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We consider finite massless @ED with the electron mass totally dynamical of origin and the

fine-structure constant as the {infinite order) zero of the Callan-Symanzik function. In spacelike

regions, the electron propagator (in the generalized Landau gauge) and the photon propagator

are then proportional to their free counterparts, and the integral equation for the vertex func-

tion I may be written solely as a function of I itself. Landau's approximation is used to ob-

tain the asymptotics for I' (pp —k;k) for p, k oo, p2/k2 0 in spacelike regions.

The classic papers by Baker and Johnson' and
Adler' on finite QED have stimulated much research
(see, e.g. , Ref. 3) during the past ten years on the
asymptotic anlaysis of the basic functions of QED.
We consider finite massless QED with the electron
mass totally dynamical of origin, and a, the renor-
malized fine-structrue constant, as a fixed point in

the sense of Ref. 2. That is, we sum all photon self-
energy graphs in renormalized QED, fix a as the (in-
finite order) zero of the Callan-Symanzik function,
P(n) =0", and take the limit m 0 for the electron
mass, with the anomalous mass dimension"
5(u) )0. We work in the spacelike region. In this
case the (renormalized) photon propagator D„„may
be written2 as
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where (cf. Ref. 5) (n=e'/4rr), q(n) =a —(5/9rr)n'

+ 0 (as), and in the generalized Landau gauge'
Gc= (3a/Srr) + 0 (n ). In the same gauge the (re-
normalized) electron propagator is'2 [up to an overall
multiplicative constant of the form 1 + 0(n) ] given

by S(p) = I/y p. This makes it quite convenient to
study the asymptotic behavior of the vertex function
1 as the integral equation, for the latter may be
solely written in terms of the unknown I itself:
I' = I" (I'). It is important to note that if u is not a

fixed point [that is, n is not a zero of P(a) ] then
electrodynamics with the propagator in (I) is con-
sidered as a model for the behavior of skeleton

graphs in the theory. We use Landau's approx-
imation to study the asymptotic behavior of
I' (p,p —k;k) for p', k' ~, p'/k' 0 in spacelike
regions. We work exclusively in the generalized Lan-
dau gauge as, in this case, I is both ultraviolet and
infrared finite' in spacelike regions.

The vertex function I' (p,p —k;k) = I (p,p —k)
satisfies a well-known integral equation (cf. Ref. 7)

I' (p,p —k) =y +( ta/4rr') (d—q)D„„(q)I'"(p,p —q)s(p —q)

where all the objects in the integrands denote (full)
renormalized quantities and the factor y is up to an
overall finite multiplicative constant of the form
1+0(a). We may simply rescale I' and replace,
subsequently, . such a constant factor by 1 in our
analysis. We consider n( —

»7 ) and ~p[/(k[ as small
r.(0, —k) =7.+c y.— kk

(3)
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parameters. To zeroth order in
~ p (/~ k ~, the Ward

identity gives (recall m =0) k I' (0, —k) =y k, or
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where C is a finite constant and may be determined
to any order of accuracy in n by setting p =0 in (2)
(for m =0). By using the four-dimensional angular
averages (cf. Ref. 8)

(1/(q —k)'), (qi"/(q —k)'), (q&q "/(q —k)')

(4)

one readily obtains the value C = (n—/n ) to lowest
order in a. Now we move from the region
Ipl/1 k l

=0 to the region Ip I/I kl WO. Landau's ap-
proximation essentially consists of the following.
We rely on the fact that n(- », ) is small and

1

hence, if the corrections to y for I in the limit
p', k' oo, p'/q' 0 vanish rapidly, one expects that
the leading contribution to I' will come from the
first integral in (2), which is the only one we retain
from now on. The other integrals are expected to
give contributions which are at least one order in o,

smaller than the first one. In our analysis, we will

generate corrections to y for I" which are of the or-

der O(1) x damping factor for Ipl/lkl 0 and n
small in contrast to terms which are of the order
O(n) x damping factor which are smaller. The latter
corrections are expected to come from the remaining
integrals in (2). We consider only the region of in-
tegration p « q « k in the contributing first in-

tegral in (2), arguing that the other regions would

give contributions to I which are relatively smaller
or, at worst, modify the coefficient of y to a finite
multiplicative factor of the form 1+0(n). We now
estimate the corrections due to the terms in the first
integrand in (2) in the region p « q2 « k,
p2, q2, k2 ~. The vertex functions I' (p —q,
p —q —k), I'"(p —q —k,p —k), and S(p —q —k) all
depend on the asymptotically leading vector k, for
k2~ ~, and may be safely replaced by y, y", and
S(—k), respectively. The correctness of the latter is
checked self-consistently. Considering, in turn,
corrections SS (p —q ) and SI'"(p,p —q ), we then ob-
tain the self-consistent approximation due to Landau
for p', k' ao, p'/k 0, and n small with Go-0:

sr (p,p —k) =( in/4w'—) (dq)D„„(q)y"SS(p —q)y S( k)y"—
p2 && q2 ~& k2

+( in/4m') J— (dq)D„„(q)81 "(p,p —q)S( q)y S( k—)y"—
p (&0 &&k

(5)

For p' « q' [see also Eq. (2.6) in Ref. 6],

SS( — )=—— I + yp 2y
q q q

(6)

The first term on the right-hand side of (5) may be
then explicitly worked out to yield

n y ky~ys yy kyu k'
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Accordingly, we shall seek a correction 81' (p,p —k)
in (5) which solves the latter self-consistently in the

form [see also Eqs. (2.7) and (2.8) in Ref. 6]

gpga(p p q) y qy y&F (p2 q2)
q

+'y y q'y PF (p2 2) (8)
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Upon substituting the expression (8) in (5) and using
(7), we obtain the following elementary integral
equations [see also Eq. (2.8) in Ref. 6]:

lk2d2
F)(p', k') =, , [1+F2(p',q') —F)(p', q')1

8m' ~p q
(9)

2

F (p k ) = [ F (p2 q2) —1 —F2(p2 q2) ]

(10)
consistent with the Ward identity. The latter are
readily solved by differentiation to yield

r (p,p —k) —y +
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Some comments on the solution in (11) follow.
We note that for k oo, I' (p,p —k) I' (0, —k)
consistent with our initial hypothesis made in solving
(2) for small n. The solution in (ll) is nonperturba-
tive and the coefficient of the third term is O(1)
rather than O(n), and this may be traced to be due

I

to the damping factor (k2/p2) ~ which introduces a
factor 1/n to cancel out the coefficient n in the in-
tegral equation for I in (2). That is, a term which
is formally of order n ends up of order one by a
dynamical 1/n factor. It is difficult to take the contri-
butions of the remaining integrals in (2) into ac-
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count. To this end we note, however, that the coeffi-
cient C in (3), corresponding to the second p-
independent term in (11),may be computed to arbi-
trary orders in u by setting p =0 in (2). Also, since
the coefficients of the neglected integrals are formally
of order u', it is expected that the third term in (11),
which is of the form O(1) x damping factor for

~ p ~/( k
~

0 would, in turn, lead to corrections of the
form O(u) x damping factor, which are then smaller,
and modify the coefficient of the second term in (11)
to higher-order corrections in 0.. %e may make con-

tact with perturbation theory by noting that the factor

1 —exp[ —uln(k2/p2)] =0 ln(k /p )
4m

in (11) is consistent with the expression in (7). Fi-
nally, we note that (11) is consistent with the Ward
identity. A similar analysis may be carried out in the
asymptotic region p', k' ~, k'/p' 0.
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