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Numerical studies of renormalization in SU(3) gauge theory in four dimensions
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Wilson loops for pure SU(3) gauge theory are calculated by Monte Carlo simulations on an 84

lattice. Following renormalization-group arguments, Wilson loops on different length scales are

compared. The only observed ultraviolet-stable fixed point lies at vanishing bare coupling.

Asymptotic freedom is numerically verified.

In a previous paper' by one of the authors, a re-
normalization procedure for comparing physical ratios
of Wilson loops on different length scales was
developed and applied to SU(2) lattice gauge theory.
The logarithmic dependence of the bare charge on
the length scale, as predicted by asymptotic freedom,
was verified at the perturbative fixed point. No addi-
tional ultraviolet-stable fixed points were found.
Nevertheless, the gauge group believed to describe
strong interactions is SU(3); thus it would be desir-
able to extend the previous calculations to this group.
In the present paper we present such an analysis,
based on Monte Carlo simulations for SU(3) on an
84 lattice at 46 values of the coupling constant. We
measured all Wilson loops up to 4 & 4, extending our
previous study of loops up to size 3 x 3 on a 6 lat-

tice. '
A hypercubical lattice in four Euclidean space-time

dimensions was used in our calculations. The link

joining the nearest-neighbor lattice sites, denoted by i
and jis sig, nified by {ij] On the lin. k {ij]an N &&N

unitary-unimodular matrix UIj of the gauge group
SU(N) is attached such that

such that

S[U] = /So = g 1 ——Re Tr Uo
1

a o, Ã

We used periodic boundary conditions throughout
our calculations. The method of Metropolis et al. '
was used to bring our lattice to equilibrium. Further
details of our calculational procedure can be found in

Ref. 6.
Wilson loops7 are defined by the expectation value

W(I,J) =—(Re TrUc)1

where C is a rectangle of rectangular dimensions I
and Jand U~ is the product of link variables around
C. The leading-order strong-coupling expansion for
the Wilson loop is

W(I,J) = (1+82@) [1+O(p')], (1)
2X

while the leading-order weak-coupling expansion for
the average action per plaquette is

Our partition function is defined by

Z(P) =J gdUJ exp( —PS[U])
kj)

where p is the inverse coupling constant squared
given by p =2N/go' and go is the bare coupling con-
stant. The measure in the above integral is the
SU(N) normalized invariant Haar measure. A sum
over all unoriented plaquettes 0 defines our action S

N2 —1(E) =1 —W(1, 1) = +O(p 2)
4

To extract the string tension, we evaluate the loga-
rithmic ratios

W(I,J) W(I —1,J—1)
W(I,J—1) W(I —1,J)

The leading-order strong-coupling expansion for

(2)
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these quantities is

X(I,J) =—in (1+8,~) +O(p') .
2N

(3)

r/a =2 and r/a =4 by introducing the ratios

W(1, 1) W(2, 2)
W(2, 1) W(2, 1)

and

(8)

Since non-Abelian gauge theories are asymptotical-
ly free, they have an ultraviolet attractive fixed point
at gF =0. A perturbative expansion about this point
gives the necessary dependence of the coupling on
the lattice spacing a for a continuum limit

W(2, 2) W(4, 4)
W(4, 2) W(4, 2)

These satisfy the leading-order strong-coupling ex-
pansions

a go(a) —= y(go) =y.go'+ytgp'+O(gp")d
da

where we have and

S'(p) =1—
2N 2 (I +82 ~) + O(p )

4

(10)

11
7p

3 16m 2 3 16+2
and p&

= G(p) =1 — (I +52 ~) + O(p')
2N

Integration of Eq. (5) yields

=ypln 2, + ln ln, 2 +O(gp )
1 1 yt 1

gp2 a Ap2a2 yp Ap2a2

(5)

Asymptotic freedom has introduced a scale parameter
Ap defined by

and leading-order weak-coupling expansions for
SU(3),

F(p) =G(P)+O(P ') = +O(P ')+
p r'p

(12)

Ap ——lirn —[ypgp'(a) ] exp—1 2 &
—v)12vp & 1

a p Q 2yogo'(~)

(6)

0.9—

I I I I l l I ] I I

su(s) 84

Equation (5) implies that if the cutoff is changed by a
factor of 2 we have

+2ypln2 +0 (gp )1 1

gp a 2 gp a

In Ref. 1 the quantity P(r, a, p) was introduced
and defined by

W(r/a, r/a) W(r/2a, r/2a)
[ W(r/a, r/2a)]2

This ratio should be a physical quantity with a finite
continuum limit when a and gp go to zero together as
dictated in Eq. (5). The leading-order weak-coupling
expansion gives

2

P(r, a, P) =p, + o(P-') + o ',
r2

where
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p, = — [ 8arc tan2 +2 arc tan—N —1 1 1

2N 4m2 2

i.e., the U(1) result of Ref. 1 times the ratio of the
number of gluons to twice the dimension of the
group matrices. Following Ref. 1 we consider P for

FIG. 1. The Wilson loops 8'(I,J) for pure SU(3) gauge
theory on an 84 lattice as a function of the inverse coupling
constant squared P. The solid upward triangles represent
I =J= 1, the open circles represent I =2, J=1, the crosses
represent I =J=2, the solid downward triangles represent
I =4, J=2 and the solid squares represent I =J=4. The
curves represent the leading-order strong- and weak-

coupling expansions of Eqs. (1) and (2), respectively.
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FIG. 5. The inverse renormalized charge squared at
r =2a for pure SU(3) gauge theory on an 84 lattice as a
function of the inverse coupling constant squared P. Also
shown in the diagram is Eq. (7) as well as the leading-order
strong-coupling expansion of Eq, (10).

as a function of the inverse coupling constant
squared p. For p )5 we can see excellent agreement
with the asymptotic-freedom prediction of Eq. (13).

As in Ref. 1, we can define a renormalized charge
such that Eq. (12) has no higher-order corrections.
Thus, from F(p) we obtain the renormalized
g(r =2a). We show the inverse renormalized
charge at 2a as a function of the inverse coupling
constant squared in Fig. 5. The leading-order
strong-coupling expansion is also indicated. In the
weak-coupling region, the curve has a slope of 6 th in

p. This shows that a'/r2 corrections in Eq. (12) are
remarkably small. From the intercept of Fig. 5 we
find

2yp ln =0.602A

p

or

(2,2), (3,2), (4,2), (3,3), (4,3), and (4,4), are shown
as a function of the inverse coupling constant
squared p in Fig. 2. Figure 2(a) also displays the
leading-order strong-coupling expansion of Eq. (3).
A band corresponding to the functional form given
by Eq. (6) is shown in Fig. 2 with

Ao ——(6+1) x10 3'
where E is the string tension. This confirms our
analysis in Ref. 2.

The quantities F and G of Eqs. (8) and (9) for
SU(3) are shown as functions of the inverse coupling
constant squared p in Fig. 3. The leading-order
strong-coupling expansions of Eqs. (10) and (11) and
the weak-coupling expansion of Eq. (12) are also in-

dicated in Fig. 3. Quite clearly F(P) always lies
below G(P) which looks like Fig. 1 of Ref. 1. Figure
3 shows no evidence for any fixed point apart from
p=oo.

In Fig. 4 we show F(P) and

G P+;in233
4m2

A =37Ap

This number is, in principle, calculable perturbatively.
With Eq. (14) we obtain

A =0.22JE

This value is more in line with other physical defini-
tions of the asymptotic-freedom scale parameter than
is the bare lattice parameter Ap.
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