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Surface terms and dual formulations of gauge theories
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Previously proposed duality transformations for a pure non-Abelian gauge theory are car-
ried out for a Yang-Mills theory with nonvanishing 8 parameter. We argue that the theory
is no longer self-dual even in the weak-coupling limit, as there is a surface term generated by
the duality transformation. This surface term has nonzero Pontryagin index, hence it gets
contributions from instanton-type configurations only. However, it does vanish for mono-

poles and vortices, therefore for this set of configurations self-duality is maintained in the
weak-coupling region.

I. INTRODUCTION

Duality transformations have proven to be an in-
dispensable tool in the investigation of phase struc-
tures in lattice field theories with Abelian symme-
try. ' Attempts are being made to generalize the
concept to theories with non-Abelian symmetry as
well as to gauge theories in the continuum.

It is hoped that for gauge theories a duality
transformation can be found that leads at least in
certain regions (like the weak- or strong-coupling re-
gion) back to the same theory albeit with inverted
coupling constant and interchanged roles for electric
and magnetic field strengths. Such a concept of
"self-duality" is at the root of the Mandelstam-'t
Hooft mechanism for quark confinement (compare
Refs. 10 and references therein).

For this mechanism to be possible an essential
property to be used is that non-Abelian gauge
theories have classical solutions with topological
charges. The origin of these objects may be traced
back to nontrivial boundary conditions. Conversely,
a physically relevant action may contain surface
terms (8 terms).

It has been argued by Witten" and by 't Hooft'
that the existence of CP-violating surface terms in
the action (8 terms) may have a significant physical
meaning. In particular, dyons have a minimal
charge" g8/2sr (g is the coupling constant) and the
phase structure of non-Abelian gauge theory gets
complicated by the existence of an oblique confine-
ment phase when 8=w. ' For this reason the duali-
ty transformation of a lattice Z~ gauge theory in the
presence of a CP-violating 8 term has recently been

carried out. ' The emerging picture is quite compli-
cated but basically agrees with 't Hooft's suggestions
concerning the phase structure when 8&0. '

We therefore find it relevant to investigate anew
previously suggested duality transformations for a
pure Yang-Mills theory in the continuum, now
containing a 8 term. In doing so, we will also care-
fully keep track of any surface terms that might be
created by the duality transfoimation itself. Indeed
the duality transformation generates topologically
relevant surface terms. As a result of this, previous
results on the self-duality of the pure Yang-Mills
theory in the weak-coupling limit cannot be repro-
duced. More precisely, we argue that even though
the dual of a pure Yang-Mills theory with a 8 term
is, at least in the weak-coupling limit, again a pure
Yang-Mills theory, the 8 parameter of the dual
theory will in general be large even if it was small in
the original theory, unless one identifies the dual 8
term with the CP-violating part of the dual theory
In this respect, our result differs from the analogous
one for the lattice Zz gauge theories. " This differ-
ence can be traced back to surface terms generated
by the duality transformation due to the non-
Abelian structure of the symmetry. We note, how-
ever, that apart from these surface terms we can de-
fine 8n and gn siinilar to the ones defined in the lat-
tice models, as the duality transformation in the
continuum is similar in nature to the one in the
Abelian lattice models. These surface terms, howev-
er, are instanton type only. They do not contribute
for monopoles and vortices. Hence, it is the instan-
ton contributions which spoil the simple self-duality
picture in the weak-coupling limit. In a way, this is
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not surprising since it is precisely these contribu-
tions which complicated the phase structure of the
system as suggested by 't Hooft. ' We are as yet
lacking tools for the investigation of the phase struc-
ture, but we feel that our result may be relevant for
the discussion of confinement properties of non-
Abelian gauge theories.

We will present two alternative ways to carry out
the duality transformation. A common step for
both is carried out in Sec. II, namely, the introduc-
tion of a set of auxiliary variables in the generating
functional as Fourier conjugates of the field
strengths. It is this step that leads to an inversion of
the coupling constant. ' At this stage, the exponent
in the integrand of the functional integral is at most
quadratic in the gauge potentials.

In Sec. III, following Kazama and Savit, we in-
troduce a second set of auxiliary variables, this time
Fourier conjugate to the gauge potentials them-
selves. Doing so means that the duality transforma-
tion becomes very similar to those on the lattice. '

The functional integration over the gauge potentials
can now be carried out and produces a 5 functional.
The presence of this 5 functional means that a con-
straint is to be satisfied by the auxiliary fields. Un-
fortunately, only one exact solution of this con-
straint is known. Using it, one can see that the dual-

ity transformation itself produces a surface term.
Also, we isolate the only term generated by the dual-

ity transformation that can possibly be of topologi-
cal relevance without recourse to any special solu-
tion of the constraint.

In Sec. IV, we follow Itabashi's version of the du-

ality transformation. Here the second set of auxili-

ary fields is not introduced. Rather the Gaussian in-

tegration over the gauge potentials is carried out; no
constraint appears. We give the general form of the
dual theory and discuss in particular its weak-

coupling limit. In this limit we see that the duality
transformation generates a surface term. However,
it is nonzero for instanton contributions only.

In this section we describe the first step in the du-
ality transformation which is common to both for-
malisms to be employed below.

We consider a non-Abelian gauge theory with a 8
term in the Euclidean domain, defined by the La-
grangian

(G i 8G—G ),
4g 2

where the scaled vacuum angle 8 is given by
2e=g e.8'

(2.1)

(2.2)

The field strength tensor G =G( V) is defined as'

G„'„(V) =a„V'„a„V„'+f'"—'V„'V'„,

and 6 is its dual,

(2.3)

a
Gpv= g ~pvpgGpg .

It is convenient to define' '
(2.4)

and

8m.
z+ —— +i 8

g
(2 5)

G+ ———,(G+G) .

Then the Lagrangian (2.1) can be written as'

(z G+ +z+G ) .1

32~'

We introduce the generating function Z[g] as

(2.6)

(2.7)

Hence one can conclude quite safely that for config-
urations belonging to the trivial maps of Si"~S
(9' is the group space) self-duality in the weak cou-
pling is maintained. This set of configurations in-

cludes, in particular, the monopoles and vortices. '

Section V contains some concluding remarks.

II. DUALITY TRANSFORMATION
FOR NONVANISHING 8

Z[g]= JDvexp —
z f d x(z G+ +z+G +i(V)

327T2
(2.8)

As a first step of a duality transformation one now undertakes a functional Fourier transform
r

z m2
exp d x 6+ —— DS"+ exp — d x 8'+ +—8'+6+

2z + 4
(2.9)

and similarly for G . Without restriction, the Fourier conjugate variable W+ ( W ) can be chosen to be self-

dual (anti-self-dual), since the integral over an anti-self-dual part from W+ would be Gaussian and thus pro-
duce just a constant factor. '

Thus we have
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Z[g]= f DVDW+DW 5 (Wi —W~)5 (W +W )
r

2 2

Xexp —f dx W+ + W +—W+G++ —W G +
2z + 2z+ 4 + 4 32m

where for generic tensors T and T' the 5 functions are implied to mean

5 (T T' )—=5(Tpi —Tz3)5(Tp2+ Ti3 )5( Tpi —T'i2 ) .

(2.10)

(2.11)

Note that the Fourier transformation (2.10) has the effect of inverting the coupling constants, z+ ~1/z+. &n

order to eliminate the 5 functions in (2.10), set

W+ = i (Ei +Kg ) . (2.12)

The 5 functions in (2.10) are then equivalent to

5 (Ki —K2)5 (K2 Ki ) =—5 (Ei K2) .—

We can now carry out the integration with respect to E2. Setting

Ei ——2E,
and inserting again g and 8 instead of z+, one finds eventually

(2.13)

(2.14)

Z[g]= fDVDKexp ~ —f d x
2

(K~+i 8KK)+ KG—+i(V4(1+8')
(2.15)

with

1

32m.2
(2.16)

I

which we refer the reader for any further details.
Using the definition of the field strength tensor,

G=G(V), we find

We now want to eliminate the original variables V
from Eq. (2.15). We could do so by just carrying
out the integration over V since it is Gaussian.

Another possibility is to first linearize the term
quadratic in V in a manner analogous to Eq. (2.9).
In this way we introduce yet another field, B, and
the V integration will produce a constraint to be sa-
tisfied by K and B.

We will present both approaches. The reason for
doing so is first that the latter much more resembles
the procedure on the lattice. Also, since we do not
fix a gauge, the calculations become much simpler.
On the other hand, the first method avoids the con-
straint and thus yields slightly more information.

III. DUALITY TRANSFORMATION
IN THE CONSTRAINT FORMALISM

In this section, arguments run much along the
same lines as in the paper by Kazama and Savit, to

I

—,
' f d x KG= —f d x[(M, V) —(g, V)

——,(V, TV)] . (3.1)

Here we use the following shorthand notations:

and the "surface current" gz is introduced as

Pg, =sqK ~P(X)

(3.2)

(3.3)

(3.4)

where 5(X) is a 5 function with support on the sur-
face X, and s& is the normal vector on this surface.
We have the property that

f d4x(g, V)= f d x B„(K„'„V',) . (3.5)

We now linearize the last term in (3.1) by introduc-
ing a new field A, viz. ,

r

exp f d x(V, TV) = f DA(detT) '~ exp f d x (A, T 'A) i(A, V—)—
2 2

(3.6)

As usual, the Gaussian integration with imaginary exponential is to be understood by analytic continuation. In
order that (3.6) be valid it is not necessary to assume that the eigenvalues of T have a definite sign. We do ig-
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nore the question of zero eigenvalues of T however. The existence of an inverse T ' will be assumed
throughout.

Using (3.8), the V integration in (3.1) produces a 5 function. Shifting variables according to

A'=A+g+gx (3.7)

and introducing variables B through

A'= TB

we eventually obtain for the generating functional
r

2

Z[g]= f DKDB(detT)'~ 5(dK TB)—exp f d x (K +i8KK) i(B,f—+gx)
4(1+8 )

(3.8)

+ (g—+gx, T '(f+gx))+ (B—, TB)
2 2

(3 9)

The 5 function in Eq. (3.9}implies the constraint dK =TB, or, written out explicitly

d„Kqi„=f' BqKi„.a a& b c

One notices that it takes the form of a Bianchi identity for E.
Using the constraint (3.10}we obtain the identity

(3.10)

(B,TB}=—i d„(BqK ',q) K'„qG„—'q(—B), (3.11)

where G (B) is the field strength tensor as defined in (2.3), but with V +B W—e th.us obtain instead of (3.9)

2

Z[g]= IDKDB(detT)'~ 5(dK TB}ex—p ~ J d x (K +i8KK) i(B,g)—
4(1+8')

+ —(g+gz, T '(g+gx)) ——(K,G(B))
2 2

(3.12)

Since there is still an unsolved constraint, we have
not really found the dual theory yet. However, since
(3.10) is just a Bianchi identity, there is a special
solution,

K=G(B) . (3.13)

Using it, the first term in the exponential of (3.12)
becomes

2

[G (B)+i8G(B)G(B)]
4(1+8')

and the last term becomes

(3.14)

2
G(B)G(B) . (3.15)

This indicates that the duality transformation in
general produces instanton-type surface terms corre-
sponding to large values of the 8 parameter even if
none were present in the original theory (8=0).

Two other surface terms which appear in (3.12)

are (gx, T ' f)and (g'x, T 'gx). The first vanishes
if the external source falls fast enough at infinity.
We will assume that this is the case. For the second
term we have

I d4x(gz, T 'gx)= f d'os„K„'„T„g"s K "x5(&),

(3.16)

where we use the definition (3.4) of g~&. This may
have a finite contribution but it does not have a to-
pological significance. It vanishes for any field con-
figuration which falls off at infinity faster than r
In particular, for instanton configurations we have
K(x)-r, hence it is zero. We will argue now that
it can be ignored in the weak-coupling limit (g~0).

Following Kazama and Savit, we rescale vari-
ables according to

(3.17)

Consider now the factor
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P ~

(detT)' exp —f d x(gz, T )gz) = det —T'c'
' 1/2

exp f d 4x (g(0) T(0)—lg(0) ) 5(g(0) )

(3.18)

which uses the following definition of the 5 func-
tion:

5(x)= e' ~ lim e
&~0+ e

(3.19)

K =G (B)+co, (3.20)

we do not obtain much information about co, except
that on the surface X, G(B)= —a& for small g. This
situation improves in a formulation of the duality
transformation without constraints which we will
give below. There we will argue that at least in the
weak-coupling theory co can be ignored. In that case
one can identify OD and gD of the dual theory Thi.s
will be done in the next section.

IV. DUALITY TRANSFORMATION
WITHOUT CONSTRAINT

Thus one should include in the weak-coupling limit
configurations which vanish at infinity faster than
r In. particular, instanton configurations satisfy
this condition.

If in the present formalism we write

xq Vq(x) =0 . (4.1)

x,G,'„(V(x))=(1+x,a, ) V„'(x), (4.2)

which may be considered as a differential equation
with the formal solution

1

V„'(x)= f da[y G'„(y)]~„. (4.3)

The inversion (4.3) is unique. In other words, the
radial gauge is complete; there is no problem with
field strength copies.

The structure of the calculation is the same as in
the previous section. Because of the gauge condi-
tion, some details will get more complicated, how-
ever. The reader interested in any details omitted
here is referred to the paper by Itabashi.

The first step is to process the term

This gauge is compatible with regular field configu-
rations only. Its main advantages are that the
ghosts decouple and that a simple field strength for-
mulation of non-Abelian gauge theories is possible.
The latter property is the reason why it has been
used in the present context.

From (4.1) one finds

In this section we will give an alternative version
of the previous considerations, as followed also by
the authors of Refs. 3, 4, 8, and 9. Two main points
will be different.

First, we will carry out directly the V integration
in Eq. (2.15) without linearizing the term quadratic
in V. This way we lose some of the similarity of our
duality transformation with those on the lattice, but
we avoid the constraint.

The other important difference is that we will
adopt a gauge, the radial gauge

exp —f d xGK
2

The following identity holds:

X4

where

'PJO ) (4.4)

X; = e; k I(2+xi di)E k [d (x K'k) —()„—(x K' }]I (4.5)

and the "surface current" J~; is given as

Jz; ——, e&k f—d cr)„(p)piKJ'k(p)5 (x —p) —2 f d(4 f d oi(g)(P&k(g}5 (x —g) (4.6)

The matrix T is now

T,'=x K'keij kf'. . (4.7)

Here Latin indices run from 1 to 3 and Greek ones from 1 to 4. Equation (4.4) may be proved by repeated use
of the gauge condition. The generating functional is now [compare with Eq. (2.15)]
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'I

2

Z[g]= f DVDK5(x&V&)exp f d x (K +i8KK) (detT)
4(1+8 )

4

X exp ~ —i [V;(I;+rl;—Jx;)——, V; T,j VJ]a a a a & a ab b

X4

~here

A~ A
'g =X4$ —X.

We also use the identity

X =F +T;J Bq. ,

where the "dual" field B is introduced through
1

B~(x)= f da[y~Kq„(y) J„=~ ~

with

Y = —,(2+xi Bi )ejk[KJ'k —GJ'k(B)],

to rewrite (4.8) as

2

Z[g]= f DK(detT) ' 'exp
z f d4x(K +&'8KK)

4(1+8')

y, exp —— Y+TB+q —Jx,T F+TB+g—Jl d X —1

2 X4

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13}

The su~ace te~s that are generated by the duality transforation are those that contain Jx and the te~
(B,TB}. The scalar products (, } are to be understood as three dimensional.

Using the identity (4.4) with V—+B, the last factor in (4.13) may be rewritten as

d4X
exp ——f [(Y+q—Jx, T '(Y+q —Jx))+2(B,rl)] exp ——f d xG&„(B)K&„

X4
(4.14)

2

Z[g]= f DB'5(x B')(detT) ' exp — f d x(G +&8GG)
4(1+8')
2

X f Dao'p(xpropk) exp.
~ f d «[cg +2Gm+i8( coco+26co)]

4(1+8')
4

X exp ——f [(Y+rl Jx,T '(Y+q —Jx))+2(B,r/)] —exp ——f d xGK
2 X4 2

(4.15)

In this expression

Equation (4.13) is exactly analogous to the corresponding equation in Ref. 4 except for the K K term and a sub-

stitution Y~Y—Jx. ~e can therefore just quote the result for the generating functional,
r

Kq„Gq„(B)+coq„——, (4.16)

where co&„has to satisfy

(4.17}

Therefore the independent variables of the dual theory, which replace K&„, are B and coi'k. Note that because

of (4.17) T and T ' do not depend on co k. '
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I'he weak-coupling limit now yields

(detT) '~ exp ——f (Y J—x, T '(Y—Jx)) —5(Y—Jx) .
2 X4 small g

(4.18)

From the definition of Y [Eq. (4.12)] we obtain the differential equation

a aDij ~ijk ~k &

with D =(2+xxBi ). Because of (4.18) we may replace this in the weak-coupling liinit by

a aDij ~ijk JX,k .

This differential equation has the formal solution
1

cocf(x)=@~I, f daaJx k(ax),

which, using the explicit form (4.6) for the surface current, may be written as
r

1

co,j(x)= f daa f d cripiK, &(p)5 (ax —p)

(4.19)

(4.20)

(4.21)

—f d(4 f [d'o;(PAL, (g) d'cr, (P—p, (g))5 (ax. () . —
2

(4.22)

Here Xz and Xs specify two- and three-dimensional surfaces, respectively. Even though this solution is formal
in the sense that co,z appears on both sides, we can still draw some information from it.

In fact, let X2 and X3 be the spheres with radius r and R, respectively. Because of the 5 function in (4.22)
and the range of the a integration, co,j(x) is nonvanishing and gets contributions from K only from outside
these surfaces. Now for finite-action configurations, K tends to zero for large enough r and R more rapidly
than r (R ).

We therefore conclude, in particular, that if we choose the surfaces Xq and Xs sufficiently far out, then we
can neglect the integrals f coG, f coG, f coco, and fcoco as compared to the integrals fGG and fGG, at least
for finite-action configurations.

%e also note in passing, that on purely algebraic grounds, Gcu =0 if we set, formally,

a —1 aij =&ijk& ~x,k .
We therefore obtain as the weak-coupling limit of (4.15)

2

Z[g] = f DB5(x„B„')exp ~ —f 1 x —

2
(G +ieGG)+iBg+ (B,TB)—

small g 4(1+8') 2X4

(4.23)

(4.24)

with

G=G(B) .

In (4.24) we use

f G„'„(B)K„',1 x= f "(B,TB),
X4

(4.25)

which is valid in the weak-coupling limit. To prove
(4.25) one has to insert (4.10) and (4.18) in (4.4). Ob-
viously this result is more specific than the corre-
sponding one in the previous section. Again we note
the extra surface term originating in the duality
transformation. Yet it does not emerge as a CP

violating surface term.
To understand this point consider the case 8=0.

The original theory is CP conserving. That is,

exp —- f 1 xG (V)
4g 2

is real [when 8=0 the decomposition into G+( V) is
not needed], so in the duality transformation in (2.9)
we could use

cos —fd x WG
I4
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rather than

exp ——f d x WG
4

The final result will be CP conserving, even though
we would still have the right-hand side of (4.25) (in
the weak-coupling region), this time in the cos rath-
er than in the exponential. Of course the reason for
the invariance is that the cos is an even function of
its argument whereas the exponential is not. So the
fact that (4.25) is odd under CP does not affect the
generating functional. This is true as long as 8=0.
When 8+0 the duality transformation has to be
done as in (2.9); however, (4.25), which is generated
by the duality transformation, should not be mixed
with the CP-violating surface terms. This observa-
tion is important when the identification of the
parameters of the dual theory is done.

The 6I term in the original theory represents a
CP-violating surface term. The same should be the
case in the dual theory. Hence, we define the dual
coupling constant g~ and the dual 8 angle 8D as

2 2
g 8m

gD=642 2 +

(4.26b)
(8 /g')'+8'

(4.26a)

Apart from some constant factors they coincide
with the dual parameters defined in Ref. 13 for a Z&
gauge theory on a lattice. With these definitions we
have for the dual Lagrangian in the weak-coupling
limit

1
gD

smallg g
(4.28)

In particular, the coupling constant appearing in the
unscaled dual field strengths is 1/g and not gD.
From the scaling transformation of the dual vari-
ables in (3.17) we find that the unscaled field
strength tensor is

G(0)a g g(0)a g ~(0)a+ gabcg(0)b~(0)c
PV P, V V P, + J P ~V eg'

(4.29)

~D =
2 (GG i8DG—G) (—B,TB)

4gD' 2x4

(4.27)

and 8D is defined as 8 in (2.2) but with 8D replacing
0.

It is only when 0=0 or in the weak-coupling re-
gion when 8&0 that we have the inversion of the
coupling constant in the dual theory,

In other words, for 8&0 the effective coupling con-
stant of the dual theory is no longer 1/g, unless g is
small enough.

The dual Lagrangian in the weak-coupling limit
can be given the form (2.7) if we use ' (4.25) and de-
fine

2

z+ —— i +i ( 8D —2gD ) .D 8m

gD

In that case we have

(4.30)

V. CONCLUDING REMARKS

The duality transformation of a pure Yang-Mills
theory in the presence of a CP-violating surface term
has been performed. We presented it in two dif-
ferent ways. In the first we found the constraint sa-
tisfied by the dual variables, thus making it similar
to the duality transformation performed for Abelian

WD(x)= — q(z Gi +ziG ) .
32~'

This form of WD(x) and the fact that the dual
fields satisfy the radial-gauge condition suggest that,
at least for 8&0, the theory is self-dual in the weak-
coupling region with gD=1/g. For 8=0 we have

z+ ——z in the original Lagrangian (2.7). That is,
there are equal contributions of self-dual (or anti-
self-dual) field configurations ( G = +G, respective-
ly). In the dual theory these contributions to WD
are weighted by z and z+, respectively. But in
spite of the similarity in the form of WD(x) and
W(x) for 8=0, it is clear that self-duality is lost in
the weak-coupling region because GG does not con-
tribute to W(x). The configurations which spoil
this property are the instantons.

From (4.25) we know that

4

f "'(B,TB)
X4

is exactly the Pontryagin index. ' That is, it charac-
terizes the maps of n.s(9'). Configurations belong-
ing to trivial maps of Ss ~S give zero contribu-
tion. In particular monopoles and vortices' belong
to the trivial maps of ~i(S ); hence for these config-
urations the last term of (4.27) vanishes. That is,
self-duality of the pure Yang-Mills theory holds in
the weak-coupling region only for configurations
with zero Pontryagin index (unless 8&0). This re-
sult is weaker than the one found in Ref. 4, and
probably reflects the complications in the phase
structure introduced by the instanton contribu-
tions. ' ' We have been able to uncover it by a
careful treatment of all surface terms produced by
the duality transformation itself.
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lattice models. In the second way we picked up the
radial gauge and found the specific form of the dual
Lagrangian.

In both ways we found, by keeping track of all
surface terms, that the duality transformation gen-
erates surface terms of a topological nature. They
emerge because of the non-Abelian property of our
model. In the weak-coupling region (small g) the
dual theory resembles the original one with a modi-
fied parameter; however, when 8=0, self-duality is
lost as the instantons give nonzero contributions to
the surface term generated by the duality transfor-
mation. For 8+0 such a surface term appears in
the original Lagrangian; hence the dual Lagrangian
is similar in form to the original one.

However, there is a subset of field configurations,
which belong to the trivial maps of m3(9'), for
which the extra surface term vanishes. Thus, for
these configurations self-duality is maintained in the
weak-coupling region. This set of configurations in-

cludes, in particular, the monopoles and vortices of
the theory.

Self-duality of the theory (to be distinguished
from the self-duality of the phase ) is an important
ingredient in understanding confinement in non-
Abelian gauge theory. Thus, the self-duality of the
theory can facilitate the analysis of the model and
can help one to understand the existence of electric
vortices (confinement phase) as due to condensation
of magnetic monopoles, ' ' which is analogous to
understanding the existence of magnetic vortices
(Higgs phase) due to the condensation of electric
charges. Here we found that for 8=0 this picture is
not spoiled, because for the subset of fields which
are responsible for confinement' ' self-duality is
maintained in the weak-coupling region. The situa-
tion is more complicated when 8&0. We saw that
the surface contributions (in particular the
instanton's} are essential in rendering the theory
self-dual (in the small-g region). Moreover when

8&0 the monopole's charge is modified by a term
proportional to 8." This led 't Hooft to suggest the
existence of an oblique confinement phase when
8=m. Hence the extra surface term may be essential
in understanding this phase, and the general phase
structure when 8&0. Unfortunately, we do not have
yet a clear picture of the phase structure when 8&0,
so we do not know yet how important this extra sur-
face term is going to be.

The effective parameter of the dual theory can be
written in terms of the coupling constant g and the
vacuum angle 8. Apart from some constant factors
they are similar to the ones found in the dual model
of a Z~ gauge theory on a lattice with a nonvanish-
ing 8 parameter. However, there is no clear defini-
tion of the dual coupling constant. In the dual un-
scaled field strengths it appears as 1/g, whereas in
the dual Lagrangian there is another parameter the
effective g, though, gD(g, 8)= 1/g. So only for these
values of g do we have a simple inversion of the cou-
pling constant in the dual theory. However, for
8=0, ga is exactly 1/g. The dual 8 angle (8D) has
been identified with the CP-violating part of the
dual theory. This led to the agreement with the re-
sults of the Z~ gauge model on the lattice.
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Ref. 4. When this is done (Ref. 8) one finds that self-

duality in the weak-coupling region is valid in direc-
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Note that from (4.11), (4.16), and (4.17) we can write

1

BI',(x)= da(ax~)G~(B(ax ) ) .
0

To prove this one has to use the gauge condition (4.17).
2~By using the radial-gauge condition, one can show that

the right-hand side of (4.25) is a surface term. We have
calculated both sides of (4.25) for the Belavin-
Polyakov-Schwartz- Tyupkin instanton after setting
E~G on the left-hand side. Both sides then agree.
Therefore, for this particular configuration we have
indeed

Ga)d x= Good x=0.
2 One should distinguish between self-duality of the

theory and self-duality of the phase. It is possible to
have a self-dual theory with a few phases dual to each
other (like the confinement and Higgs phases of Yang-
Mills theory) and no self-dual phase. A self-dual phase,
however, may appear in some self-dual models, e.g., the
Georgi-Glashow model has such a phase. In a self-dual
theory the dynamics of the dual variables (the Lagrang-
ian in field theory, or the Hamiltonian in a statistical
system), is the same as that of the original ones. How-
ever, the original and the dual variables may not appear
simultaneously as physical excitations in a given phase
even though the system is self-dual. This happens only
if the phase is self-dual.


