choice6' ), we see that Q couples toj, Pt to i(s —s ), and Pz to (s +s ).

The Dirac equations give rise to three (real) con-
served currents j, (s +s'), and i (s —s ), where

Ja a, (uAuA+ A—
A) Sa a . uA-A (5)
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Now the electric charge generator Q (Ref. 8) gen-
erates the maximal compact subgroup U(1) of
SU(1,1), and as such its eigenvalues can take on only
integer values (see Ref. 7, keeping in mind the
differences in the definition of the generators). The
Casimir invariant of SU(1,1) then gives us the other
quantum number necessary in specifying representa-
tions of SU(1,1), the eigenvalues of this operator
[when written as 4l (I + 1)] give a quantum number
l. In the discrete series representations of SU(l, l),
Refs. 6 and 7, we see that there is just one lattice
point with charge —1, that for which I = —2, and for
charge +1 again there is just one lattice point I = ——,.
Consequently, the Dirac equation (by itself) cannot
be used to build a theory of sequential leptons e-,
N,

+-, r+-, . . . [however, if the weak interactions are
also considered, then it does appear possible that this
can be done (see Ref. 5)].

tural explanation of charge quantization. However,
this is achieved at the expense of introducing a
larger, noncompact internal-symmetry group with the
inherent problems of quantization. The situation is,
in a sense, analogous to that encountered with the
Lorentz group and its associated spin group SL(2,C);
this group has as its maximal compact subgroup
SU(2). Global conditions on the representations
then imply that the quantum number associated with
intrinsic spin must be quantized.

It is interesting to note that SU(1,1) is the "spinor
group" for SO(1,2), this latter group being realized
as the set of rotations of the three vectors j,
(s +s ), and i (s —s ), i.e., the set of rotations
leaving fixed the vector o. „„(u"u"—v"v"), giving a

principal fiber bundle which may be considered as a
sub-bundle of the tangent bundle of the underlying
space-time manifold.

III. CONCLUSIONS AND DISCUSSION

The Dirac equations thus possess an internal-
symmetry group SU(l, l), which provides a very na-
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The U(1) subgroup generated by Q is the usual electromag-
netic U(1): a U(1) transformation generated by 0 takes
the form

el' 0
6 U(l) ( SU(1,1)e-i8

when acting on the two-spinor pair („"). That is,

e"u
A

Qg
Thus the usual Dirac bispinor P = ( z) transforms as

P ~ el8$

under the U(1) subgroup of SU(1,1). This is precisely the
form of the usual electromagnetic U(1) transformations.


