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The quantum planar rotor is chosen as a model to test different approximate techniques,

emphasizing the analogies between this simple system and the non-Abelian quantum gauge
field theories (instantons, 8 vacuum, etc.). In particular, variational and perturbative

methods, path-integral techniques, and Monte Carlo simulations are applied. It is pointed

out that the maximal destructive interference between instantons takes place in the 8-
vacuum realization of the interacting rotor system with 8=1/2, where the tunneling effects
are shown to be severely diminished.

I. INTRODUCTION

In the past few years we have seen a marked in-
crease of interest in connection with the study of ap-
proximate, nonperturbative methods in quantum
field theories. These methods are particularly im-
portant for the study of strong-coupling field
theories, quark confinement in QCD, computation
of hadron masses and glueball masses in the context
of the 8 vacuum of Yang-Mills theories, the solution
of the U(1) problem, etc. ' Roughly speaking, we
may divide these techniques into two big groups,
those inspired in semiclassical approximations '

(solitons, instantons, etc.) and those based on the lat-
tice strategy (mean field, renormalization group,
Monte Carlo simulations, etc.). These methods have
been devised to attack a quantum field theory where
the degree of quantitative accuracy one attains is
usually unknown, and very often the methods are
unfamiliar to the rest of the physics community.
That is why we consider it interesting to apply them
to a simple problem of quantum mechanics in order
to observe in detail their structure and numerical
precision.

%e have chosen the plane rotor because from the
theoretical point of view it presents many analogies
with the non-Abelian gauge theories. In particular,
because of its topology it possesses different quan-
tum realizations which imply the existence of the 8-
vacuum phenomenon; furthermore, this system
under certain interactions allows the appearance of
instantons. On the other hand, this simple model
simulates some quite interesting physical situations

such as the spectrum of certain molecules, and the
motion of the electrons in a circular SQUID.

The plan of the paper is as follows. In Sec. II we
study the free rotor quantum problem from both
perspectives, the Hamiltonian and the path-integral
one. In both approaches an exact description of the
spectrum is attained, corresponding to each 8-
vacuum realization (e vacuum in our notation); for

18= —, one observes the existence of a degeneracy in
the ground state and a phase transition. The origin
of the 8-vacuum phenomena is discussed in detail.
In the path-integral formalism it comes from the
contribution of closed trajectories with nonzero
winding number. In the Hamiltonian perspective, it
is the existence of different quantum Hamiltonians
corresponding to the same classical dynamics that is
responsible for it. As is known, from an experimen-
tal point of view the 8 phenomenon may be imple-
menteds by confining a magnetic flux within the
ring of the rotor. In Sec. III the "charged" rotor is
influenced by an external uniform electric field,
which leads to the Matthieu problem with its well-
known solutions. Section IV is entirely devoted to
the analysis of the performances of different approx-
imate standard techniques to get information about
the problem addressed in Sec. III. Specifically, we
have considered a variational Tamm-Dancoff
method, the standard perturbation theory, and the
self-consistent linearization, Hartree-type method.
The semiclassical approach to that problem is
analyzed in Sec. V by calculating the multi-
instanton contributions in a dilute-gas regime. In
Sec. VI we approximate the path integral of the in-
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teracting system by making discrete the temporal
coordinate and performing Monte Carlo simula-
tions. In Secs. III—VI our analysis is restricted to
the 8=0 case. In Sec. VII we study the system in
interaction with an external uniform electric field
strength in an arbitrary 0-vacuum realization, by us-

ing semiclassical (instantons) and variational tools.
Finally, in Sec. VIII our results and conclusions are
collected.

II. THE FREE PLANAR ROTOR

A. Canonical quantization approach

Let us consider the dynamical system associated
with a free nonrelativistic particle constrained to
move in a circumference S' of unit radius. The cor-
responding classical Lagrangian is

I.= —,8 (2.1)

where 8 is the angle (0 & 8 & 2') and the mass of the
particle is supposed to be unity.

The corresponding quantum system is defined in
I. (S',d8) by the Hamiltonian (iri= 1)

1 dH= —— (2.2)
2 d8

acting on differentiable functions P of S, vanishing
in a neighbor set of 0 (or 2n.}. The self-adjoint ex-
tension of H to be considered depends on the boun-
dary conditions imposed at 0 and 2m, and since the
particle moves freely on S' the boundary conditions
are periodic; then the corresponding extension Hp of
H is defined in

D(Hp}= If:S'~C; f absolutely continuous;

f(()) e
—I 21I'ff(2~) j (2.8)

which corresponds to imposing quasiperiodic boun-

sidered, respectively, as the classical Lagrangian and
quantum Hamiltonian of a charged particle (e =1)
moving in S' under the action of an electromagnetic
field Az tangent to S' with constant norm e and
pointing in the anticlockwise direction as we can see
in Fig. 1.

Such an electromagnetic field corresponds to a
physical situation where an external magnetic field
B is confined in a region S encircled by S' with
magnetic flux

P= I BdS= I Adl=2ire. (2.7)
S

As is well known, since the relevant classical
quantities are the values of the electric E and mag-
netic 8 fields in S', the classical equation of motion
corresponding to the above physical situations (2.1)
and (2.5) are the same. However, since the spectra
of (2.2) and (2.6) are different if e is not an integer
number, both situations are different from the quan-
tum point of view; this shows that the relevant
quantum quantities are the electromagnetic fields

(up to equivalences) rather than the magnetic and
electric fields, as is well known from the Aharonov-
Bohm effect.

On the other hand, the quantum system described

by (2.6) can be simulated from the free system (2.2)

by modifying the boundary conditions at a point of
S'. Let Hp be the self-adjoint extension of the dif-
ferential operator (2.2) defined in the domain

D(Hp) = If:S'~C;f absolutely continuous;

f(0)=f(2ir) I . (2.3)

The classical equation of motion corresponding to
the Lagrangian (2.1),

0=0, (2.4)

is also generated by the Lagrangian

I.,= —,(8+e) ,e——1 2 1

(2.5)

However, the quantum Hamiltonian associated with
(2.5) defined by

1 d
H, =—— —l6

2 d8
(2.6)

in the domain D (Hp) has a different spectrum than

Hp if e is not an integer constant. Therefore, there
are inequivalent quantum realizations of the same
classical system.

The expressions (2.5) and (2.6) can also be con-
FIG. 1. Illustration of the Aharonov-Bohm effect. S is

the region with a nonzero magnetic field strength.
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dary conditions at 8=0. Then, the unitary operator

T:L (S',d8)~L (S',d8),

given by 4-

Tg(8) =e "g(8)

verifies that

T 'HpT=H, .

(2.9)

(2.10)
3-

Thus, the physical systems described by H, and Kp
are equivalent (note that Ho and Ho+" with n an in-
teger are the same operators, therefore the different
dynamics are parametrized by eE [0,1)). The
equivalence (2.10) has caused the authors of Ref. 8
to error because they assume that the change of the
electromagnetic fields implies automatically a
change of the boundary conditions which leaves the
system equivalent to the fry case; then they claimed
against the existence of the Aharonov-Bohm effect.

However, the boundary conditions at 0=0 have
nothing to do with electromagnetic fields but with
local physical manipulations at this point of the
space. In the absence of such local manipulations
the boundary conditions are always periodic and the
action of the electromagnetic fields does not change
them since it only changes the dynamics of the parti-
cle.'

The solution of the spectral problem for the Ham-
iltonian considered above is completely straightfor-
ward. The eigenstates and eigenvalues of K, in
D(Ho) are given by

ne
2m'

E„'=—,(n —e)

(2.1 1)

(2.12)

+ (8) ei( —)e

2m
(2.13)

where n =0,+1,+2, . . . and where the expression
(2.12) shows explicitly that the spectra of H, and .

H,+, are the same provided that r is an integer. On
the other hand, the eigenstates and eigenvalues of
Ho in D(HO) are given by

\
f I 1 T

Q2 0,4 0,6 0,8 1 1.2 1P 1 ~ 2

FIG. 2. Energy levels for the free rotor.

E„"=, (n —e)— (2.14)

where n =0,+1,+2, . . ..
The equivalence of Ho and H, is shown by the

fact that E„"=E„' and (p„(8)=T(p„(8). In this
second approach, the domains D(Ho) depend on
e C [0,1) and the eigenstates (2.13}also depend on it,
which for the ground state is known as the e-
vacuum dependence.

It should be noted that the e dependence of the
ground-state energy plotted in Fig. 2 shows the ex-
istence of a "second-order phase transition" at e= —,

where the ground state is degenerate (minimax
theorem does not apply to Ho because of the ex-
istence of boundary terms}. The above results have
recently been confirmed in the laboratory by the au-
thors of Ref. 6 using a circular SQUID.

B. Path-integral approach

The quantum Euclidean propagator KE(T; I8I, I8'j } corresponding to the evolution operator e ' is given
by

KE(T [8I [8'I )= & I8'l
I
e '

I t8I ) = (2.15)

where
I I8I ) and

I
I8'j ) are position eigenstates and [8J denotes the class of 8 modulo 2m, (p„and E„being

the eigenfunctions and eigenvalues given by (2.11) and (2.12). The propagator KE admits also a pat¹integral
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representation' given by
T

K (T;[8(,(8'I)=N f, gd8(t)e p f I. (8,e)dt (2.16)

where LE is the Euclidean Lagrangian and X is a normalization factor,

LE(8,e)= (—, 8—'+ie8).

Then

I' g2
K (T; [0],tOI)=N f gd8(t)exp —f dt—e

Ie(o) I = IoI
c 2

(2.17)

(2.18)

where g(8(t)) is the winding number of the path 8(t), i.e., the net number of times 8(t) rounds S clockwise.
Therefore, the functional integral splits in path sectors parametrized by the winding number X:m,

r

K (T;[OJ, IOI)= g N f, g d8(t)exp —f dt e
m =—oo

Since
r

8(T)=2m~ 8 1 2+~ 2gzN f g d8(t}exp —f —d8 = e

then

1 +"
KE(T; IOI, [OI )= g expI —[2( m5r) /T] i25re—mj .

2%T

(2.19)

(2.20)

By making use of the Poisson formula

+ oo +OO +Co
f(m}= g f f(t)e ' 'dt (2.21)

applied to the function f(x)=exp[ —(x e) T/2], —
(2.20) leads to (2.14).

Thus, in this free case, the path-integral method
provides us with the exact solution of the spectral
problem of H, . This method also stresses the ap-
pearance of e sectors in terms of the existence of
path sectors with different topological winding
numbers; this result also holds when there is an ad-
ditional potential term in the Lagrangian (2.5).

HP=EQ,

is a Matthieu-type equation.
There are only two kinds of solutions of (3.2) in

D (Ho). In fact, only the solutions a2„and b2„of the
Matthieu equation satisfy the boundary conditions

g(0}=f(25r)

and

d d
d8~, =d8~ „

III. THE PLANAR ROTOR IN A UNIFORM
ELECTRIC FIELD

The asymptotic behavior (for small A, ) of the lowest
eigenvalues of H is given by"

Let us now consider the action of a uniform elec-
tric field with field strength A, on a nonrelativistic
electron (e =1) constrained to move in S'. The
quantum Hamiltonian corresponding to this in-
teracting planar rotor is given by the self-adjoint ex-
tension of

1 4 1002401
2 6 + 432 + 155520 +

(3.2a)

(3.2b)

1 dH = —— +A, cos8
2 d8

(3 1)
The corresponding expressions (for big A, ) are

defined in the domain D(Ho). The spectral equa-
tion of H, (3.3a)
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Eb ———Z+ —,v X—5 9 45

2 A. 2' A,

(3.3b)

The A, dependence of the ground-state energy given

by (3.2a) and (3.3a) is graphically displayed in Fig. 3

(see also column four of Table I). The precision ob-
tained from this method by choosing A, =0.4 as the
matching point between the two complementary
asymptotic expansions (3.2a) are (3.3a) is remark-
able.

0 . 0.'2 OA 0,6 0.8 1 1.2
-0.1

1.61.4
~ I ~ L I ~

I $ ~ I I I

1.8 2

0

~yOtOy~
~0 Oy

O~

01--

OP--

04-.

0,5--

06-.

07--

Q8--

Q9--

1.2--

FIG. 3. Predictions for the ground-state energy of the planar rotor interacting with an external electric field, as given by
different approximate methods. The solid line represents the variational method (exact results). The heavy dashed line
represents second-order perturbation theory. The open triangles represent the Hartree method. The open circles represent
the Monte Carlo calculation. The dotted line represents the Gaussian approximation. The dashed line represents the in-
stantons calculation. The open squares represent the asymptotic expansions.
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TABLE I. Ground-state energy for different values of A, obtained by the approximate methods developed in Secs.
III—V. The values corresponding to the Matthieu approximation correspond to those obtained from the asymptotic expan-
sion (3.2a) for 0.01&A, &0.4 and from (3,3a) for A, &0.45.

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0,95
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

—Eo var.

0.0001
0.0024
0.0098
0.0216
0.0375
0.0569
0.0792
0.1039
0.1307
0.1593
0.1892
0.2204
0.2526
0.2858
0.3197
0.3543
0.3895
0.4252
0.4614
0.4980
0.5350
0.6101
0.6864
0.7638
0.8420
0.9211
1.0009
1.0813
1.1623
1.2438
1.3258

—Eo pert.

0.0001
0.0025
0.0100
0.0225
0.0400
0.0625
0.0900
0.1225
0.1600
0.2025
0.2500
0.3025
0.3600
0.4225
0.4900
0.5625
0.6400
0.7225
0.8100
0.9025
1.0000
1.2100
1.4400
1.6900
1.9600
2.2500
2.5600
2.8900
3.2400
3.6100
4.0000

—Eo Matt.

0.0001
0.0025
0.0098
0.0217
0.0375
0.0568
0.0786
0.1037
0.1221
0.1496
0.1812
0.2137
0.2471
0.2811
0.3158
0.3510
0.3867
0.4228
0.4594
0.4963
0.5336
0.6090
0.6856
0.7631
0.8416
0.9207
1.0006
1.0810
1.1621
1.2437
1.3257

—Eo Hartree

0.1569
0.1875
0.2193
0.2521
0.2857
0.3200
0.3549
0.3904
0.4263
0.4627
0.4995
0.5366
0.6119
0.6882
0.7656
0.8439
0.9229
1.0027
1.0831
1.1640
1.2455
1.3275

—Eo Gaussian

—0.0400
—0.0618
—0.0581
—0.0436
—0.0236

0.0000
0.0261
0.0542
0.0838
0.1146
0.1464
0.1792
0.2127
0.2469
0.2817
0.3170
0.3528
0.3890
0.4257
0.4627
0.5000
0.5756
0.6523
0.7299
0.8084
0.8876
0.9675
1.0481
1.1292
1.2108
1.2929

—Eo inst.

+0.0241
0.0798
0.0058
0.0054
0.0141
0.0292
0.0490
0.0723
0.0982
0.1262
0.1558
0.1868
0.2190
0.2521
0.2860
0.3206
0.3558
0.3915
0.4278
0.4645
0.5015
0.6130
0.6890
0.7662
0.8443
0.9232
1.0030
1.0833
1.1642
1.2456
1.3276

10= — +A, cosa,2d8
(4.1)

under the assumption of periodic boundary condi-
tions.

The first technique under consideration is the
well-known Tamm-Dancoff method. ' Take N
members of some arbitrary complete set of basic
vectors. Here this set will be the eigenvectors of the
"free problem"

1ao= ——
2 d8

(4.2)

IV. SOME NUMERICAL METHODS

A. Variational method

Now we consider different methods in order to
numerically approximate the eigenvalues of the pla-
nar rotor interacting with an external electric field,

1.e.,

1 &its
2m

(4.3)

One then constructs the N XN matrix representation
of H:

H,J f f;'Hf)d8, i,j——=1,2, . . . , N

and one considers the corresponding eigenvalue
equation

IH,&
E~,&1=0, i,j =1—,2, . . . , N . (4.4)

After getting the numerical solution of (4.4) for
the eigenvalues, the question is "how rapidly does
this sequence of approximate eigenvalues arrived at
by systematically increasing the set (4.3) converge to
the true eigenvalue'"

We organize the increasing-size Hamiltonian ma-
trix following the "natural sequence"
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0;+1,—1;+2,—2:+3,—3:.. . ;

(N —1) (N —1)
2

'
2

for the index n in (4.3).
We have experimentally observed that f„happe ns

to be a very adequate basis to develop the eigenvec-
tors of H. The rate of convergence is very high for
practically any value of A, . Although we cannot
prove any rigorous statement about the error we
make, the numerical evidence is overwhelming to
conclude that all the figures we collect in the tables
are good digits for this problem. In fact, they are
coincident with the exact results obtained above by
using the asymptotic behavior ()i» ao ) of Matthieu
functions. This comparison of results is enough be-
cause due to our choice of the trial basis (4.3), this
method will find more difficulties as the value of A,

grows.
The value of a general matrix element H„ is

C. Approximation by a nonperiodic potential:
Hartree method

Now, our first step is to expand the potential
about its rninimurn 8=m:

V=A, —1+—,(~—8)'

(~—8) —+ ~ . .1 4

4t
rj—:m —8 . (4.9)

which provides the linear harmonic-oscillator spec-
trum

If one keeps only the terms up to second order in i)
and forgets the periodic nature of the original prob-
lem, we obtain the approximate Hamiltonian

1 d A,Hg= —— +—'g —A,, —00 g'Q g ix)
2 dn2 2

(4.10)

12~g1dH„= e '" —— +A, cos8 e™dalf18 2 0 E2(rj)=1 A(n+ —, ) —A, ,

in particular,

(4.11)

1 2= —,m 5„+—(&„, +i+5,,„ i), (4.5) E,(0)=—A, + —,V A, . (4.12)

B. Perturbation theory

Should one consider

V=A, cos0 (4.6)

as a perturbation potential of the free problem (4.2),
the first correction to the unperturbed energy levels
appears as a second-order effect, proportional to A, :

62E =A,2, , ~m ~~1
1

4m —1
(4.7)

which shows that the degeneracy is maintained up
to this order. For the particular case

~
m

~

=1 the
degeneracy is removed in second order. The results
are

(4.8)

The perturbative numerical results appear in the
third column of Table I. As expected their error in-
creases as k becomes large.

which makes the task of putting the H„matrix in
the computer a trivial one.

The results of this method are displayed in the
second column of Table I for any value of the cou-
pling constant A,. %e mould like to remark that the
maximum size of the matrix we have used in the
computations has been 17' 17.

From the functional point of view this approxima-
tion corresponds to performing a Gaussian integra-
tion about the classical solution 0=~.

In order to improve this Gaussian approximation
we will keep, up to fourth order in 21,

1 d A, 2 )I, 4H4 ———— +—g —A, —
2 dn2 2 24

(4.13)

rI'»6(r12) r12 —3(2)2)2 . (4.14)

This is a Hartree-type approximation, because we
keep only the lowest-order quantum fluctuations.
Under this approximation

1 dH4~H4 ————
8'g

+A, —1+—1— 2 ~ 22
2 2 S

IC—= 1 —~"' .
2

(4.15)

The bold consideration of 21 as a nonangular vari-
able in H4 is obviously meaningless, therefore we
now proceed to linearize H4 in order to (i) convert
H4 in a sensible problem and (ii) maintain some of
the nonlinear information buried in H4. We specifi-
cally follow the method used by Chang for the
anharmonic oscillator' which consists in the re-
placement
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Hence, whenever E&0 we may assume that q is a
noncompact variable whose range varies from —00

to + ao. From (4.15) we can compute the expecta-
tion value of 7} . Using the virial theorem for the
ground state we get

1
(g )= E (4.16}

To fix (ri ) we impose the self-consistency re-
quirement that the (i} ) introduced in the frequency
K is the same as obtained in (4.16}. (ri ) obeys a
cubic equation

2M —4Am +1=0,
x=(il') .

(4.17)

E4(0)= —A, + , v'KA, + —,A—,(g ) (4.19)

and there exists a minimum of A, (A, ;„), so that for
A, & A, ;„,K & 0 and the whole scheme breaks down.

The numerical results from the method are col-
lected in the fifth column of Table I.

V. INSTANTON APPROXIMATION

Next we are going to estimate the ground-state en-

ergy of the interacting system by functional path-
integral methods. ' The starting point is the quan-
turn Euclidean propagator

i

KE(T~, [~j)=&[~j
~

e- '~ ~&

+" —E„r,
e " qr'„([n j)y„(m),

The solution of (4.17) in the limit of large A, pro-
vides the following result:

E,(0) — —,
' v Z-X- —,', , (4.18}

A~ co

which is coincident with the exact asymptotic
behavior.

In general the prediction of the method for the
ground state is

Sz[8(t)]=—f dt( —,8 +A, cos8) (5.3)

is the Euclidean action. Hereafter in this section we
shall consider the potential term V(8}=A, cos8
moved to V(8) =A,[l+cos(8)] in order to deal with
positive energy; thus the energy levels E„become
modified in an amount of iL (E„=E„—A, ).

In the semiclassical limit, the path integral (5.2) is
dominated by the contribution of paths lying around
stationary paths of S~ Sz ——A, T v—erifying the boun-
dary conditions

T T
8 ——=~ 8 +— =Imj

2 '
2

(5.4)

when T~ao. Such stationary paths 8(t) are the
solutions of the differential equation

5SE(8) 1 d 8(t)
dt'

=0=—— —A, sin(8(t)) . (5.5)

v(~) „

Notice that (5.5) is the classical equation of motion
of the particle in an effective potential —V(8) [see
Figs. 4(a) and 4(b)]. Equation (5.5) coincides also
with the spatial sine-Gordon equation for static sca-
lar fields. Therefore, there are three solutions of
(5.5) with the boundary conditions (4.4):

Hp(t) =m (static}, (5.6)

Oi(t) =—m+4 arctanI exp[~A, (t —tp}]j (instanton),

(5.7)

8 i(t) = —3m+4 arctan j exp[ —v A(t —tp )] j

(anti-instanton), (5.8)

where to is an arbitrary time parameter with
[8(rp) j = [Oj (Ref. 15) [see Figs. 5(a) aild 5(b)]. The
instanton and anti-instanton solutions only verify

where

Hip„(8)=E„p„(8) .

(5.1)
I I

-3lr 0

(o)

I

3n

When T~ oo, the T behavior of (5.2) is dominat-
EOT

ed by the ground-state contribution e . The
path-integral representation of the propagator is

I8(T/2) I = Ie'I SE[8(t)]K (T;n', {n'j)=N f, , gd8(t)e s

-5'
I

-3n llI, i I
37'

I
5n (5)

I

where

(5.2} -2Jl

(b)
FIG. 4. (a) Electric potential. (b) Euclidean potential.
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B(r) =8(r)+ g a„B„(r) (5.9)

the boundary conditions (5.4) when T~ 0o and cor-
respond to the soliton and antisoliton of the sine-
Gordon equation.

The contribution to (5.2) of the paths around a
stationary path 8(t) can be estimated expanding the
paths in a neighborhood of 8(t) in terms of the
eigenfunctions 8„(t)of the differential operator

d d V(8)
dt2+ de2

vanishing at the boundaries + T/2 and —T/2:

g1/4 —1/2 g1/2 T
E

2
(5.13)

1/2
E D1/2SE

2%

Sg ——f d8&2V(8) =8~A, ,

(5.15)

(5.16)

The contribution to the Euclidean propagator aris-
ing from the instanton sector Kz is given by

Kx =KF.KT exp( SF )— (5.14)

when

by using that expression in (5.2) and retaining only
terms up to second order in powers of 8„(which
corresponds to considering only lowest terms on fi),
we obtain the result that the contribution to
KE(T;n, In. I ) due to the paths in a neighborhood of
8(t) is given by

N exp[St(8) ] I det[ —d, —l cos(8(t) )] I

(5.10)

In the case of the static stationary solution (5.6), this
approximation is equivalent to considering the Tay-
lor expansion of V up to second order around its
minimum at 8=m.

In order to eliminate the divergences in (5.10), the
determinant of —[8, +A, cos8(t)] has to be con-
sidered in a renormalized way, i.e., the zero mode
contribution has to be computed by collective-
coordinate methods as we shall see further.

Since we consider terms only up to second order
we are carrying out a Gaussian integration around
the stationary configurations. Thus, we are in fact
integrating only over a neighborhood of each sta-
tionary configuration, and then we have to add
separately the contribution of paths around each sta-
tionary configuration.

The contribution to E~(T;n, Im. [) arising from
paths around Bp(t) =n, K@, is given by (5.10) taking
into account that

N[det( —d +A, )] ' =[a.l(p(T/2)]

(5.11)

where fp is the solution of the equation

det( —d, +A, )

det'[ —d, —cos(8&(t))]
(5.17)

(Si ) i' d8
d~

when t goes to + 00, i.e.,

(5.18)

(a)
8(0

with det'[ —d, —cos(Bi(t))] being the renormalized
determinant of the differential operator [—d,
—cos(Bi (t) )], i.e., without contribution of zero
modes. The zero modes have been taken into ac-
count simply by integrating in the collective coordi-
nate (center of the instanton) which gives a contribu-
tion of the factor T in (5.14).

The estimation of D can be done taking into ac-
count that D=2A v A, , where A is the coefficient
which governs the behavior of

( —d, +A, )gp=0

determined by the Cauchy conditions

(5.12)

f,= ——=0, a,1(, ——=l.T = T
2 ' '' 2

Thus FIG. 5. (a) Instanton, (b) anti-instanton.
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e, (t)+Ae !'~ , t + +—00 .

Using (5.7) and (5.18) we obtain A =v 2A, '~4. Thus,
(o)

e«)

r =4~-'"S'" . (5.19)

It is easy to show that the anti-instanton contribu-
tion is the same as that of the instanton. As is well
known the contributions arising from paths around
configurations with n instantons and n anti-
instantons are also relevant in spite of the fact that
such configurations are only approximate solutions
of the Euclidean equation (5.5).

The Gaussian integration over the paths in a
neighborhood of a configuration with n instantons
and n anti-instantons can be evaluated in the dilute-
gas approximation. This approximation consists in
assuming that the highest contribution arises from
the configurations where the instantons and anti-
instantons are widely separated [see Figs. 6(a) and
6(b}]. Such a contribution is given by

/N, rT /0/tl+IT7 n+rj[(n+n})] —1

&(exp[ —(n +n )exp( —8~A.)], (5.20)

where the factor T"+"/(n+n) comes from the
integration over the collective coordinates
(t

& t„,t, t„) of the centers of the instantons
and anti-instantons.

e«}

FIG. 6. Instanton —anti-instanton interactions: (a)
dilute-gas regime, (b) dense-gas regime.

Since for any pair (n, n) there always exist ("+„")
configurations with n instantons and n anti-
instantons satisfying the boundary conditions (5.4)
the global contribution of stationary points to the
propagator is given by

n, n=o

+o+"+"7'"+"(tt!tt!) ~exp[ —(n +n)exp( —8'}]=KEexp[2ETexp( —8v A, )] . (5.21)

Now, according to (5.1), in the limit T
—(E,+A, )rKE-e (5.22)

Thus, by comparing (4.18) and (4.19) the ground-
state energy of the system is given by

E,= —X+ —,
' X'"—8~-'"X'"exp( —8~i) .

(5.23)

The comparison of this value with the exact one is
displayed in Table I and Fig. 3. The expression
(5.23) fits in a qualitative way rather well the A,

behavior of the energy Eo from A, =0.1 on. Howev-
er, it can be shown that there is an asymptotic
discrepancy of an amount —„with respect to the ex-

act results. This discrepancy can be corrected by
modifying the shape of the Gaussian approximation
(see Sec. IV C).

The last term on the right-hand side of (5.23)
gives the contribution to the ground-state energy due
to the tunneling effect carried out by multi-

instantons. It is noteworthy to observe as this term
vanishes as A, increases to infinity which corresponds
to the fact that tunneling effects disappear if the
barrier of potential V [Figs. 4(a) and (b)] becomes in-

finite. Moreover, (5.23) shows that multi-instanton
tunneling effects vanish much sooner than the
Gaussian ones. On the other hand, in Fig. 3 it is
pointed out that the discrepancy between exact
values of Eo and those provided by (5.23) increase as
A, goes to zero. This fact is motivated by the falloff
of the dilute-gas multi-instanton approximation for
the small-i, region, as we will see in the next section.

VI. MONTE CARLO APPROXIMATION

This section is devoted to the computation of vac-
uum expectation values by means of the Monte Car-
lo technique, which was originally devised by
Metropolis et al. ' Our departing point is the vacu-
um expectation value of an operator A, i.e., the ex-
pectation value of such an operator in the ground
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state of the system:

A =(OiA iO)

= lim
T~ 00

f g d8(t)A(8(t))e
't

f D,d8(t}e
(6.1}

8(t;)=8;,
i+1 ti =a,
T=Na,

(6.2)

where N is the total number of sites of the lattice.
In such a case, the Euclidean action SE(8,T) will be
given by

In order to compute the integrals of (6.1) we will
use the Feynman prescription, ' i.e., we will divide
the time coordinate in a fine lattice, using the fol-
lowing notation:

Ss(8,T)= —g a

and the ground-state energy will be

+V(8 )

N 8.
1

8.f pd8;H(8, , . . .,8„)exp —g a '+ ' +V(8,.)
i=1 a

Eo ——lim
N —+~ N Nf gd8;exp —g a

2
8+1—8

+ V(8J)j

(6.3)

The computation of Ep involves the evaluation of
2N integrals (N~ co ) which constitutes an impossi-
ble task except in some special cases; therefore, the
possibility of carrying out the sum by means of nu-
merical generation of the trajectories is quite impor-
tant. Denoting one of those trajectories by

8 =(8i,82, . . .,8„'),

then

S (7t)ga(8 )e '
SE(8 )eE

(6.4)

SE( 8 )

~(8')= '
ES(8 )

(6 5)

the expectation value for Ep is

where the sum on a is extended over all possible tra-
jectories (paths). However, the evaluation of the
contributions of the infinite trajectories to Eo is
again practically impossible, and all we can do is to
approximate (6.4) by a sum over a finite number of
relevant trajectories. If we choose trajectories 8~
according to the Boltzmann distribution

M

Ep QEp——(8 ),
a=1

(6.6)

with M being the total number of trajectories used in
the average and Ep(8 } the energy of path 8

Now, the problem is how to find the M important
paths 8 chosen according to the statistical weight
(6.5). This is done by using a Markov process con-
structed, with the Metropolis criterion, in such a
way that in the limit of M —+00 the probability of
occurrence of the trajectory 8 ~ is given by (6.5). In
general the contributions to the sum are modulated
by two facts, the first is the value of the Euclidean
action associated with one trajectory because of (6.5)
and the second is the number of trajectories whose
action is identical. Basically the Metropolis method
begins by choosing an initial trajectory 8 from
which one generates quite at random a new tra-
jecotry 8 ' and computes

ES=SE(8')—Sx(8 ) (6.7)

if M&0, 8 is substituted by 8' (i.e., the appear-
ance of trajectories with small Euclidean action is
favored); on the contrary, if hS &0, a number r gen-
erated at random between 0 and I is compared withe, if r &e, 8 is substituted by 8 ' and if r & e
8 ' is left out and the computer maintains 8 .

This process is iterated q times (q should be large
enough) until an equilibrium trajectory is reached
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((8;+i-8;)(8;-8; i) )
Vi (6.9)

or we can make use of the virial theorem to compute
the expectation value of the kinetic energy T:

[i.e., a trajectory of maximum contribution to (6.3)].
This equilibrium trajectory is used to do a measure-
ment of the energy. The set of steps quoted above,
in which one begins in 8 and ends in equilibrium
trajectory, will be called "to have completed a cy-
cle." After M cycles, E0 will be given by (6.6).

However, as the crucial question with the Monte
Carlo method lies on the time, consumed by the
computer on each cycle, it is necessary to do some
technical precisions in order to make this technique
truly efficient.

When one computes the ground-state energy, one
should remember' that only the nondifferentiable
trajectories contribute to (6.3},and therefore it is not
possible to define a mean quadratic velocity in a
point because

r 2

~

~

~ ~

8+)—8 =—+0(1), a~0. (6.8)
a a

Therefore, in order to compute the mean kinetic en-

ergy we shall define the mean quadratic velocity
after Feynman and Hibbs as

coordinate a number of times S, and we will try to
fulfill the following rule: Sb, should be bigger than a
typical distance between two equilibrium trajectories
of our problein (in the case of the rotor, we have
usmc Sh &4~}. In our lattice, in order to minimize
border effects we have used periodic boundary con-
ditions ( j8i[ = (8~] }; thus in the process of com-
pleting a cycle we will begin with a trajectory 8o and
we will move 8~ S times, applying the Metropolis
criterion at every time, then we will do the same
with 82, and so on until 8&, and at this moment the
first cycle will be completed. On each cycle the be-
ginning trajectory will be the equilibrium trajectory
of the previous cycle, but in order to assure our-
selves that there is no correlation between the equili-
brium trajectories used to do the measurements and
that the result is independent of the initial trajectory
we chose in the first cycle, we will maintain the
method by carrying out a number N of initial cycles
(typically N=10, 20) without measuring anything,
and from 1V on between two consecutive measure-
ments, we will complete three cycles without
measuring anything either.

In our program the parameters were chosen as
follows: The time lattice spacing, which should be
less than the characteristic period of our problem

To, is generally

(~) 1

(d
dV(t))

j (6.10)

a
z [ 20 ~ 30 ]

0
(6.12)

In order to shorten the distance between the initial
and the equilibrium trajectories it is important to
choose 8 close enough to the latter one. It calls for
previous information about the solution. A practi-
cal hint in the situations where the semiclassical an-
satz is a good approximation consists in taking 8
as the solution of the classical equations of motion.
On the other hand, it is important to bear in mind
that when a new trajectory is generated from a pre-
vious one, the Euclidean action associated with them
should not differ too much, because otherwise the
criterion of Metropolis will usually reject it. There-
fore, it is convenient to generate a new trajectory by
moving only one coordinate (8;~8,') at one time;
furthermore, although in principle 8; may vary be-
tween ( —00, +00), it is convenient that the new

generated coordinate will not differ too much from
the previous one. Therefore, it is usual to introduce
a parameter b, so that the new value fulfills

with

2K~o=
Eo

(6.13)

b, =XV a, J).'=[2,4] . (6.14)

The ground-state energy Eo has been computed by
averaging M times the energy of different equilibri-
um configurations (M =100). The statistical fluc-
tuations of the energy on each average is given by

Furthermore, %=1000, hence 1Va is big enough so
as to pick only the ground-state contribution. With
respect to S (number of times a coordinate 8i is
moved on each cycle), it was taken typically between
10 and 15 interactions. As V=A, /a is the max-
imum velocity one allows on each change of the
coordinates, we have taken V bigger than the typical
velocity of the problem V0=+2E0, specifically
V/V0-2, 3, or 4, which leads to

8; —5&8,' &8;+5. (6.11}

One should also recall that before completing a
cycle we should allow all the coordinates the chance
of moving themselves sufficiently so as to attain an
equilibrium trajectory; therefore, we will move each

In Table II we present our results. ' There one may
check that although the Monte Carlo method is not
terribly precise, their results are in good agreement
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VII. e VACUUM

Let us now consider the general situation where
the rotor is acta' upon by the action of the electric
field while a non-null magnetic flux 2m@ flows
across the rotor circle, which simulates the e-
vacuum situation of the original system.

The classical Lagrangian in this case is given by

Lz , (8 e)————,e ——X c—os8 (7.1)

and the corresponding quantum Hamiltonian is

1 d
H~ = — —l,E' +A cosy .

2 d8
(7.2)

The path-integral representation of the propagator

with the exact results and it is especially useful to
study the qualitative features of the problem. In
particular in Figs. 7(a)—7(c), three typical equilibri-
um trajectories have been plotted. In Fig. 7(a), for
A, =0.01, where the dilute-gas approximation in the
instanton method starts becoming incorrect, one

may observe a typical configuration of interacting
multi-instantons. In Fig. 7(b), for A, =0.2 a typical
equilibriutn trajectory already presents configura-
tions with well-separated instantons. Finally, for
A, =2 the effects of instantons have disappeared and
the dominant trajectories are those with small fluc-
tuations around the classical one O=n.

is given by

I 8( T/2) I = I y I SE~(8,t}
KE(T,m I m J )=Xf,, g d8(t)e

where
+T/2

SE(8,T)= —f dt( , 8—+Leos,8+i@8) .

(7.3)

(7.4)

gO gn+nT n+n
g —~ E

n, n=0 n.n.3

Xexp[( +nn)e i 2m@(n——n)]
—8~x

(7.5)

3n ——

27t--

In the same way as in the free case the additional
dependent term contributes giving rise to a weight
factor e '2 'r(@") for each path sector depending
only on the winding number of 8(t) This. interfer-
ence term is the physical response of the system to
the magnetic field.

Therefore, if we estimate the propagator by using
the dilute-gas multi-instanton approximation in this
case we obtain

TABLE II. Ground-state energy for different values of
the electric field strength A, calculated by the Monte Carlo
method for fixed values of the space (6) and temporal (a)
lattice intervals.

(o)
I I I

site

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

0.005
0.031
0.068
0.126
0.19
0.257
0.312
0.394
0.463
0.546
0.621
0.695
0.773
0.866
0.924
0.978
1.075
1.165
1.254
1.33

2
1.42
2
2
2
2
1.4
1.6
1.6
1.6
1.6
1.6
1.4
1.6
1.4
1.4
1.2
1.2
1.4
1.4

1

0.51
1

1

1

1

0.5
0.7
0.7
0.6
0.6
0.6
0.5
0.7
0.33
0.33
0.33
0.33
0.33
0.33

I I

site

I I

(c)
FIG. 7. Typical equilibrium trajectories in the Monte

Carlo method. (a) A. =0.01. Here the dilute-gas approxi-
mation breaks down. (b) A, =0.2. Dilute-gas regime. (c)
A, =0.2. Classical regime with small fluctuations about
8=m.
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FIG. 8. Graphical representation of the two lowest energy levels of the rotor, for different values of A, and e. The solid

line represents variational results and the dashed line represents the instantons (dilute-gas) calculation.

because the winding number of the multi-instanton
(n, n ) configuration is n n-

Thus the ground-state energy in this approxima-
tion is given by

E'= —X+-'X'"—8 '"Z'"e-' 'cos(2~e)

(7.6)

Of course, this value reduces to (4.20) when a=0.
In the case e= —, the third term in (7.6) becomes

positive, which implies that the corresponding mag-

netic flux generates a destructive interference be-
tween instantons. This prediction of the dilute-gas
instanton approximation is verified in practice by
using the variational techniques developed in Sec.
IV A [Figs. 9(a)—9(c)]. In fact, for e= —, the
ground-state wave function vanishes at 8=0 for any
A, , which represents the minimal tunneling situation.
However, the degeneracy existing for A, =O is broken
for any X & 0 [see Tables III, IV and Figs. 8(a)—8(c)]
the e dependence of the ground-state energy be-

comes regular (disappearance of the "phase transi-
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A =10

= 0.5

C= p5

I
I

(a)
3—

2
2 7t

(b)
2

I

0.1
I

0.3 OA 0.$
I

o.e
I

0.7
I

0.4

(c)
FIG. 9. (a) Ground-state wave function for different e values and a fixed A, . The tunneling effect weakens as e becomes

0.5. (b) Ground-state wave function for a=0.5 and different values of A,. The tunneling effect weakens as A, increases but
the wave function is always 0 in 8=0, for any k. (c) Plot of

i g(rr) i

2—
i l((0) i

~ as a function of A, , for two different values
of e.

tion"). This regularity can be analytically proved as
a consequence of the nondegeneracy of the ground
state and the analytic dependence of H, on e.'s This

1

breaking of the degeneracy at e= —, increases as A,

grows [see Figs. 8(a)—8(c)]. As expected, tunneling
effects are diminished as A, increases to infinity
[Figs. 9(b) and 9(c)].

Finally, the prediction for the ground-state energy

Eo= '

1 2 A 16' +, 0(E'&—
4 1

1
2

—,(1—e)+, —, (ge(1,
4(1 —e) —1

obtained from perturbation theory is given by
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TABLE III. e-vacuum energy for different values of
the electric field strength A,.

TABLE IV. Energy of the lowest excited state of dif-
ferent e realizations and different values of A, .

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.01

—0.0001
0.0049
0.0199
0.0448
0.0797
0.1200
0.0797
0.0448
0.0199
0.0049

—0.0001

0.1

—0.0098
—0.0052

0.0084
0.0294
0.0567
0.0726
0.0567
0.0294
0.0084

—0.0052
—0.0098

0.3

—0.0792
—0.0764
—0.0688
—0.0582
—0.0485

0 QLA.A.

—0.0485
—0.0582
—0.0688
—0.0764
—0.0792

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.01

0.5000
0.4050
0.3201
0.2451
0.1802
0.1300
0.1802
0.2451
0.3201
0.4050
0.5000

0.1

0.4983
0.4092
0.3261
0.2567
0.1983
0.1724
0.1983
0.2567
0.3261
0.4092
0.4983

0.3

0.4895
0.4287
0.3580
0.3008
0.2627
0.2491
0.2627
0.3008
0.3580
0.4287
0.4895

1 j0(&e( —,

—,(1—&) ——,—, &e«1
(7.8)

which fits rather well the exact results for &&0.3.
However, for large A,, the nonperturbative predic-
tions (7.6) is more suitable.

VIII. CONCLUSIONS

From the numerical results obtained by applying
the different approximate methods, we may draw
several conclusions. First one should remark that
the best numerical results are provided, for any
values of A, and e, by the variational method. In
fact, we will consider these numbers as the exact re-
sults of the problem.

For a=0, second-order perturbation theory pro-
vides, as expected, accurate results (better than 4%%uo)

for a coupling strength lower than A, & 0.5.
The instanton method applied in Sec. V starts fit-

ting the qualitative features of the exact result for
A, &0.01 (the quantitative agreement is about 50Wo)

and for A, &0.8 (the numerical agreement is already
very good) the instanton contribution comes essen-
tially from the Gaussian approximation performed
about the static classical solution 8=m. One under-
stands this phenomenon by remembering the range
of validity of the dilute-gas instanton method. The
numerical results show that for A, &0.1 the gas of
inulti-instantons becomes dense (as depicted in Fig.
7, this phenomenon may be observed "physically" in
the Monte Carlo simulation); froin 0. 1 & A, &0.8 the
contribution of the dilute gas is important, whereas
for A, &0.8, the Gaussian approximation makes the
instanton contribution negligible (the gas is eva-
porated). Although for k & 0.8 the numerical agree-
ment is increasingly good, there always remains a

difference of —„as an asymptotic discrepancy with
the exact result.

This asymptotic difference is corrected in an exact
way when one performs an effective Gaussian ap-
proximation in the Hartree-type method, as ex-
plained in Sec. IV. This method provides extremely
accurate results for any value of A, varying within
the range where the method is applicable (A, & 0.4).

The Monte Carlo method describes qualitatively
well the energy of the ground state for any A, . It also
shows pictorially the qualitative changes (depending
on A, ) in the density of instanton configurations: di-
luted, dense, etc. (see Fig. 7). From the numerical
point of view, should one choose adequately the in-
crements of the effective lattice, this method may be
more precise than the instanton technique, even for
a very large value of A, . Nevertheless, it cannot com-
pete at all with the variational one.

The physics of the model changes strikingly when
one "connects" the e vacuum. In the free case

1

(A, =O), for e= —,, the ground state becomes degen-

erate, and consequently there appears a discontinuity
in the first derivative of its energy with respect to e
in that point ("phase transition"). When the interac-
tion is switched on, that degeneracy disappears for
any value of A,, and in the position e= —, the gap be-

tween the first two levels grows monotonically with
A, . This phenomenon is connected, as the instanton

1

calculation shows, to the fact that for e= 2, the big-

gest destructive interference between instantons hap-
pens, which provokes the diminution of the tunnel
effect. This fact may be checked more precisely by
looking at the results of the variational calculation;
it shows that the position probability density van-

1

ishes exactly at 0=0 for the ease e= —, and any

nonzero value of A, . As discussed above, the quanti-
tative precision of the approximate techniques may
be extended to the case @=0.
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The origin of the 8 vacuum in Yang-Mills field
theory is the same as that in our simple quantum-
mechanical model, i.e., the topology of the configu-
ration space is multiply connected in both cases. It
would be extremely interesting to find out if there
exists in field theory any analogy with the phenome-
na we have observed in the planar rotor, such as the
vacuum degeneracy, and its implications.

Among the approximate methods we have used
here, only two of them are currently used in field
theory: the instanton method and the Monte Carlo
method (this one in connection with the lattice
strategy). From the experience gained with the ro-
tor, one should think that instantons provide accu-

rate qualitative results only in its natural range of
validity. On the other hand, the Monte Carlo
method, with enough computer time, is more flexi-
ble and provides qualitative agreement for any value
of the coupling constant. Finally, we would like to
remark that it is a pity not to possess in field theory
something equivalent to the variational method of
quantum mechanics; any serious attempt in this
direction would be highly welcomed.
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