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Quantization in the temporal gauge
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It is pointed out that the validity of the canonical quantization procedure in the temporal

gauge is very questionable. The quantization can be discussed only within the framework of the
path-integral formalism. However, in that case, the vacuum is not an energy eigenstate.

I. = —
4 F„„, F„„=g„A„—Q„A„+g A„x A„, (2)

The temporal-gauge condition'

AQ= 0

is frequently used in the investigations' of quantum
chromodynamics. The advantages of this gauge seem
to be as follows:

(1) The theory is ghost free.
(2) The canonical quantization procedure is simple.
(3) There still remains the invariance under the

time-independent residual gauge transformation.
If these are the cases, we have the canonically quan-
tized field theory with simple structure and yet with

gauge invariance. And we can expect that the analy-
ses2 in the temporal gauge play important roles in the
development of quantum chromodynamics. In this
Brief Report, however, we demonstrate that the vali-
dity of the canonical quantization procedure itself is
very questionable.

For this purpose we begin with a brief review of
the prevailing canonical formalism. The system is
given by

This system is invariant under the transformation
which is generated by

6 s=(5;+ AgI x)n;

The Heisenberg equations (7) and (8) do not repro-
duce all the Euler equations (3) with Ao ——0. The
Gauss law

Gg = (8;+gA; & )50AI = 0

is missing. Usually this law is required not as the
operator equation but as the constraint

(10)

on the physical state ~u). Since

[H, Ga] =0, (12)

there is no contradiction between the Gauss law (11)
and the Heisenberg equation. The quantization pro-
cedure outlined in the above is widely accepted. '

Nevertheless, we can easily show that the condition
(11) leads to a contradiction. Using Eq. (6) we have

(5„+gA„x )F~„=O .

In the temporal gauge,

]= 8oA)

H= dx( —Prl +—Fs )2 4

[A (x), mj~(y) ], ~ =i 5'~5s53(x y)—

(3)

(6)

[Gs'(x),A (y)] = i8"5;8'(x —y)

+igf'~A (x)8'(x y), —

which makes sure that G~ is the generator of the
residual gauge transformation. Sandwiching both
sides of Eq. (13) by ~a) and ~o, '), we obtain

(u(u') =0

(13)

and then

BOAl=i [H, A(] = w(,
50nr;=i [H, n; =]( , kg+A xJ)F~, .

for any isoscalar physical states, 3 since the left-hand
side of the resulting equation is zero because of con-
dition (11), and the second term on the right-hand
side vanishes for the isoscalar states. Evidently, Eq.
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(14) is unphysical and tells us the invalidity of condi-
tion (ll). In this way it becomes clear that we have
no knowledge of the treatment of the Gauss law, one
of the fundamental equations. Therefore further dis-
cussions on the canonical formalism in this gauge
seem to be meaningless.

On the other hand, we have another quantization
procedure based on the Feynman path integral. The
vacuum expectation values of time-ordered products
of field variables can be obtained by the path integral
irrespective of the knowledge of the Gauss law. For
example, the propagator is

(0IT(A'(x), A '(y))[0) = i—, d'ke'"'" &' 8,—,' +O(g') .
$4b i 1 k(kj

(2m)~ " k —ie ko
(15)

This immediately leads to

gab
(0)T(G '(x) A (y))[0) =i d ke'"' " " — +O(g )

(2pr)' ko
(16)

Since the right-hand side is obviously nonzero, we
see that the condition (11) does not hold, at least for
the vacuum state. Therefore the Gauss law which

may hold in the path-integral formalism is not in the
form (11) but at most in the form

(~Ideal~'&

=0 .

which does not contradict Eqs. (13) and (16).

Finally, we demonstrate that the vacuum state is
not an eigenstate of the Hamiltonian. First we calcu-
late

(0IT(AI'(x), Aq'(y), 2 wk (z)+ —Fp( (z))(0)

(18)

The equal-time limit of (18) from xp )yp ) zp gives us

(0~A'(x)A (y)H~O) = — dke'"' " " +O(g )
4(2w)

while we have, from Eq. (15),
t

g&b ~-.- -- 1 kk
(0~A, (x)A'(y)~0)= ' dl e'" &"-» ' 8„- '' +O(g')

(19)

(20)

The first term on the right-hand side of Eq. (19) has
a different functional form from that of Eq. (20).
This fact shows us that the vacuum state in the
path-integral quantization is not the eigenstate of the
total Hamiltonian.

From the above investigations we come to the con-
clusion that in gauge theories with Ao= 0 the validity
of the canonical quantization procedure, which is

I

widely accepted and outlined at the beginning of this
paper, is very questionable. The quantization can be
discussed only within the framework of the path-
integral formalism. However, the vacuum state is
not an eigenstate of the total Hamiltonian. It should
be examined whether such theories can still be un-
derstood in the same way as the usual quantum
theories based on operators and state vectors.

R. P. Feynman, 8'eak and Electromagnetic Interaction at High

Energy (North-Holland, Amsterdam, 1977), p. 121.
2C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett.

638, 334 (1976); W. Marciano and H. Pagels, Phys. Rep.
36C, 137 (1978), and references therein.

Also, in the axial gauge we are in a similar situation, as is
seen in A. Hosoya, Y. Kakudo, Y. Taguchi, A. Tanaka,
and K. Yamamoto, Nuovo Cimento 68A, 150 (1982),
although there is no serious problem.


