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to the Wu- Yang magnetic monopole
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A class of time-dependent, spherically symmetric solutions of Yang-Mills equations is

found. The solutions describe a transformation of the initial color-electric and magnetic
fields into the Wu- Yang magnetic monopole.

I. INTRODUCTION

Because of the nonlinearity of the Yang-Mills
equations it is very difficult to investigate the fun-
damental problem of time evolution of classical
non-Abelian gauge fields. None of the systematic
methods developed in electrodynamics, such as
Fourier decomposition or the Green's function
method, can be applied. The only way to investi-

gate the time development of Yang-Mills fields
seems to be a rather difficult guessing of examples
of solutions.

The known time-dependent solutions of Yang-
Mills equations in Minkowski space-time have the
form of non-Abelian plane waves. ' The purpose
of this paper is to present other types of time-
dependent solutions. They are obtained for the
time-dependent version of the equation considered

by Wu and Yang. The solutions describe a compli-
cated process during which an initial configuration
of color-electric and magnetic fields turns into the
Wu- Yang magnetic monopole when time goes to in-

finity.
First, we describe singular solutions of this type

in Sec. II. Next, in Sec. III we find a more regular
solution. Unfortunately, the Wu- Yang ansatz
which we use in this paper is too poor to allow for
nontrivial solutions regular at the origin r =0.
Therefore, even the more regular solutions are still
singular at r =0, similarly as the Wu- Yang magnet-
ic monopole is. Our solutions are regular for all
other values of r In other wor. ds, we have regular
solutions in the space obtained from R by exclud-

ing the origin, Nevertheless, we think that our solu-
tions are interesting because they allow us to watch
nontrivial time evolution of non-Abelian gauge
fields.

The solution described in Sec. III is rather com-
plicated. We give a precise proof of its existence, its
asymptotic forms in the most interesting regions of
values of an independent variable, and the result of

a numerical estimate. This is enough in order to
state that the solution exists and in order to deter-
mine the solution by numerical methods with any
required accuracy.

The process described by the regular solution
does not seem to allow for a description in terms of
signals propagating with definite universal velocity.
For example, there are local extrema of density of
energy which propagate with arbitrarily small velo-
city. On the other hand, the singular solution is
characterized by the velocity of light.

We also observe a peculiar universality of the
Wu-Yang magnetic monopole. Namely, this single
configuration is the limiting configuration when
t~+ao for the entire one-parameter family of
gauge fields specified at the initial time tp.

II. THE SINGULAR TRAIN-WAVE SOLUTIONS

In the following we consider sourceless Yang-
Mills equations [the gauge group is SU(2)] in the re-
gion r&0. Thus,

d„su"+t [A„P ~"]=O, (1)

where

XJ -.
F()~ = ~+j

E,2

(1+H) x'xi
2

1+H
ik ~ikj g saki

r r T

(4)

X X 6'~kJ —X X 6'NiJ

p 2 T

F„„=B„A„t)„A„+i[A—„,A„] (2)

We ass~me the following time

dependent, spherically symmetric ansatz:

XJ
Ao ——0, A (x,t)= —e„" [1+H(r,t)],0 ~ I & CttJ

where r =
~

x
~
. It gives the field strengths
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where a dot (prime) denotes derivative with respect
to time (radius r). The ansatz (3) reduces the
Yang-Mills equation (1}to the single equation

H H"— —(H——H )=0.
r 2

(6)

For time-independent H this equation reduces to
the equation considered by Wu and Yang. This
static equation possesses three obvious solutions,
H =0,+1. H = —1 gives zero gauge potentials A

and H =+1 gives pure gauge A, i.e., I'0; ——I'J'k ——0.
H =0 gives the Wu- Yang magnetic monopole

a g X X0 J
FO' 0 Fik ~ikjr4

(7)

governs the propagation of discontinuities of H.
From (8) it follows that they move with the velocity
of light. For example, let us consider for t & 0

H(r, t) = g A;8(t , r+a;)8(r t —b; ), —(—9)

where 8(x)=0 for x &0 and 8(x)=1 for x &0,
A,; =+1,and the constants b;,a; are such that

aN & ~N & aw-i & &x—1 & '

The differentiations with respect to t and r will pro-
duce derivatives of 5 functions which cancel them-
selves in (6) in a rigorous mathematical way. Thus,
(9) is the correct solution of Eq. (6).

The solution (9) is analogous to the train-wave
solutions known in nonlinear optics, see, e.g., Ref.
7. The nonlinearity of Eq. (6) manifests itself in the
restriction of values of H to 0, +1. The train (9)
moves toward spatial infinity with the velocity of
light. It is also easy to produce trains with some or
all wagons moving in the opposite direction. Such
solutions have to be completed with some rules stat-
ing what happens when two wagons collide or when
a wagon reaches r =0—we will not discuss this
point here.

The field strengths (4) and (5) contain 5 functions
for H given by (9) and therefore we must be careful
with saying that the potentials (3) with H given by
(9) solve Yang-Mills equations, because there is no
satisfactory definition of the product of singular
functions. Let us propose a solution to this difficul-

Equation (6) possesses the following time-
dependent solution. We observe that the term
H H in —(6) vanishes when H(r, t) is piecewise
constant with values 0, +1. Then, the rest of (6),
i.e.,

H —H"=0

ty for the case of potentials (3) when H has steplike
discontinuities. The usual way to solve such a prob-
lem is to introduce a regularization of singularities.
In our case a much less drastic, almost unnoticeable
prescription is sufficient. The method is that first
one should calculate all contractions of color and
space indices. Here we exploit the fact that in (3)
these indices are separated from H. Yang-Mills
equations evaluated in this way do not contain the
products HH', HH, HH'. The above prescription
implies no change in equations when H is a smooth
function. Therefore, the prescription can be regard-
ed as a generalization of Yang-Mills equations.
Thus, (9) can be said to solve Yang-Mills equations
generalized by the above prescription to the case of
potentials (3}with H having steplike discontinuities.

Now we shall consider the field strengths (4) and
(5). Let us take

H =+8(r t), — (10)

for t & 0. Then we have a nonzero electric field Fo;
concentrated on the future light cone, and a nonzero
magnetic field I',"k For an. y fixed to&0 we have
H =+1 for r &to and H =0 for r &to. Thus, out-
side of the ball of radius to we have zero field
strengths, because H =+1 corresponds to the pure
gauge or zero A;, respectively. On the sphere r =to
we have singular electric and magnetic fields. In-
side the ball, the field is that of the Wu- Yang mag-
netic monopole, formula (7).

We see that for to —+Do for all finite r we shall
have the field of the Wu-Yang monopole. In fact,
any solution of the form (9) has this property.

The real trouble with the solution (9) is that be-
cause the solution has singular field strength for
P =rp it is difficult to give a meaning to physical
quantities hke, e.g. , energy density for r =to. How-
ever, for the limited purpose of watching the time
development of gauge fields such a solution is still
interesting. This is the reason for presenting this
solution.

III. THE REGULAR SOLUTION

The solution we shall present here can be regard-
ed as a regular counterpart of the solution (10).
That is, the regular solution of Eq. (6) has the value
Ho for t =0 and the value 0 for t~ o, for any r in
the interval 0 & r & oo. Ho can be made arbitrarily
close to +1 or —1.

In order to find this solution, let us assume that
H (r, t) depends on r and t through the variable



27 TIME-DEPENDENT SOLUTIONS OF YANG-MILLS EQUATIONS. . . 1905

p dH p' 2
1

d'H 1(H H3)

Thus, if

P 2 P
p p

(12)

where a,P are constants, then (11) becomes an

equation in the single variable p, which is much

easier to analyze than (6). The first of the condi-

tions (12) implies that

p(t) =+—1 1

at —to' (13)

where to is a constant. In the following we shall

take to ——0. Luckily, then the second condition in

(12) happens to be satisfied too, with P=2a2. In-

troducing the new variable

r =(ap) ' —1=+ t —to —1 (14)

we can write (11) in the form

d H dH(2+r)r, +2(r+1) +H H'=0. —
d7 d7

(15)

For definiteness, we take the plus sign in (14). Then

the interesting, for us, region t&to, r &0 corre-

sponds to r E [—1, + oo ). Thus, we have to consid-
er (15) in the half-line r C [= 1,+ oo ).

Equation (15) allows for helpful mechanical anal-

ogy for r & 0. Namely, let us write (15) as

p=p, (t)r,

where p(t) is a function of time. Then, Eq. (6) can
be written as

where rigorous arguments show that

0& iHpi &v2.

However, numerical investigations strongly suggest
that in fact

0( WHO i
(1. (19)

The proof of the existence of the solution is given in

Appendix A. Results obtained there lead to the

shape presented in Fig. 1. In Appendix B we argue

that if (19) is true then Eq. (15) has no other solu-

tions regular for r & 0.
Now we shall present a description of gauge

fields corresponding to the regular solution H(r ) of
Eq. (15). The field strengths are given by (4) and

(5), where

()H 1 dH BH
Bt r d7. '

Br
1+7 dH

T d7

The process described by our solution is the follow-

ing. Consider the field strengths at a given point

x, r =
~

x
~

&0. For t =0, i.e., r =—1, we have the

magnetic field of type (5) with constant

1+H=1+Hp. This constant can be made arbi-

trarily small by taking Ho —+ —1. We also have the

electric field. Namely,

g Xj
Fpi '4ij H1 ~

p
3

Bi =
2 GiklFIk

5 2(HO —1) x'x&= —2(1+Ho) + (22)
2 2 2

by the change of variable r ~g = r-.
We have found that apart from the trivial

H =0,+1, Eq. (15) has solutions H(r) regular in

the interval r E[—1, oo) and such that

H(r= —l)=HO, H(r=+ oo)=0,

d (2+i)r =H H. —dH
d7.

(16) where H& is the value of dH/dr for r = —1. Now,

This equation can be regarded as Newton's equation
for a particle with time-dependent mass

m(r)=(2+x)r and momentum p(r)
=m(r)dH/dr, moving in the potential
V(H)=H /2 H /4. Equation —(16) can be gen-

erated from the action
2

„~()

S= I dr —m(r) dH
2 d7

H H
2 4

For rE[1,0) the particle becomes tachyonic. In
this region the mechanical analogy can be obtained

FIG. 1. The shape of the solution H(7. ) of Eq. (15).
For hp = —0.50 we have obtained Ho ———0.76.
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—,(H' —1)' (23)

For the initial configurations (21) and (22) we have

r E;(r,t)= —,(Ho —1) +Hi

and for the Wu-Yang monopole r Ey(r, t) = —,.
Numerical investigations lead to the conclusion

that

for t & 0 we distinguish two regions, I and II, within
the interval [—1,+ oo ) of the r variable:

I: r((t, i.e. , ~&& —1,
II: r » t, i.e., w= —1.

In region I, using the asymptotics (A4) for large r
we see that the field strengths [and the potentials
(3)] approach the Wu-Yang magnetic monopole (7)
located at r =0. In region II the fields have the
form (21) and (22). Region II shrinks as t~ao.
Thus the initial configuration (21) and (22)
transforms into a Wu-Yang magnetic monopole
when t~ 00. Observe that this happens irrespec-
tively of the allowed values of the constants Ho and
H&. Thus, a Wu-Yang magnetic monopole is the
universal limiting configuration for the whole fami-
ly of initial configurations. This family is described
by one parameter ho determining Ho and H&,' see
Appendix A.

The energy density of the field is

E(r, r) =
4 F(kF~+ i Fo(Foi

2

[(1+v) +1)y' d7

move arbitrarily slowly. Thus, due to nonlinearity
of equations Yang-Mills fields become effectively
massive. A similar phenomenon, although in much
simpler form, was observed for non-Abelian plane
waves. Observe also that for —1 & r &0 we have
a superluminal region. In this region r E(r, t j seems
to have no extrema, it grows monotonically —this is
what numerical calculations for several values of ho
show.

IV. CONCLUDING REMARKS

The above considerations obviously suggest an
extension by including Higgs fields in the adjoint
representation. In this way we may hope to avoid
the singularity at r =0 by replacing the Wu-Yang
monopole by the 't Hooft-Polyakov magnetic mono-
pole. Unfortunately, for this purpose the catch
(11}and (12) is not sufficient. The deep reason is
that the potentials (3), where H(r, t)=H(r) is a
function of the dimensionless variable r, contain no
dimensional constant (a scale). The total energy of
any such field has to be zero or infinity, because of
the lack of a dimensional constant. In order to have
a finite energy, ~ should be replaced by a dimen-
sional variable or the ansatz (3) has to be modified.

At the moment we do not see any interesting ap-
plication of our solutions in quantized Yang-Mills
theory. However, we think that the solutions are
interesting because they allow us to watch the time
development of Yang-Mills fields on a rather non-
trivial example.
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Appendix A: The proof of existence of the solution

In this appendix we assume that H(r } is differen-
tiable for all r E [—1, + co ). Equation (15) has the
singular point at v=0 (the other singularity at
r= —2 is outside the considered region of the z
variable}. Assuming that H(~) is regular at ~=0,
we expand H (r }around this point,

From the asyinptotics (A4) we see that such extre-
rna occur for arbitrary large rk. Therefore, the
solution possesses local extrema of r E(r, t) which

H(l )=h +ho~ r+h2r +his'+h4r +

From (15) it follows that
(Al)
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hi ———,hp(hp —1), h2 ———„hp(hp —1)

hs =
96 hp(hp —1) (A2)

Observe that all derivatives at ~ =0 are determined

by the only free parameter hp ——H(0).
Now we shall consider the two regions ~ &0 and

—1&~&0 separately. First, let us consider ~ &0.
For this region we prove the following two lemmas.

Lemma AI.

f (1+7')H (r')dr'+ H (r)

H(r) =(H H)lnr+ ——+P,

where a and P are constants. This contradicts the
assumption that H „is finite. This ends the proof.

Now let us assume that
~
hp

~

& 1. Then (A2) im-

plies that

dH
dv

has the same sign as ho. On the other hand, Eq.
(15) implies that in the region r &0, H(r) cannot
have neither local maximum such that H(r ) & 1 nor
local minimum such that H(r ) & —1 [because, e.g.,
H=0, H &0, H & —1, v. &0 are inconsistent with
(15)]. These two facts together lead to the con-
clusion that

I
H(r)

~
&

~
hp

~

& 1. According to
Lemma AII this implies that H(r} has no limit or
that it grows to infinity as r~00. Thus,

~
hp

~

&0
does not lead to an interesting solution (see also
Lemma BI).

Therefore, we consider
~

hp
~

& 1 [the case
hp ——+1 leads to H(r)=+1 for all r &0, as is seen
from (A2)]. In this case, Lemma AI considered for
r„=0 lmplles that

I
H(r)

I
&

I
hp

I

cause
(
H(r)

(
=

( hp (
would contradict the strict

H (r) H(r—„) H (r) H(r„—)
4 2

where r„=O, or r„ is a position of a local extremum
of H(r), i.e., H(r„)=0, r„&0.

Proof. Multiply (16) by H and integrate from r„
up to v..

Lemma AII.
If the limit lim, „H(r) exists, then it could

only beO, +1, or 00.
Proof. Assume that H„=lim, „H(r) is finite

and different from 0, +1. Then, Eq. (15) considered
for r~ Op has the solution

positivity of the left-hand side of (A3). Thus, H(r )

cannot reach + 1, Oo when
~
hp

~
& l.

Therefore, H(r ) reaches 0 or it does not have any
limit when v.~00, according to Lemma AII. Now
let us eliminate the second possibility. The lack of
a limit means that H(r) oscillates with constant or
growing amplitude as v.~ oo. This, however, is im-

possible according to Lemma AI considered for
r„&0. Therefore, H(r) has to approach 0 for
'P~ 00 ~

Finally, we observe that Eq. (15) has the follow-

ing solution for large r when H(r) is small:

d dH =H —H (A6)

By steps analogous to those in the proof of Lemma
AI we obtain from (A6) that

—,(2—g)gH'(g)+2 I (1 g')H'dg'—
= —,H (g) —, H (g)+ , hp —,—hp . (A—7)—

The left-hand side of (A7) is strictly positive for
0 & g & 1. Therefore, H( g )Qhp for 0 & g & 1. Thus,
if 0&hp&1, then H(g) has to grow for gE(0, 1),
because for the initial g =0

dH = —h)&0.
$=p

H(r)=, cos ln(r+rp), (A4)(r+r, )'~'

where A and rp are constants. This ends the proof
of existence of the solution for r&0. When we
start from any 0& ~hp

~
&1, Eq. (15) will drive

H(r) toward small values and then the equation
possesses solution (A4), which becomes more and
more accurate as ~~ Oo.

Before plunging into the other part of the proof,
the proof of existence of a solution for r H [—1,0),
let us make two remarks. First, the above behavior
of H(r) as r~oo can also be seen from the
mechanical analogy mentioned in Sec. III. Second,
for large-r numerical estimates it is more con-
venient to use the variable p =lnr, in which Eq. (15}
takes the form

dH dH[1+2exp( —p)] 2 + +H —H'=0
dp dp

(A5)

Now we shall consider the region —1&&&0.
This region is easier to consider because the interval
is finite. Let us change variable r on g= r. —
Then, Eq. (16) becomes
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Similarly, if —1 &ho &0, then H(g) has to decrease
for g E (0, 1]. From (A7) it also follows that

~H {g)—1~ &1—ho

This inequality implies that dH/dp increases more
slowly than H . Therefore, in (Bl) we also can
neglect the dH/dp term. Thus, for large p

d H
dp

(B2)for g E[+1,0). This implies that for g= 1, H(g)
reaches a certain finite value Ho. Also we see that
Hp —+ —1 when hp —+ —1. This ends the proof of
existence of the solution.

In fact we have obtained a stronger result. We
have shown that the type of solutions found,
parametrized by —1&ho&1, is the only type of
regular solutions finite when ~—++ Oc.

The inequality (A8) formally implies that

However, this equation can be integrated yielding

H(p) = v2 . vZ
, i.e. , H{r)=+

+@+pa' '
ln(rlrp) '

(B3)

where pp and 7p are constants. This solution con-
tradicts the fact that H(r) has to increase to infini-

ty when ~~op. Therefore, the assumption that H
exists for all r 6(0, 00 ) is wrong.

This lemma implies that the solution described in
Appendix A is the only solution regular in the in-
teresting interval r E [—1, oo ).

Lemma BII. If the numerically confirmed hy-
pothesis (A10) is valid, then Eq. (15) has no solu-
tions regular for all r E(—ao, + oo), except for the
trivial solutions H(r) =0,+1.

Proof. Equation (15) is symmetrical with respect
to the point ~ = —1, i.e., ~+1—+ —v —1 transforms
the equation into itself. It follows that the solution
H(r) regular for all r has to have zero derivative at
v = —1, or that it should vanish for ~= —1. How-
ever, the last possibility is excluded by (A8} because
0&

~
ho

~
&1 for regular nontrivial solutions. The

former possibility is easily seen to be impossible
when one considers the mechanical analogy for Eq.
(A6) together with (A10}. Namely, it would mean
that the particle has zero velocity at the time g =1
in spite of the fact that at (=0 it has started to
move with velocity pointing in the same direction as
the external force H —H . For example, when
—1 &hp &0 the initial velocity and force are nega-
tive provided that 0&H(g) & —1 for all g E[0,1].
The fact that 0&H(g)& —1 for (K[0,1] follows
from (A10) because ho & 0.

From Lemma BII it follows that our solution
H(r) regular for rE[ —l, ao) has to develop a
singularity for certain ~ & —1. Most likely, it will
be the point ~ =—2 which is a singular point of Eq.
(15).

(A9)—~/Z&H, &vZ

because ~ho
~

&1. For Ho ——0 we have of course
the trivial solution H(r) =0. However, all numeri-
cal solutions of Eq. (15) in the interval r E[—1,0)
which we have found for several values of
—1 & ho & 0 do not reach the value H(r) = —1 for
any r6[ —1,0). This strongly suggests that, in
fact, the bound

0&
~

H(r)
~

& 1, r E[—1,0]

is obeyed for nontrivial solutions.

(Alo)

APPENDIX 8: NO OTHER REGULAR SOLUTION
OF EQ. (15) EXISTS

From this equation it follows that
'2

d 1 dH

dp 2 dp
—4H &0.

Lemma Bl. If ~ho
~

&1, the solution H(r) of
Eq. (15) develops a singularity for finite r & 0.

Proof. Because of the symmetry H(r)~ H(r)—
let us consider hp & 1. In Appendix A we have al-
ready obtained that H(r )~ 00 when r~ oo if H(r )
is differentiable for all finite r. Therefore, for large

p = lnr, Eq. (A5) can be written as

dH dH
(B1)

dp "dp
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