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A class of local gauge theories based on compact semisimple Lie groups is studied in the

limit of infinite gauge coupling constant (g = ao). In general, in this 1imit, the gauge fields

become auxiliary in all gauge theories, and the system develops a richer structure of con-

straints. Unfortunately for most gauge theories, this limit turns out to be too singular to
quantize and the theory ceases to be renormalizable. For a special class of gauge theories,

however, where there are no fermions and there is only one multiplet of scalars in the ad-

joint representation, we prove that a consistent renormalizable quantum theory exists even

in this very singular limit. We trace this exceptional behavior to a new local translationlike

symmetry in the functional space that this class of gauge models possesses in the limit of in-

finite gauge coupling constant. By carrying out the constraint analysis, evaluating the
Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the

canonical momenta, the gauge fields, and most of the components of the scalar fields, we

obtain an extremely simple result with no non-Abelian structure left in it. For example, for

group SU(2), the final answer reduces to the theory of a one-component self-interacting real
P4 scalar field theory. Throughout this paper, we use functional methods and make no ap-

proximations; our results are nonperturbative and exact. We also discuss some of the possi-

ble implications of our results.

I. INTRODUCTION

The study of quantized gauge field theories in the
strong-coupling-constant limit has always presented
extreme difficulties in calculations, if not in the for-
malism. Since perturbative calculations become
completely unreliable, physicists have sought alter-
native means of handling this case by the use of lat-
tice calculations and Monte Carlo simulations. In
this paper, I would like to propose that we can gain
insight into the behavior of the gauge theories in the
very-strong-coupling-constant regime by studying
the extreme case, namely, the (apparently singular)
limit of truly infinite coupling constant. At first
glance, it would seem contradictory that a problem
which is very difficult to handle for a large but fin-
ite coupling constant should become more manage-
able for the truly infinite case. Not suprisingly, it
turns out that the infinite-coupling limit is too
singular and nonrenormalizable for gauge theories,
except for a small class of them, which remains well
defined and renormalizable in this very singular lim-
it. It is exactly this special class of gauge theories
that we intend to study in this paper. We emphasize
that this paper is not about a large-coupling approx-

imation method. The gauge coupling is taken to be
truly infinite and our results are exact and nonper-
turbative.

To illustrate the basic point, let us start with a
gauge theory based on a semisimple Lie group 6
which contains fermions and scalars in given repre-
sentations (not necessarily irreducible) of G (Ref. 1):

F'geu" +g(i g m)g—
4 2 P, a

+ —,(&„p) (&"p)—&(p)

+ Yukawa terms if any,

where 9'& is the gauge-covariant differential opera-
tor, and V(P) is the scalar self-interaction potential
containing terms of order at most four. It is clear
that if we go to the infinite-coupling-constant limit

(g = oo ), the kinetic term in the Lagrangian for the
gauge fields can be dropped and the gauge fields be-
come auxiliary fields. The presence of auxiliary
fields has two immediate consequences. The first
one is that the system now possesses more dynami-
cal constraints than before. The second one is that

1910 1983 The American Physical Society



CLASS OF VERY SIMPLE GAUGE THEORIES WHICH REMAIN. . .

for the quantized case all the functional integrations
over the gauge fields can be performed to eliminate
them.

This apparent simplification of the Lagrangian,
however, is a dangerous one for the quantized case.
The Lagrangian Ws'"s' given above is known to be
renormalizable. The remaining Lagrangian, howev-
er, after we set g = oo and drop the kinetic term for
the gauge fields, is, at best, suspect from the point of
renormalizability. One cannot arbitrarily exclude
some terms from a renormalizable Lagrangian and
still maintain renormalizability unless, of course,
there exists a new symmetry of the Lagrangian re-
sulting from the exclusion of the terms dropped. In
the general case, when we drop the kinetic term
from the Lagrangian Ws'"s', we generate new con-
straints; unfortunately, these new constraints are of
second class and do not correspond to the genera-
tors of a new symmetry. We must conclude, there-
fore, that the limit g = co is indeed a very singular
one and that most of the gauge theories are not re-
normalizable without the presence of the kinetic
term for the gauge fields. Although this is often the
case, there are exceptions. The first example for
such an exception was reported for an SU(2) gauge
theory of scalars in the adjoint representation. ~ In
general, for any semisimple compact Lie group G,
the theory with a single multiplet of scalars in the
adjoint representation retains its renormalizability in
this singular limit of g = ao.

To illustrate this point, let us start from

i p»g»'+
2 (~»p)(~»p), —&(p),

4g 2

P, (x)~ P, (x),

A,"(x)—+A,"(x)+P,(x)A»(x, g(x ),A(x)),
(3)

where A» are completely arbitrary functions of
space time x, an-d/or arbitrary functionals of the
fields P, (x) and A»(x).

If we failed to notice this new invariance upon the

and drop the kinetic term for the gauge fields at
g= 00.'

W= lim W'=
2 (&»p), (&»p), —V(p) . (2)

g~ oo

Unlike the general case of a gauge theory which
contains scalars in representations other than ihe ad-

joint representations, this case indeed has a larger
symmetry at g = ao. The Lagrangian W given by Eq.
(2) is not only invariant under the ordinary local
gauge transformations of the group G, but also under
the following new transformation5:

inspection of the Lagrangian W given by Eq. (2), we
would rediscover it through the constraint analysis
of this system. As expected, not all of the new con-
straints generated by dropping the gauge kinetic
term turn out to be second class in this case; indeed,
some of them are first class and they generate this
new invariance expressed by Eq. {3).

To describe the effect of this invariance in a more
transparent way, let us make a brief digression and
discuss the question of gauge fixing for classical
fields. It is well known that given any potential A»,
one can make a gauge transformation to the poten-
tial Ap' which is in the axial gauge': npA: =0
where q& is an arbitrary constant spacelike vector.
This is all we can do (other than a global gauge
transformation) in the case where the gauge kinetic
term is present. However, for the Lagrangian W,
the invariance expressed by Eq. (3) enables us to re-
strict A» even further. Using that invariance, we
obtain a new potential A,"»=A,'»+A»g„where we
can choose A" as we please. The choice

A» ———a,A»'/(abPb) for any a, {x,P(x)) is particu-
lary interesting, since we will obtain a,A,

" =0.
But more importantly, the new potential Az" is still
in the axial gauge: q&A,""=0. It is clear sow that
the extra invariance this system possesses allows us
to restrict A" more than we could in the ordinary
case. We can simultaneously satisfy g»A,"=0 and

a,A,"=0. In Ref. 4, this gauge was named doubly
axial gauge. A particularly interesting special case
is a, =P„where the classical field configurations
are easier to deal with.

Even though they are obvious, I would like to
make a couple of remarks pertaining to this new ex-
tra invariance. The first remark is to emphasize
that the Lagrangian W' is not invariant under the
transformation given by Eq. (3); only W is. This in-
variance then prevents the generation of the kinetic
term for the gauge fields by higher-order correc-
tions, keeping the theory renormalizable. Secondly,
this invariance we have been describing is peculiar
to the adjoint representation of the scalar fields. No
other representation content for any combination of
scalar and/or fermion fields that possesses such an
invariance is known to me presently. Stated more
precisely, the theory with the scalars in the adjoint
representation (and no fermions) is the only class of
models known to me where the constraints generat-
ed by taking the g={x) limit are not all second
class. '

The rest of this paper, then, is organized as fol-
lows: In the next section, we study the general prob-
lem of the quantized gauge theory given by the La-
grangian W of Eq. (3). In Sec. III, we will first spe-
cialize in the simple case of 6=SU(2), and work
out the complete details of the quantized theory and
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show that it is equivalent to a one-component P real
scalar theory. In this case, we will also compare the
quantized result with the classical one, and also
present a brief discussion of the problem for arbi-
trary semisimple gauge groups. Finally, in Sec. IV,
we will state our conclusions and present a discus-
sion of gauge theories in the singular limit of g = cc.

II. GENERAL FORMALISM

0~c=
g kata fabckakbAc

——,(~;p).(~'p). + &(p) . (4)

The primary Hamiltonian is obtained by adjoining
the primary constraints

where the coefficients E& are arbitrary for the first-
class constraints and are determined in terms of the
fields and momenta for the second-class ones. The
evaluation of these coefficients E," is only necessary
for the classical Hamiltonian equations. Fortunate-
ly, the functional quantization method bypasses this
point: there is no need to compute Ez that corre-
spond to the second-class constraints.

As usual, the requirement of consistency is stated
by

[Eq,Hp j = Eq(x, t), J d yP p(y, t) =0,

which generates the secondary constraints X, and
fa, which are easily computed to be's

[Ea~Hp j — fabc40c = &a =0 ~

t E' Hp j = f.b A(~'4), =—

We start with the Lagrangian W given by Eq. (2)
and possessing the new invariance expressed by Eq.
(3). The systematic quantization of this system re-
quires the analysis of its constraint structure first.
After that the Faddeev-Popov-Senjanovic (FPS)
determinant" can be computed and the path in-
tegration can be performed (wherever possible) in
the generating functions W[J].'

We start the constraint analysis by evaluating the
canonical momenta. The momenta canonical to the
gauge fields A

&
vanish: E,"—=BW/B(BOA& ) =0.

These are the primary constraints. The momenta
canonical to the scalar fields are

g, =—BW/B(BO((), ) =(& (()),

—=Aa +fabckAc

The canonical Hamiltonian density is then comput-
ed to be

For consistency, these secondary constraints have to
be maintained. By direct computation we find

[ga,Hp j = f—abcXbAc (&—; Q'), =0,

I ~.',Hp j =I.~~b I2(~;~).

f,g, p—d((&'A ), E,')—j =0.

(8)

(9)

Unfortunately the algebra leading to Eqs. (8) and (9)
is quite long and tedious and is not very illuminating
from the point of view of physics. For this reason,
the proofs of these two equations are relegated to
Appendix A for the reader who wishes to trace the
steps of the computation.

Equation (8) clearly states that no new constraints
are generated by the requirement that X, have to be
maintained. Equation (9) takes more care to inter-
pret correctly. At first sight, it appears that all Eq.
(9) does is to determine the coefficients E,' in terms
of ((), g, and A&. However, E,' are only partially
determined from Eq. (9). It is easy to see that
all the combinations Pa I Q'„Hp j, ga I Q'a, Hp j,
(&;P)a[/'a, Hp j vanish weakly regardless of what
values E,' may take. To analyze this system of
equations let us denote the order of the group 6 by
X, and its adjoint representation matrices by 8,
[(8,) =—if,b, j. Let us also define the matrix A by
A =(i8apa), and the vectors X' and Y' in the N
dimensional group space by X,' =E,' —(&~A )„and
Y,'=2(i8bgb)(&'g)„ for i =1,2,3. Then Eq. (9)
can be cast into the following matrix equation:

iI Q', Hp j ~AX+Y'=0 for i =1,2, 3 . (10)

Equation (10) does not completely determine Y
since A is not invertible. ' As a matter of fact the
three X-dimensional matrix equations expressed by
Eq. (10) can be consistent if and only if

rank(A) =rank(A, Y') for i =1,2,3, (11)

where (A, Y ) is the N X (N+1) augmented matrix.
If Eq. (11) is identically satisfied for each i, then the
set of equations given by Eq. (9) are consistent and
no new secondary constraints are generated by the
requirement [g'a, Hp j =0. If, on the other hand, Eq.
(11) fails to be true, additional constraints are then
imposed (generated) to satisfy Eq. (9).

In this case it turns out that Eq. (11) is identically
satisfied. The proof of this statement, even though
straightforward, is quite unrelated to the physics of
the problem, and for this reason it will be given in
Appendix B in order not to disrupt the fIow of the
formalism we are developing.

Having determined all the constraints, we have to
do a careful counting now. At first sight, it appears
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as if we have 8N constraints (4N of E,", N of X„
and 3N of 1(,'). But the constraints 1, and g,' are
not all independent from each other. Clearly
/~+~=0, /~/~=0. It must be emphasized that
these are (strong) equalities, not the weak equalities
we have been using for the constraints following
Dirac's notation. Therefore, the question of how
many of these strongly satisfied relations exist must
be answered at this point. Another way of stating
the problem is that we have to find the rank of the
NXN matrix 4=8,$, . Just from the fact that
4,blab ——0, we conclude that rank 4 & N —1. Furth-
ermore, since 4 is purely imaginary and antisym-
metric, we conclude that rank 4&N —2 if N is an
even integer. So far we have only made use of the
completely antisymmetric nature of the structure
constants f,b, for compact semisimple groups. To
determine the rank of 4, however, we must make
more use of the group structure. It is well known
that the rank of any semisimple group G is equal to
the number of maximum possible mutually com-
muting generators, or equivalently to the dimension
of its associated Caftan subalgebra. We will denote
the rank of G by r. Up to a normalization constant
the sth-order Casimir invariant C, that can be
formed from the vector P can be written as Tr(4'),
where 2&s &N. ' However, not all of these invari-
ants are independent from each other. Some of
them vanish identically. The number of indepen-
dent Casimir invariants for a semisimple group G
was first shown by Racah' to be equal to the rank
of the group. Racah also gave the complete listing
of these invariants for all simple compact groups. '

We can then prove that v,"—=Tr(8, 4') is an eigen-
vector of the matrix 4 with zero eigenvalue:
4abvb' ——0. To see this we write(s)

=+/, Tr([8„8,]4')
=Tr(8, 4'+') —Tr(48, 4&') =0 .

Therefore, 4 has at least as many zero eigenvectors
as the number of independent nonzero eigenvectors
v'J'. This is exactly the number of Casimir invari-
ants, or the rank of the group G. We then conclude
that rank (4) & N r. F—or semisimple groups, then,
rank (4)=N r '— .Therefore, we conclude that
N rof —the constraints X, and 3(N —r) of the con-
straints |t,' are independent; hence, the total number
of constraints is not 8N, but 8N —4r.

The next step in the constraint analysis is to deter-
mine the nature of these constraints. The reader can
easily verify that all of the followin~ constraints are
first class: E, , (&;E'),—X„v,'E,', (&;P),E,',
g, E,', (&;P),E,', and g, g,'. Other combinations
can also be written in a similar manner. It is easy to
see that not all of these are independent. To begin
with, the reader will recognize E, and (&;E'),—X,
as the (only) constraints of the theory with the gauge
kinetic term [i.e., constraints of the Lagrangian den-
sity W' given by Eq. (1)]. These are the generators
of the ordinary (local) gauge transformations, and it
is reassuring that they are still among the list of our
first-class constraints. After all, the theory given by
W is still gauge invariant. In addition to these 2N
constraints' there are 2r more independent com-
binations of the others. In conclusion this system
has 2(N+r) first-class and 6(N —r) second-class
constraints.

At this point one can continue with the classical
analysis of the system; fix a gauge and solve the con-
straints. Even though this may be an interesting
problem to solve classically, it takes us beyond the
original reason of studying such models. After all,
as long as one stays within classical physics and
does not worry about things like renormalization,
one might as well study a more general model: a
gauge theory without the gauge kinetic term, but
with Higgs fields and fermions in arbitrary represen-
tations. Therefore, instead of further elaborating on
the model at a classical level, we will proceed to the
quantized case. To do so we must write out the gen-
erating functional for this system:

W- J P dA, dA,'dE, dE,'dg, dg,
x, 1,a

6(N —r) 2(N+r)

ff 5(p, )5(v, )(detM )'~
s=1

exp l d + ~pEa+ a a ~c (12)

where g~, . . .,gb~~ „~ are the independent second-
class constraints, p1, . . .,p2(N+, ) the independent
first-class constraints, v1, . . .,v2(N+„) the gauge-
fixing conditions, and M is the FPS determinant.
Studying the general case of W is quite difficult for
two reasons; the difficulty of computing the

10N —2r by 10N —2r FPS determinant' could be
prohibitive, at least in most gauges, and the func-
tional integrals are very difficult to evaluate unless
the gauge choice simplifies them considerably. For
this reason we will demonstrate the details of the
calculations by performing them only for the sim-
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plest possible case, namely, the case when
G=SU(2}. This calculation was first reported in
Ref. 4. Later on, we will argue in general about
what the results should be for an arbitrary semisim-
ple group.

III. QUANTIZATION

A. Gauge fixing and the FPS determinant
for the case with G =SU(2)

Using the results of the general counting of the
various kinds of constraints we obtained in the pre-
vious section, we see at once that SU(2) has 20 con-
straints, ' 8 of which are first class. This requires
that we introduce 8 gauge-fixing constraints. The
difficulty of quantizing and the particle content
(such as ghost fields) of the theory is, of course,
gauge dependent. To quantize the SU(2) model, we
will choose the following: A, —C, =0, i);A,

' =0, and
a,A,'=0, where C, are arbitrary functionals of all
fields and momenta and space-time, i)&=—(O, rl) is a
constant spacelike vector, and a, are arbitrary func-
tionals of space-time and the scalar fields. C, has
no physica1 meaning and it disappears from all re-
sults, even though only one set of choices for C
corresponds to classical paths in the phase space, the
other choices do not. Furthermore, deperiding on
the functional dependence of C, on fields and mo-
menta, the gauge-fixing constraints may or may not
have vanishing Poisson brackets with each other as
required by the FPS formalism. For the gauge
fields, however, this condition need not be imposed
at all. ' If we just set C, =0, it makes no difference
in the calculations. One other point worth em-
phasizing is that the conditions g;A,

' =0 and
a,A,' =0 appear to have specified six conditions for
SU(2), but in fact any one of the six can be solved in
terms of the other five; therefore, the true number of
conditions is five, as it should be, to bring the total
to eight.

Our choice of gauge appears to be somewhat arbi-

(detM)'~ -aiPi (a P) (P.P)i, (13)

where the asymptotic sign is used rather than the
equality sign to remind the readers that some field-
independent pieces are dropped. We also note that
a«0 is necessary for consistency.

trary at this point, perhaps lacking physical motiva-
tion. The only argument we can offer to motivate
this choice is "the end justifies the means" type of
argument: At the end, when the dust settles, this
gauge produces a ghost-free and explicitly renormal-
izable effective action. We have found other gauges
where this is possible, but in general, in an arbitrary
gauge, the final result will not be as transparent and
as simple.

Remembering that only two of X, and six of g,
'

are independent, we choose the constraints 72,X3
and gz, P3 to be the independent ones. (Any other
choice will be just as good. ) The five independent
combinations of a,A,' and i);A,

'
we choose are a,A,',

g;A2, and g;A3. With these choices, the FPS deter-
minant is formally a 28X28 determinant, ' which
factors out in block-diagonal form to two pieces: a
6&&6 field-independent piece coming from A, —C„
and E, , and the 22)&22 piece coming from the rest
of the constraints. For the purpose of functional in-
tegration, we will drop all field-independent contri-
butions. Therefore, the only piece of the deter-
minant which contributes is the 22&(22 subdeter-
minant.

Calculating a 22)&22 functional determinant ap-
pears to be an insurmountable task at first sight;
however, in this case, due to the nature of the con-
straints and the gauge-fixing terms, this task can be
accomplished without any serious difficulty. To
simplify the computations, we may choose the con-
stant spacelike vector g& to have only one nonvan-
ishing component, for example, il"=(0,1,0,0}. The
computation procedure is straightforward, but tedi-
ous, and it will be given in Appendix C for the in-
terested readers. The result is

B. Evaluating the functional integrals for the case with 6 =SU(2)

We start with the amplitude given by Eq. (12):

8'- f Q dA, dA,'dE, dE,'dg, d(, 5(E, )5(A, C, )5(E,')—
x,&,a

X5(a.A ')5($2)5(f'i)5(X2)5(X3)5(i)JA 2 )5(gJA i )(detM )'

Xexp i d x AaEp+ a a ~c

where (detM)'~ is given by Eq. (13) and rl"=(0, 1,0,0). Furthermore, let us choose a=(P, O;0) for simplici-
ty. It is then clear that the integrations over the variables E, , E,', A~, A &, A ~, A2, and A3 can be done by
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means of 5 functions. This gives a factor of p . In the next step, we use the constraints 1(z and pi to do the
integrations over the remaining gauge fields. For that we observe

3

g 5(y', )5(y', ) =5(f,a'P, y—,a'y, )5(y,a'y, y—,a'y, )5~'~( —QW++),

where
r

Ad'0i Aid—'6
Q 0 y, '+y, '

A3

The integration over M gives us a factor (detQ) '=((i (P P), thus, we obtain

w f IIdg, d(, 5(x,)5(X,)S(y,a'y, y, a'P,—)5(y,a'P, P,a'y,—)
X,C

X [P Pi (P.P) ]P Pi (P.P) exp i f d"x W,'rr

(14)

(15)

where

~.rr=4. k. , g.—g.—+, (5;P—,)(5'P. )+ , A'Q—'A—-V(P) .

The direct substitution of S' from Eq. (14) gives
r

—,'&'Q '&=—'-—(5,(t) ~ (5'((')+ '
(y a, y)(y 5'((&)

(16)

(17)

The integrations over the canonical momenta gz and g~ can be done by the 5 functions of the constraints y, :

5(~2)5+3)42df3 5($3(1 $](3)5(pi(2 figi)dg2dgi

pi 5($3 ( 3(i/pi)5((2 pili/pi)d—(2dgi

The integration over the momentum gi is a Gaussian integration after a shift of variables yielding another
factor of Pi(P P)

~- f II d&.5(& 5'4 —(( 5'4 )5(0 5'0 —A5'0 )
x,a

(0'4') ]13 4' (4'4') 0 [0 (4'0) ]

Xexp i f d x — +— —p'(p)
1 (P 5;P)(P 5'P)

(18)

The factors coming from the FPS determinant
and various integrations just combine to give a fac-
tor of Pi(P P)'~ in Eq. (18). The integrations over

$3 and P2 can be performed by observing

dp2dps5(pic'pi —QiB'ps)5(piB'p2 —$25'pi )

=du du 5(B'u )5(B'v),

where u =1n($2/Pi) and U
—=1n(gi/Pi). Dropping a

field-independent factor of [detB'5(x —x')], we
obtain the final form of the generating functional

W- f II dPexp i f d x[—,'(B„P)(B"P)

—&(P)], (19)

where the real scalar variable P is related to Pi by

We note that P is a color singlet and all the refer-
ences to the non-Abelian degrees of freedom have
disappeared from the problem.
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C. Discussion and the comparison
with the classical result

%hen there are constraints in a theory, the num-
ber of physical variables is equal to the number of
apparent variables minus the number of constraints,
at least in a classical theory. The quantum theories
are more difficult to deal with when we count the
number of degrees of freedom due to various ghost
particles one obtains. One seeks for ghost-free
gauges to do this. Our result for the SU(2) example
expressed by Eq. (19) is explicitly ghost free and the
final number of degrees of freedom is simply 1. We
shall first demonstrate that a similar result holds
classically as well. One can directly solve the equa-
tions of motion classically, in the gauge we used
above, and obtain the desired result. However, for
classical calculations, the gauge a, =P, is more con-
vement than a=(P, O, O). In this case, the final
answer is expressed not in terms of P

—=V 3/i, but in
terms of (I) =(P P)' . First, we write down the clas-
sical equations of motion:

V„(&~/) )a+ =0,av
a

(20)

f,b Pb(S'i P), =0 . (21)

Equation (21) is singular and one cannot solve A&
from it until one fixes a gauge (at least partially). In
the partially fixed gauge P,A,"=0, the solution of
Eq. (21) is

Al: =f.b 4'bd"0. ~(N'0) .

Substitution of Eq. (22) into Eq. (20) yields

8 P+ =0, where P:(P.P)'~—av

(22)

which is the classical equation of motion for a single
real scalar field.

This result shows us that the classical and quan-
tized versions of the theory are equally simple.
What we consider most remarkable, however, is not
this similarity, but the fact that the quantized ver-
sion is a well-defined renormalizable theory. In gen-
eral, it is no surprise at all that the classical and
quantized field theories have the same number of
physical degrees of freedom, but the final effective
Lagrangian (and the one we started with as well) is a
renormalizable one. One must compare this result
to the result one would obtain from a model con-
taining arbitrary representation of scalars and fer-
mions. In these models, one will have a reduction of
the number of the apparent fields and momenta, but
the quantum effective Lagrangian left at the end in
the path integral will not be a renormalizable one.

D. A brief discussion of quantization
with an arbitrary semisimple group

%e will not work out the general case in the de-
tailed fashion we worked out the SU(2) example.
The reason for this is that we do not know of any
method which enables us to compute the FPS deter-
minant for an arbitrary semisimple group. For each
individual example (no matter how large the group
is) the procedure is straightforward; unfortunately,
we have been unable to devise a scheme in which we
obtain the value of the FPS determinant without ac-
tually specifying what the group 6 is. %e could not
even derive a general expression for SU(N) for arbi-
trary X. For this reason, instead of producing a few
more examples [such as SU(3), SU(4), SO(7), . . . ],
which teach us nothing new and interesting, we will
give a general argument about what the result will
be 26

The first part of this argument is no more sophis-
ticated than counting the degrees of freedom for the
general case: One starts with 10N degrees of free-
dom, 5N fields, and 5N canonical momentum densi-
ties. The total number of constraints is 8% —4r as
was explained in Sec. II. Of these constraints,
2(N+r) are first class, and we must introduce
2(N+r) gauge-fixing terms for these as required
by the FPS quantization ansatz. ' The total number
of 5-function —type constraints is then 10'—2r,
therefore, one expects only 2r degrees of freedom to
be left at the end. If we choose our gauge-fixing
terms judiciously, it is possible to arrange that the
final 2r variables will be divided into two groups: r
of them being functions of the scalar fields and the
remaining r being the corresponding canonical mo-
menta with no ghost fields remaining. For the
SU(2) example we presented, r =1, and at the end
the result was brought to a form expressed in terms
of Pi and gi in the doubly axial gauge. For SU(2),
the g& integration was also performed (because it
was a Gaussian integration) to reduce the number of
variables to only one.

In general, however, for groups other than SU(2),
the elimination of the final r canonical momenta by
integrating over them is not guaranteed until we can
demonstrate that these integrations can indeed be
done in terms of suitably chosen variables. To illus-
trate this point more clearly, let us first note that the
only dependence on the canonical momenta g, is
in the constraints g, and in the exponential in the
term

Jd x —,g, g, .

Remembering that only X—r of the constraints 7,
are independent, we have then a way of solving
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e arbitrary. We may
we wish, but it is more

convenient [as we dkd when we quantized the SU(2}
case] to choose the first r canonical momenta as our
independent variables and integrate over them. In
that case, the first r equations in (23) must be identi-
ties

4 bvb' 0——for s=2, 3, . . ., ~ .

Let us denote the orders s which correspond to one
of the orders of the characteristic invariants of the
group by s;. For example, for the exceptional group
F4, there are four Casimir invariants and s&

——2,
s2 ——6, s3 ——8, s4 ——12, respectively. ' Now also note
that the constraint

gj ——g Cvq', j=1,. . .,r . (24)

Differentiating (24) with respect to gb shows that C;
in fact are linear with gb for k = l, . . .,r:&.=f.b Nba. =o
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N r—of the canonical momenta in terms of the first where the coefficients C; ar
r of them and the fields P. First let us remember choose to integrate over C; if
that

(s,. )

g~ = g C;v, '
, (23)

merely states that g, is a zero eigenvector of the ma-
trix 4. But the rank of 4 was determined to be
N r for—semisimple groups with independent zero

eigenvectors v'~', i=1,. . ,r Th. er.efore, the con-

straint expresses g, in terms of v'~'"
(25)

where e(P)=(v(P)) ', and the r)&r matrix v has
(s,. )

elements vj
' . We then have our integrations as fol-

lows:

dg] dg/ P 5(X, )=(dg dg)[det(p)]
o =r+1

N
(sÃ )

g, —gcv'
a =r+1

(26)

where the C; are determined in terms of g&, . . .,g„
and P&, . . .,Pz by Eq. (25), and det(p) is the Jacobian
for the (N —r)&((N —r) lower block of the matrix

~~OX, /Bgb~~. Equation (26) first enables us to in-

tegrate over the momenta g„+&,. . .,gz and express
the result over P&, . . .,P~ and g~, . . .,g„. But it fur-
ther assures that the remaining integrations over

g&, . . .,g„can also be performed. This is so because

C; are linear in gb as expressed by Eq. (25},and the
term —,g, g, in the exponential becomes a Gaussian

term in g„.. .,g„with a P-dependent coefficient. Of
course, the Gaussian integrations can be carried out
right away, eliminating the canonical momenta alto-
gether. This completes the proof that the final re-

sult will be expressed in only r variables, not 2r.
Which r variables one ends up with is, of course,
gauge dependent. This, then, establishes a standard
way of doing the integrations, once the FPS deter-
minant is known for the problem.

IV. CONCLUSIONS

We would like to divide the discussion and our
conclusions into two parts. The first part directly
follows from Lagrangian W given by Eq. (2). Re-
gardless of any phenomenological implications, the
existence of a renormalizable gauge theory without
the gauge kinetic term is itself very remarkable and
at least of academic interest. The second part of our

I

discussion will concern the relation between W and
W' [given by Eq. (1)] and what exactly we mean by
infinite coupling (base or renormalized?), and what

happens if the symmetry is spontaneously broken.
We have seen in Sec. II that Lagrangian W

possesses a new translationlike local symmetry
which is lost if the kinetic term is added. It was this
fact which assured us that the theory is renormaliz-
able. In general, we have shown that the quantized
theory will be reduced to a theory with r variables
(fields) only, where r is the rank of the gauge group.
This result is verified in detail for SU(2), where r = 1

and the manipulation of the functional integrals is
quite simple. Furthermore, we observed that the
classical theory [at least for SU(2)] is at least as sim-

ple as the quantum theory. For other groups, the
classical result is likely to be simpler than the
quantum-mechanical result.

The relevance of these results to an ordinary
gauge theory (one with the gauge kinetic term), how-
ever, is not very well understood. We can only offer
some qualitative arguments in this case. First of all,
when we established the connection between the La-
grangians 2' and 2" by taking the infinite-gauge-
coupling limit, we were deliberately vague about
which coupling constant we were talking about:
bare coupling or renormalized running coupling? If
the theory does not suffer from infrared problems
(i.e., if the running coupling constant does not de-
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pend on an artificial infrared cutoff), it turns out
that it does not matter which coupling constant we
are talking about. The renormalized and bare cou-
plings are related by go

——Z3 'g, and letting the
bare coupling go become infinite forces g to become
infinite too. What the physical relevance of the tru-
ly infinite coupling constant is, we do not know.
There are examples, however, in asymptotically
free unbroken gauge theories where one expects
confinement. Consider the "hadron" made out of
two scalars. ' Beyond the confinement length scale
Ac, the gauge fields diminish very rapidly and the
physics at length scales much larger than A, ' can
be described without the confining gauge fields.
This example is very suggestive to us, then: In our
study of the quantized theories, we found that the
dropping of the kinetic gauge term always produced
a new effective theory with only local color-singlet
particle content. We certainly do not want to push
this as a supporting argument for confinement and
for the existence of only the color singlets. We
merely consider it as an amusing example.

The study of these kinds of gauge theories may

have classical relevance too. (In this case, we do not
have to restrict ourselves to the theory with a single
multiplet of adjoint scalars. ) The classical solutions
of this problem may not be as simple in the presence
of monopoles or instantons, and these cases may be
interesting to study.

Whether or not any interesting results relevant to
the physical world we live in comes out of the study
of the gauge theories without the gauge kinetic term,
we find it an attractive and simple limit to study in
our quest for understanding the structure of gauge
field theories.
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APPENDIX A

In this appendix we will give the derivations of Eqs. (8) and (9). We start with the consistency condition for
the constraints 7, :

[&.»p] =f.s A[Id-4A'+(& 0)d( d&"+fd-A—') dV/d0. ]-
f.b, 0b [(~'(—~ 4)).+ d V/r)4, ]+AKAd(f. bJ'-d+f-. fb d )

f„dAdX, "r)'p;'+f—,b, pb—[(d 5' f,d,A,')(&;p—)d 'dV/Bp, ]—
This proves Eq. (8), provided that we can show that f,b, pbdV/dp, vanishes. This, on the other hand, follows
from the fact that v~']4,~

——0, where v,"and 4,b were defined in Sec. II.
Next we compute the consistency conditions for P,':

[ 4~Hp ] febc[(4b fbedAd4'e )(&'4)c+fede0b0d+e +lb(+ ) (kd fdegAgde )l

=f b. [ f~d.d. [Ad(&'0).—+C,Ad] 4,a'4+f„,AA—SC,'+Nb(e')"(4 f„gAgd, )] —8'y.—
= —8'g, +f,b, [ A, pb A,'gb —fb,dp,—[Ad(N'ctp), —~$,Ad]

0,a'@+Id, AAZ,'—+A(~')'(4 fd,gAg4, )]-
f.bckc[2(&V—)b+fbedAd(~V )e fdeg(~')bdAg —0e fbdeAI. "]-
f.„N,[2(NV)b+(f„—bfbdg+fbdbf dg )4,AbAg f„d0,a'Ad+fbd, AZ,'—]

fobc0c [2(~ k)b Ibed4'e[(~ A )d +d]]

which reduces to Eq. (9) after renaming the dummy indices.
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APPENDIX B

In this appendix we will prove that Eq. (11) is
identically satisfied without any additional con-
straints. To start with let us call m=rank(i4}.
(We know that m =N r fo—r semisimple groups but
this fact is not important here. ) We then have

P(A, }—=det(i4 —AI}=A, Q(A, ),

0 Y
C ZIP

where Z=(Z'Z, Z ), W=(W', W, W ), and
Y=(Y', Y2, Y3), where R is 3X3, and Z', W', and
Y' are all 2 X3 for i = 1,2, 3.

The matrix R can be computed explicitly through
the relevant Poisson brackets:

where Q(0}&0, and Q(A, ) is a polynomial of degree
m:

a1 a2

R= 082 —((i'-03'
Q3

((2A 5(x —x '),
R(A, ) =det(A —AI) =det[(i4) —AI)

=det(i4 —V AI)det(i4+WA, I)
=P(v X}P(-vX)

=(-x)N-™Q(vz)Q( —~i) . (81)

On the other hand, since 4 is antisymmetric Q(A, )

contains only the even powers of I,; in fact Q(A, ) is a
polynomial in A, . Using Q(0)&0, we conclude that
rank(A) =m

Next we observe that

rank(A, Y ) & rank(A) =m . (82)

On the other hand, the augmented matrix (A,Y')
can be written as a product:

(A, Y }=i@(i@,2(4' g)) .

This allows us to conclude

rank(A, Y ) & min[rank(i@), rank(24, 2( 4 g) }]

4243

where detR =Pi(a P)((() P), and R ' exists, provid-
ed that a P is not chosen to be zero. (Since a are ar-
bitrary and completely at our disposal to choose, we
shall assume a $&0.) Since R ' exists, A ' exists
and we can write from (Cl)

detM =(detA)(detCA 'C ) .

The matrix CA 'C is easily computed to be

CA-'C'

(C2)

0 . Y(SP
—l)TZT

ZSP 'Y —WISP ') Z +ZSP 'WT

We see immediately that the matrix W is irrelevant
for the determinant we calculate:

3

det(CA C )=det y Z'R (Y')
i=1

=m.
Equations (82) and (83}together prove Eq. (11).

APPENDIX C

(83} Also, explicit calculation shows that

op' 0
ooq''

In this appendix we will present a derivation for
Eq. (13}for the FPS determinant.

This determinant is in the block form

thus

3

det(CA 'C ) =(detE)2det g ri'(T')

A —C"
M= C 0 (Cl)

where

(C3)

where A is an 18&(18 matrix and C is a 40(18 ma-
trix. The order of various constraints used in writ-

in~ M as above is as follows: E i,E2,E~,
2* 2 3 3 3. 1 1 1 2E i ~E2 E3~E i ~E2&E3~ aAa ~ .42~43~ o aAa ~ 42~

l/J3 a,A„$2,$3,'X2,X3', 2);A 2, 2);A 3 ~ Of course, this
order does not effect the value of the determinant,
but in this order things are easy to compute because

T R

and

detE=(detR} aigi(P P)(a P) (C4)

det(2);(T') )= J dQ'dQdco"dcoexp i f d x Ws

where 0~, 0& co*, and co are anticommuting
(Grassmann) variables and the ghost Lagrangian
Ws is computed from the Poisson brackets [X„gt I

directly for a,b =2,3. In this computation the con-
dition g;A ——0 can be used to simplify the answer
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and put Ws in a form independent from the gauge
fields:

Ws —— i—Q*P2ri; a'(disco) i—ai *Psri; a'($2Q)

+i Q*y,q, a'(y, Q) +i~'y, q, a'(y, Q)

+in*ad, ~,a'(y, n)+i~ y,~,a'(y, n) .

Using the choice ri"=(0,1,0,0) made in Sec. III and
the constraints P2 and f's we can further simplify
det(r);( T') ) by making a change of variables

Q'=a'(pin), Q"=Q*P, ,

co =a (pic0), c0 =co

to obtain

det(ri;(T') )

—I dn'*dn'dr0'"dao'exp i I d "x Ws

after dropping the field-independent piece
tdet[a'5(x —x')]I, where

4i'+Os' A—A n'
Wg i——Pi (Q",ai')

det(ri;(T') )-P,2(P P) . . (C5)

Co»bi»ng Eqs. (C2), (C3), (C4), and (C5) we then
obtain the equation for the FPS determinant:

detM-cti Pi (a.g)4(P.P)s . (C6)

Taking the square root gives us Eq. (13) in Sec. III.

This allows us to compute the determinant in a nice
compact form:

In this paper the greek letters p, v,p, . . . label the four
Lorentz indices, whereas the latin letters i,j,k, . . . refer
to the three spatial indices. The letters a, b, c, . . . label
the generators of the group G. All repeated indices im-

ply implicit summation over the appropriate range un-
less otherwise stated.

2G. 't Hooft, Nucl. Phys. 835, 167 (1971);B.%. Lee and
J. Zinn-Justin„Phys. Rev. D 5, 3121 (1972); 5, 3137
(1972).

For the notation and the terminology relating to the con-
strained dynamical systems see P. A. M. Dirac, Can. J.
Math. 2, 129 {1950);J. Anderson and P. Bergmann,
Phys. Rev. 83, 1081 (1951); P. Bergmann, Rev. Mod.
Phys. 33, 510 (1961); P. A. M. Dirac, Lectures on
Quantum Mechanics, Yeshiva University —Heifer
Graduate School of Science, New York (Academic,
New York, 1964).

4Sinan Kaptanoglu, Phys. Rev. D 26, 3754 (1982).
5Since we assumed that G is semisimple and compact, we

can choose the structure constants f,~ to be completely
antisymmetric in all three indices. This fact is extreme-
ly important to the validity of the invariance expressed
by Eq. (3).

6Clearly every continuous local dynamical symmetry is
generated by a corresponding first-class constraint, but
the converse is not as firmly established. In the last of
the articles given in Ref. 3, Dirac conjectured that the
converse of this statement is also true. However, in the
last couple of years, this point has been debated in the
literature. %hether or not Dirac's conjecture is true
has no relevance to the content and the conclusions of
this article. For details the reader is referred to R.
Cawley, Phys. Rev. Lett. 42, 413 (1979); A. Frankel,
Phys. Rev. D 21, 2986 (1980); R. Cawley, ibid. 21,

2988 {1981);R. G. Di Stefano, this issue, Phys. Rev. D
27, 1752 (1983).

7R. Arnowitt and S. Fickler, Phys. Rev. 127, 1821 (1962);
R. N. Mohapatra, Phys. Rev. D 4, 2215 (1971).

The reader will notice that we are very casual about the
upper and lower group indices. Since the gauge group
G is semisimple and compact, raising and lowering
group indices is completely academic and there is no
need to keep track of it properly.

I thank Rob Ore for pointing this out.
This statement is not exactly correct. One can always
add singlet fermions and/or singlet scalars to the model
with one multiplet of adjoint scalars. This, however, is
not a new interesting model since the singlet fermions
and scalars have no gauge interactions. %e caution the
reader, however, that the physics of such a model, how-
ever uninteresting it may seem at this moment, is not in
general the same as the physics without them. The
singlets do interact: singlet fermions and singlet scalars
have Yukawa interactions and the singlet scalars and
the adjoint scalars interact quartically.

"L. D. Faddeev and V. N. Popov, Phys. Lett. 258, 29
(1967); Kiev Report No. ITP-67-36, 1967 (unpublish-
ed); L. Faddeev, Teor. Mat. Fiz. 1, 3 (1969) [Theor.
Math. Phys. 1, 1 (1970)];V. N. Popov, CERN Report
No. Th. 2424, 1977 (unpublished); P. Senjanovic, Ann.
Phys. (N.Y.) 100, 227 (1976).
For the definitions and the formalism of the functional
formulation of the quantized field theories, we refer the
reader to the review article by E. Abers and E. Lee,
which also contains an extensive list of original refer-
ences: E Abers and B. W. Lee, Phys. Rep. 9C, 1

(1973).
iSThe secondary constraints g, =0 and g,' =0 correspond
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equationsto the classical

f.b A(~I 4l. =o.
i4Clearly A,b pb =0, therefore detA =0.
5This inequality can be stated more strongly for semisim-

ple groups by 2 &s &s,„&d—:dimension of the small-
est (nontrivial) irreducible representation. (For simple
Lie groups d & N, except for Es, where d =N. )

G. Racah, Lincei Rend, Sci. Fis. Mat. Nat. 8, 108
(1950).
For SU(n), n &2, the invariants are C2, C3, . . ., C„. For
SO(2n +1) and Sp(2n), n & 1, the invariants are

C2, C4, . . .,C2„. For SO(2n) n &3, the invariants are
C2, C4, . . .,C2„2, and C„. The invariants for the ex-

ceptional groups are as follows: C2 and C6 for 62, C2,
C6, Cs and C~2 for F4,' C2, C5, C6, Cs. C9, and Ci~, for
E6, C2, C6, Cs, Cio Ci2, Ci4, and C)s for Eq,' C2, Cs,
Ci2, Ci4, C)s, Cgo, C24, and C3Q for Es.

In this paper we do not consider nonsemisimple groups,
for which the inequality rank(4) &N —r has to be stud-
ied individually.
When we talk about the numbers of various kinds of
constraints we only refer to the spatial and group in-

dices. For fields theories, of course the number is un-

countably infinite due to the space-time structure. The
same thing, of course, is true for the matrices of the
Poisson brackets. In general they are bilocal matrices
of infinite size.

OThe name gauge fixing is loosely used here. It refers not
only to the ordinary gauge fixing but also to the fixing
of the extra invariance expressed by Eq. (3). A quite
uncommon but a more accurate name might be "invari-
ance fixing. "
Sinan Kaptanoglu, Phys. Lett. 98B, 77 (1981).
The field independence of the 6X6 block is assured if
C, do not depend on A, . Even if this is not the case,
the result does not change. See Ref. 21.
This then is a zero-temperature formalism. At finite
temperature the field-independent contributions cannot
be dropped arbitrarily.
Requiring detM&0 automatically implies a&+0. The
reader may wonder why the first group index is singled
out in this fashion. This is due to the choice we made
for our independent constraints and the gauge-fixing
terms. For example, we chose g2, g3 as our independent

constraints. We could have chosen P& and X&, or any
two linear combinations of g, . For the choice +2, g3,

Q3 /~A Q and iI~A i, the requirement that the gauge
be fixed completely dictates that vi&0. If we chose in-
stead Xi,Xi,gt, g'2, rkAt, rl;A'2, we would have to demand

a3&0.
~sSince a, (x,P(xi) are arbitrary subject to the require-

ments that ai&0 and a./&0, we can make this choice.
Even though the quantized case requires the computa-
tion of the FPS determinant, the classical case does not.
One may attempt to solve the classical equations of
motion directly. The treatment of the general classical
problem is still under investigation (S. Kaptanoglu and
Robert Ore, in preparation).

We have implicitly assumed that the gauge-fixing condi-
tions are chosen to be independent from g, . This also
assures that the FPS determinant is independent from

These kinds of gauge-fixing terms are therefore
very convenient. Choosing gauge-fixing terms which

depend on g, is in principle allowed, but it introduces
unnecessary complications.

~ For the groups SU(2), SU(3), SU(4), and SO(5) the clas-
sical result is the same as the quantized result, because
these groups do not have Casimir invariants of order
larger than 4. For other groups, however, the classical
and quantum-mechanical results need not be the same:
The classical potential will contain all the Casimir in-

variants, whereas the quantized potential will be re-
stricted to those terms of order less than or equal to 4.
This fact will affect the final form of the effective La-
grangian and its residual global (since all the gauge
fields are gone) invariances.
D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H. D. Politzer, ibid. 30, 1346 (1973); D. J.
Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
All gauge theories based on a semisimple group with
one multiplet of scalars in the adjoint representation
and no fermions are asymptotically free. Without any
spontaneous symmetry breaking (which is possible for a
range of parameters in the scalar potential) these
theories are then expected to be confining.

Unfortunately there are no fermions (quarks) in La-
grangian W'.


