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Physical charged fields in Abelian gauge theories with unbroken global gauge symmetry
are constructed. The Bloch-Nordsieck approximation is then used for the investigation of
their mass-shell behavior in both cases of unconfined and confined global charge. In the
former case (we consider spinor QED) physical charged fields are found to have vanishing
infrared anomalous dimension and to admit the conventional Lehmann-Symanzik-
Zimmermsnn (LSZ) limit. In the latter ease (we consider a toy model obtained from QED
by replacing the photon with a dipole gluon) it turns out that physical charged fields have
zero LSZ limit and the relative Green s functions exhibit an essential singularity in the cou-

pling constant g at g =0. Moreover, the perturbative expansion of these Green's functions,
although asymptotic, is not Borel summable.

I. INTRODUCTION

The present paper is a continuation of our study'
of the infrared (IR) structure of the physical charged
sectors in gauge theories. Here we consider the
cases of both unconfined and confined global charge
because the comparison is, in our opinion, instruc-
tive. Inasmuch as it is founded on the Bloch-
Nordsieck (BN) approximation, our approach is
nonperturbative. Moreover, it preserves gauge in-
variance at any stage.

The BN model has been widely considered in the
literature. The main reason is that it offers consid-
erable physical insight into the mechanism of soft
radiative processes, being therefore an excellent
guide in the study of the IR structure of the charged
sectors in quantum electrodynamics (QED). As is
well known, the importance of this structure stems
from the fact that it determines the nature of the
asymptotic charged states. However, the existing re-
sults on the BN model exclusively concern, to our
knowledge, the Green's functions involving the fer-
mion fields g and f, local with respect to the elec-
tromagnetic field Fz, . These Green's functions are
gauge dependent and, unfortunately, do not give any
information about the properties of the physical
charged states, i.e., charged states on which Maxwell
equations hold. The reason is that, as has been
rigorously proven, physical charged states cannot

be obtained by applying to the vacuum operators,
which are local with respect to F„.

In particular, it follows from the above discussion
that an extrapolation of the IR properties of the
fields f and f to the physical charged sectors of the
BN model (as well as to the physical charged sectors
of QED) may in principle be misleading The.
present paper shows that such an extrapolation de
facto is misleading Indeed. , in the case of QED we
explicitly construct (Sec. II) physical charged fields,
which have (Sec. III) a mass-shell behavior qualita-
tively different from that of f and g and mild
enough to admit the conventional Lehmann-
Symanzik-Zimmermann (LSZ) limit.

In the final part of the paper we turn our atten-
tion to the study of the IR behavior of physical
charged fields in theories with confined global
charge. More precisely we are concerned with a
specific open problem that is receiving a lot of in-
terest. ' The problem is to find the mass-shell
behavior of the quark propagator in quantum chro-
modynamics (QCD) under the assumption that the
full gluon propagator &(k ) behaves like

M~(k )-(k ) for k ~0.
Postponing to Eq. (4.7a) below the precise definition
of the distribution (k ) in four dimensions, we
note that (1.1) provides, in the nonrelativistic limit, a
potential linearly rising at large distances. ' Such a
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d4p=(2ir) d p .

II. PHYSICAL CHARGED FIELDS
IN SPINOR ELECTRODYNAMICS

In this section we give a concise account of the
construction of physical charged fields in the frame-
work of classical spinor electrodynamics.

Our starting point is the nondegenerate Lagrang-
ian density'

FFi' Bd—A—i'+ 8—'
4 pv p

+g(i8 m —gA)/- ,

where g and g are real parameters and

Fpv=()@AD —~vAp .

(2.1)

(2.2)

The equations of motion corresponding to (2.1) are

(2.3)

confining potential meets evidence in the spectros-
copy of heavy quark-antiquark bound states (char-
monium, bb bound states, etc.)."

In Sec. IV we make a first step towards a solution
of the above-mentioned problem. We consider an
Abelian gauge model where the gauge field is of di-

pole type. That is why we refer to this toy model as
dipole QED (DQED). We expect that it is a good
testing laboratory since, presumably, it shares with
QCD [equipped with the assumption (1.1)] the same
mechanisms that control the mass-shell behavior of
the charged matter fields. The nonperturbative
analysis of DQED is done in complete analogy with
that performed in Secs. II and III for QED. The
output is that the physical charged fields of DQED
have, in the BN approximation, a vanishing LSZ
limit, in agreement with a widespread belief con-
cerning gauge theories with confinement of the glo-
bal charge. Vfe also find that the perturbative ex-
pansion in the physical charged sectors of DQED,
although asymptotic, is not Borel summable.

Section V is devoted to our conclusions.
We work in the metric ( + —-); the Fourier

transform is defined by

f(p)= f d xe '~"f( )x,

and

Equations (2.2) and (2.6), respectively, imply

(2.7)

Bl"jq ——0 .

The electric charge

Q= f d x jo(x)

(2.8)

(2.9)

is a constant of motion (provided that the current
vanishes at spacelike infinity). Furthermore from
(2.2), (2.3), and (2.8) one gets

GB=0, (2.10)

i.e., the field 8, which plays the role of a gauge-
fixing I.agrange multiplier in (2.1), remains free.
Consequently, the Poisson brackets of 8 with the
fields A&, g, P, and jz are easily derived' and have
the form

{8(x),A&(y) j =d&D(x —y),
{B(x),g(y) j =igD(x y)f(y), —

{8(x),g(y) j = igD(x ——y)P(y),

(2.11)

(2.12a)

(2.12b)

{8(x),j„(y)j =0, (2.13)

where D(z) =(2m) 'e(z )5(z ) is the well-known
Pauli-Jordan commutator function.

According to the theory of dynamical systems
with constraints, ' the physical subspace Mi' of the
phase space I', corresponding to (2.1), is given by the
surface

B=O. (2.14)

is a weak one.
Following Ref. 14, the observables are defined as

the quantities whose Poisson brackets with B are
weakly zero. The set of observables is an algebra
under the pointwise multiplication of c-number
functions. The observable 0 is called loca/ if

{O(x),O(y) j =0 for (x —y) &0;

In what follows all the equations, which are valid
only on M, are called weak equations and are denot-
ed by =. By definition B=O. Moreover, owing to
(2.3), the Maxwell equation

(2.15)

JI =gA'l4

(B" „A=8,

(i e) —m —gA)/=0,

g(iB+m+gA)=0 .

(2.4)

(2.5)

(2.6a)

(2.6b)

the observables 0& and 02 are called relatively local
if

{Oi(xi),02(xz) j =0 for (xi —x2)'&0 .

The set of all local observables, which are relatively
local among one another, forms an algebra strictly
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contained in the algebra of observables. Indeed, as
shown a few lines below, the latter involves also
nonlocal (electrically charged) fields.

Employing (2.11)—(2.13) one easily verifies that
the Hamiltonian H, corresponding to the nondegen-
erate Lagrangian density (2.1), is an observable.
This fact ensures that the time evolution of the sys-
tem under consideration is consistent with the con-
straint (2.14), i.e., a point initially on M is not al-
lowed by time evolution to leave M As follows
from (2.11) and (2.13), other examples of observables
are given by F&„, ~F&„, and j&. Because of (2.11)
and (2.12), the fields A&, t/i, and P are not observ-
ables.

Let us now consider the fields'

IB(x),%(y;f) I = IB(x),V(y,f) I =0,
I Q, ql(x;f) I =ig %(x;f),
t g, +(x;f ) )

= ig V—(x;f),

(2.19)

(2.20a)

(2.20b)

i.e., %(x;f) and %(x;f) are charged observables.
Due to the convolutiori in the exponents of (2.16),
they are nonlocal with respect to I'&„.

From (2.6a) and (2.16a) one gets

(i I m—)4(x;f)=gy"A&(x;f)%(x;f), (2.2la)

where

A"(x;f)= f d"y[g""5(x —y)

dl'f"(x——y)]A„(y) . (2.22)

%(x;f)= exp ig f d yf„(x—y)

XA "(y) g(x), (2.16a)

Analogously

0'(x;f)(ir)+m)= —g%(x;f)y"A„(x;f) .

Since

IB(x),A&(y;f) I =0,

(2.21b)

(2.23)

%(x f)=i7(x) exp ig f—d yf„(x—y)

)&A&(y) . (2.16b)

Here f& is a tempered distribution satisfying

B&f&(z)=5(z), f&(z) =f&(z) (2.17a)

and its Fourier transform admits the representation

fz(p) =i f d4q F(p, q)qz[c+(pq +i@)

Eqs. (2.21), although equivalent to (2.6), have the ad-
vantage of involving observables only. This is true
also for the Maxwell equations (2.7) and (2.15) and
one has, therefore, a formulation of classical spinor
electrodynamics entirely on M. Such a formulation
turns out to be very useful in the study of the physi-
cal charged sectors of the BN model (as for @ED,
see Ref. 1) and, in particular, as shown in Sec. III, in
the analysis of the IR structure of these sectors. In
performing this analysis it will be sufficient to con-
sider the subfamily of (2.17b) with

+c (pq —i e') ], F(p, q)=(2m) 5(n —q), (2.24a)

(c++c ) f d4qF(p, q)=1,
F(p, q)=F( —p, q) .

(2.18a)

(2.18b)

(2.17b)

where c+ and c are real parameters and F(p, q) is
a tempered distribution. The conditions (2.17a) im-
ply

2c+ ——1+c, 2e =1—c .
Equations (2.17b) and (2.24) lead to

(2.24b)

f„(p)= —nz [(1+c)(np +ie)2"

where n is an arbitrary four-vector. Because of
(2.18a), Eq. (2.24a) implies

Using (2.11)—(2.13) and the canonical Poisson
brackets corresponding to (2.1), one can check that

+(1 c)(np i@) '],——
or, in the coordinate representation,

(2.25a)

f&(z)= —,n& f da[(1+c)8(a)—(1 c)8( —a)]5(z—an) . —

The fields, obtained from (2.16) and (2.22) by fixing fz according to (2.25), have the form

+( xn;c) = exp —'g f da[(1+c)8(a)—(1 c)8( a)]n&A&—(x a—n) P—(x),

(2.25b)

(2.26a)

%(x;n;c)=g(x) exp ——g f da[(1+c)8(a) (1—c)8(—a)]n "Az(x —a—n) (2.26b)



27 NONPERTURBATIVE APPROACH TO THE INFRARED BEHAVIOR. . . 1843

A+(x;n;c) =Ai'(x) ——,
'

i)i' f da[(1+c)8(a)—(1—c)8( a—)]n "A„(x a—n ) . (2.27)

[Note that Az(x;n;c) identically satisfies n A&(x;n;c) =0 Moreover, 4( x; n; c) and %(x; n;c) are special types of
string variables. ' For example, in the case n &0 one has

%(x;n;c)= exp dy [(1+c)8(x y—ln ) (—1 c—)8(y x—/n )]
lg

2n'

&&n "A„(y,x —n(x —y /n )) P(x) .

Therefore, for n &0 (n &0) the 8(a) and 8( —a)
terms in (2.26), respectively, are the retarded (ad-
vanced) and the advanced (retarded) parts of the
string. Thus a symmetric treatment of particles and
antiparticles leads to the choice c=O, which, being
natural for QED, is adopted in Ref. 1. In the BN
approximation of QED we are interested in here, an-
tiparticles are absent. In this case we therefore
make the choice

I

+„(x;n ) and ip„(x;n) employed for their definition.
Equations (2.21a), (2.25a), and (2.28) imply

(p yg)+„(—p;n)=gy& f d4k Tq, (k;n)

)&A "(k)qi, (p —k;n),

(2.33)

with

c=1. (2.28) T„"„(k;n)=g&„kzn„(kn—+i e) (2.34)

In what follows we adopt the notation

4', (x;n ) =%(x;n; I ),
4,(x;n )=4(x;n;1),
Ai'(x;n ) =A "(x;n;1) .

Furthermore, we define

e„(x)=f d4ne ' f d y %„(y;n)e'""

e„(x)=f d4ne ' f d y 4,(y;n)e'""

(2.29)

(2.30)

(2.31a)

(2.31b)

Froin (2.32) and (2.33) one has

(p m)e„(p)=—gy" f d4k Tq„(k;p)A "(k)

x4„(p —k;p) . (2.35)

A„(x)~A„(x)+d„A(x), B(x)~B(x),
(2.36b)

We finish this section with the following remark.
The observables H, F„„, j„, and A„(x;f),
gl(x;f ) and e„(x)with their Dirac conjugates, are in-

variant under the local gauge transformations

y(x)~e 's~'"'p(x), p( x)~ 17(x)e' s'"',

(2.36a)

These fields play a distinguished role, since, as
demonstrated in the next section, they have milder
IR properties compared to p and ~p„. From (2.31)

one gets, in the momentum representation,

e„(p)=+„(p;n)
~ „~,

(2.32)
e„(p ) =%„(p;n )

~ „~,
where

where the real function A satisfies

OA(x) =0, (2.37a)

A(x)~0 for
~
x

~
=(xo + x )' ~~ . (2.37b)

This fact can be checked either directly or by the aid
of (2.11)—(2.13), having in mind that the current
corresponding to (2.36) has the form

0', (p;n)= f d x e'i'"%, (x;n),

'p„(p;n)= f d'xe~ e (x";n„).

J„(x)=A(x)B„B(x)—B(x)B„A(x) . (2.38)

Owing to (2.10) and (2.37a), J& is conserved and
gives rise to the constant of motion

We stress that e, (x) and e, (x) are not string vari-
ables. As follows from (2.31), they have an even
more complicated structure than the string variables

Qa= f d x Jo(x) . (2.39)
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III. BLOCH-NORDSIECK APPROXIMATION
FOR UNCONFINED PHYSICAL

CHARGED FIELDS: @ED

As is well known (see, e.g., Ref. 17}, the BN
model is defined by (2.1) with the replacement rule

A characteristic feature of the quantized BN
model is the vanishing of all diagrams involving at
least one fermion loop. This is a consequence of
(3.1) and implies that the vacuum polarization van-
ishes.

We are now interested in the Green's function

(3.1)

where u is a timelike vector normalized, for simpli-
city, according to

3'(x —y) = i —(Te,(x)e„(0)} .

In view of (2.32)

(3 4)

Q =1 (3.2) 9'(p)=G(p;n)
i „~, (3.5)

&&4', (p —k;n ), (3.3a)

(up m)e, (p)—=gu" f d4k T„"„(k;p)A '(k)

X+„(p—k;p) . (3.3b)

Consequently, Eqs. (2.33) and (2.35}take the form

(up —m)+„(p;n }=gu"f d4k Tp (k;n)A "(k)

where

G(x —y;n) = i (—TV„(x;n)%,(y;n) } . (3.6)

In order to find out the mass-shell behavior of (3.5)
it will be sufficient to study (3.6} only in a particular
range of n, specified below [see Eqs. (3.21} and

(3.28}].
By applying the functional integral tech-

nique, ' ' one obtains

f [~A ]G(x —y;A,"( x&))S (oA„"( xn))exp i f d z W h(z)
G(x;n) =

f [NA]SO(AP(x;n))exp i f d4z~ h(z)

Here

(3.7)

„=——,(B„A„—B„A„)(B"A"—8"A")—BBQ&+ B
a=ps„~~

'

So( A„"( x;n ) ) is the determinant of the Dirac operator

iu~ —m guP,—(x;n }
8 P

ax~

(3.8)

(3.9)

for a spinor particle in the external field AP(x;n), and G(x y; AP(x;n )}is the co—rresponding Green's function,
i.e.,

iu~ —m gug~(x;n) G(x y—;A)(x;n))=5(—x —y) .a
ax~

(3.10)

The first step in calculating (3.7} is the determination of G(x —y;A, (x;n )). Performing the Fourier transform
with respect to x —y in (3.10) one gets

a
up m+iue —guppy(x;n—) G(p;A„"(x;&))=1 ~

a~~
(3.11)

By inserting the representation

G(p;AP(x;n ))= i f dv exp[iv—(up —m+i 0)+iK(v A,"(x;n ) )] (3.12)
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gu—PP(x;n ) (3.13)

with the initial condition

E(0;A„"(x;n))=0 . (3.14)

The solution of (3.13), satisfying (3.14), is unique. It
reads

E(v;AP(x;n))= f d4k Vq( —k;x;n)A i'(k),

(3.15)

where

into (3.11}and taking into account the identity
00

m d~ e" "=i,
e~O+

Eq. (3.11}is converted into the differential equation

a
E(v;A„"(x;n ))=—ui' E(v;A„"(x;n ))

Bv Bx

V

V~( k—;x;n)= —g driu T~~(k;n)

Xexp[ik (x g—n) ],
(3.16)

and T"z(k;n) is given by (2.34).
After G(x —y; A„"(x;n) }has been evaluated, we

have to perform the functional integration in (3.7).
We first note that, because of the vanishing of the
vacuum polarization in the BN model, one has

Se(A,"(x;n))=1 . (3.17)

Consequently, one is led to a Gaussian integral,
which yields

G(p;n) = i f—dv exp[iv(up m—+i 0)

+I(v;u;n)], (3.18)

where

V 'II )
I(v;u;n)=ig f di}i f dri2 f d4kexp[iku(rii —ri2))u Ti,(k;n)ui'Tq (k;n)

&& [gru (1 g
—1)k ko(k2+&&) —i](k2+&&}—i (3.19)

By use of the equality

T„"„(k;n}k'=0, (3.20)

one realizes that the contribution of the longitudinal

part of the photon propagator vanishes. Under the
restriction

n &0, (3.21)

a straightforward calculation sketched in the Ap-
pendix gives, in the limit a~0,

I(v;u;n )

= —d(u;n) f dpi f dri2(rii —gq), (3.22)

where

r(u;n)=[1 —u n /(un)i]'~2, (3.23b)

and a=g /4ir.
Two remarks are in order:
(1) G(p;n) is g independent —the first advantage

of working with the locally gauge-invariant fields
%„(x;n) and %„(x;n)

(2} I(v;u;n) contains an end-point singularity at

g2 ——g~, much as does the corresponding integral in
the analogous treatment of the fields f and 1(t [see,
e.g., Eq. (8.22) in Ref. 19]. This singularity, which
is typical of the BN model, has ultraviolet character,
as suggested by (3.19), where i}i——ri, is the subset of
the domain of integration where the oscillation fac-
tor

exp[iku (rii —ri2)]

d(u;n) =—2+r(u;n) ln
a i 1—r(u;n)
7r 1 +r(u;n}

(3.23a)

trivializes. The ultraviolet structure of the BN
model is in no way significant for QED, since the
BN approximation is reliable only in the IR region.
Therefore, adopting the ultraviolet regularization

('Qi —'92} ~P ~ ('Qi '92}
1 l

2 A
)

—2
l+ g] —g2+—

A

' —2

(3.24)

we will be interested exclusively in the mass-shell properties of (3.18}.
Performing in (3.22) the integrations in rii and riz with the prescription (3.24} and neglecting the terms van-
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ishing in the limit A~ (x), one finds
00

Gti(p;n)= i— dvexpIiv(up —m+i0)+d(u;n)[ln(vm)+ln(A jm)]I (3.25)

The mass-shell (ms) behavior

p ~m, Qp~m (3.26}

of Gt, (p;n) is governed by the terms of ReI(v;u;n),
which are singular for v~ cu. Therefore

G„(p;n)
~ m, actually is A independent and has the

orm

(3.5) and (3.27} imply

Q( )
~

d iv(up m—+(0)(mV)d(u;p) .
ms= 0

(3.33)

on the other hand, in the regime (3.26}, p satisfies

(3.21) and (3.28), and according to (3.23),

g( . } '
~

d iv(uP —m+i0)(mV)d(u;n)pi~ ( ms
—l

0

(3.27)

d(u;p) —+0 for p ~m and up —+m .

Therefore

(3.34)

The definiteness of (3.27) demands a further restric-
tion on n, namely,

(up m)9(p—)~1 for p ~m and up~m .

d(u;n) & —1 . (3.28}
(3.35)

The set of four-vectors n, obeying conditions (3.21}
and (3.28), is nonempty. Indeed, for sufficiently
small e, the vectors of the form

Pl~ =mQ~ +68~, 8 =—I, eQ =O

satisfy them. Finally,

(3.29}

g(p;n) ~,=I'( I+d(u;n })(irn) '"'"'

X(up —m+i0) ' '"'"'. (3 3o)

G(x —y) = —i ( Tf(x)it'(y) )

is given by'

(3.31)

It follows from (3.30) that 4'„(x;n) and 4, ( nx) have
nontriuia/ IR anomalous dimension, much as do the
fields (4()(x) and f(x) We recall . that the mass-shell
behavior of

In this sense the fields e,(x) and e,(x) have triuial
IR anamaloQs dimension. In conclusion they exhibit
a qualitatively different mass-shell behavior, com-
pared to g and 4, . This nonperturbative result has
been verified' in QED also independently of the BN
approximation by means of the renormalization-

group technique.
An intuitive explanation of why, among the fields

4„(p;n},only

e„(p)= p„(p;p)

has a vanishing anomalous IR dimension, can be
given in the following way. As can be read off from
(3.3a), p„(p —k;n} is coupled to A„(k} through the
vertex u "T»(k;n) Since, in .the regime (3.26), p~
becomes proportional to u~, the effective IR vertex
is of the form p "T'„„(k;n) The choic.e n =p is the
only one leading to a vanishing effective IR vertex,
due to

g(p)=P(1+d(g))(im) '~'

X(up —m+i 0)-'-d(~) (3.32a)

p "T"„q(k;p)=0 . (3.36)

d(g)= (3 -g' ')
Zm'

(3.32b)

We finally note that the behavior (3.35) holds for
any Green's function

(Te„(pi). e„(pf)e„(pf+i) e, (p2f) ' ' ' ),
Completely different is the situation with the

fields e, (x) and e, (x). Indeed, on the one hand, Eq. which, according to (2.32), is given by

(Te„(pi}. e„(pf)e„(pf+i) e, (p2f } ' '

=(T4', (p),n)) +„(pf nf)ip, (pf+i nf+1} qr(p2f n2f}
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The proof of this fact follows, with obvious modi-
fications, the proof, given in Ref. 20, of the analo-
gous statement concerning the fields P and g. As a
consequence, the fields e„(x) and e,(x) allow for the
standard LSZ treatment of the corresponding
asymptotic limits e„'"(x),e„"(x) (ex=in/out), and, we
emphasize, the latter are free spinor fields.

IV. THE BLOCH-NORDSIECK APPROXIMATION
FOR CONFINED PHYSICAL
CHARGED FIELDS:DQED

In this section we consider DQED—an Abelian
gauge model, formally obtained from QED by re-
placing the photon field with a dipole gluon
field. ' Dipole QED can be given a Lagrangian
formulation, which is achieved by the nondegenerate
Lagrangian density

, G„„H—""—,M'C„—C—" C(d„B"—)

B(d„CI'—) + BC+P—(i e1 m —gB—)g,1

(4.1a)

DQED is super-renormalizable ~ and asymptotically
free. Since the fermion field P is massive, a well-

known decoupling argument ensures that the IR
behavior of the ful/ gluon propagator can be at most
as singular as (1.1).

In studying the IR structure of the physical
charged fields of DQED, we will apply the manifest
locally gauge-invariant formalism developed in Sec.
II for QED. This formalism has a straightforward
extension to DQED. In analogy with (2.16) one in-

troduces the fields

4(x;f)= exp ig f d'y f„(x—y)

XB "(y) .g(x), (4 3a)

@(x;f}=g(x) exp ig f d y f—„(x—y)

XB&(y), (4.3b)

where

Gq„=B~B„dQ~, —

Hpv =BpCv BvCp
(4.1b)

where f& satisfies (2.17). Let us denote furthermore

by 4„(x;n) and q„(x} the counterparts of %„(x;n}
and e„(x), respectively. Following, mutatis mu-

tandis, the calculation in Sec. III, one obtains for the
Fourier transform of

& B„(x)—(1 g)Od„d"B„=—Mj'„, (4.2)

with j& given by (2.4). Therefore the bare propaga-
tor of B& behaves like (1.1), and consequently

I

and M is a constant with a mass dimension. The
equation of motion for the field B&, following from
(4.1), reads

G'(x y;n)= —i {T4—,(x;n)4, (y;n}},
in the BN approximation, the result

00

G '(p;n) = i —dvexp[iv(up —m+i0)

+I(v;u;n )],
where

(4.4}

(4.5)

J(v;u;n)= ig2Mi f d—rii f 'dri2 f d4kIexp[iku(gi —riz)]Iu T&,(k;n)ui'T~(k;n)

X[g' —(1 g)k'k (k—+ie) ']E'(k;p) (4.6)

and E'(k;p) represents the Fourier transform of the Green's function of the operator CI . Among others (see,
e.g., Ref. 1), E'(k;p, } can be given the representation

E'(k;p, ) = w-lim [5(p e) ( k2 ie) 2+—s],—
s 0+ d5

(4.7a)

(4.7b)

where w-lim means the weak limit in P' (R }. The parameter p, with dimension of a mass, can take any real
value, so that E'(k;p) rather represents a one-parameter family of Green's functions. This situation occurs be-
cause the distribution {k +ie) is well defined only on (test} functions vanishing at k =0. E'(k~) stands for
the family of all causal extensions of (k +ie) that satisfy Lorentz invariance and the normalization condi-
tion (k )2E (kgb) =1, following from (4.2) with j& ——0. In coordinate space one has

E'{x;I ) =i (4m. ) ln
I

—X +lE
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(4.7c)

y being the Euler constant.
Equation (3.20) ensures the g independence of 6 (p;n) .Performing in (4.6) the integration in k, g„and r)2

(see the Appendix) one gets for n & 0, in the limit e~O,

P (un) —u n6 '(p;n ) = i —J d v exp ~ i v(up —m +i 0)— (4.8)
0 4m

with 13=g M /4n. . It is remarkable that 6 '(p;n) is free both from IR and ultraviolet divergences and is p in-

dependent. Furthermore, because of (3.2) and (3.21), [(un ) u—n ]/n & 0, which implies that (4.8) is well de-
fined. After the integral in v has been evaluated one is led to the following expression:

6'(p;n)= —imR(u;n}P '~ [exp[ n(up —m—) R(u;n) P ']]
&& I 1+erf[im'~ (up —m)R (u;n}P '~ ]I,

where
1/2

(4.9)

R(u;n)= n

(un }'—u'n'

and

erf(z) = J dt e

In analyzing the properties of G '(p;n) we first observe that, due to the exponential appearing in (4.9), it has
an essential singularity at P=O. Consequently, the corresponding perturbative expansion in P is not conver-
gent. However, as we are going to show now, it is asymptotic. In order to prove this statement we first derive
the explicit form of the just-mentioned perturbative expansion. It is easily obtained by expanding the integrand
in the right-hand side of (4.8) in powers of P, formally commuting the infinite sum with the integral and, after
that, performing the integration in v. In this way one gets the series

k

(up —m) ' g (2k)!(k!) '
(up —m) R (u;n) (4.10)

k=0 4~

The series (4.10) is obviously divergent. On the other hand, by using the asymptotic expansion formulas

x-'"exp( —x —') ~ 0,
x~0+

(4.11a)

erf(x ') ~ 1 —m '~xexp( —x ) g ( —1) (2k —1)!!2 "x
x—+0+ k=0

and (4.9), after straightforward manipulations one obtains

6'(p;n) ~ (up —m) ' g (2k)!(k!) '
(up —m) 'R(u;n) '

is~0+ k o 4n

which completes the proof.
It is worth stressing that (4.10}is not Borel summable. Indeed the Borel transform ' of (4.10) reads

(4.11b)

(4.12)

k

(up —m) ' g (2k)!(k!) (up —m) R(u;n) =(up —m) '
1 — (up m) R(u;n—)—

(4.13)

Although convergent for
~
P ~

&n.(up —m) R (u;n), it has a cut along the positive real axis with a branch
point at P=m(up —m) R(u;n) . Such a singular structure prevents the Borel summability of (4.10). The
singular behavior in P of DQED has to be contrasted with the case of @ED, where, in the BN approximation,
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the Green's function G(p;n) [see Eq. (3.30)] has a convergent power expansion around a =0.
Let us now consider the Green's function

9 '(x —y) = i—( Tq„(x)q, (y) ) .

Using the relationship

& '(p) =G '(p; n)
~ „

and (4.9) one gets

&'(p)= in—R(u;p)P ' (exp[ m(—up m)—R(u;p) P ']] [1+erf[i(up —m)R(u;p)P '~ ]) .

(4.14)

(4.15)

(4.16)

Clearly 9' '(p) has the same analytic properties in P
as G '(p;n).

It is instructive at this stage to consider the mass-
shell behavior of G '(p;n) and 9' '(p). Equation (4.9)
implies that G (p;n) is smooth in the limit (3.26).
More precisely

(up —m)G'(p;n)~0 forp ~m and up~m .

(4.17)

From (4.16) it follows that, in the complex p plane,
9' '(p) has a cut along the positive real axis with a
branch point at p =(m + u p)/u . Nevertheless

(up —m)9 '(p) —+0 for p —+m and up —+m .

(4.18)

Therefore, in the framework of the LSZ formalism,
the fields @„and q, and their Dirac conjugates have
zero asymptotic limit. This fact is another substan-
tial difference of DQED compared to QED, where

the fields e,'" and e,", which are the analogs of q,
'"

and q, ", are free spinor fields.

I

the Lagrangian of' gauge theories. The main result
is that the mass-shell behavior of the two sets of
fields is, in general, qualitatively different. There-
fore, in order to determine the asymptotic particle
content of the theory, one is forced to investigate the
IR behavior of the physical sectors.

A significant feature of the considered case with
confined charge is the singular behavior of the Borel
transform of the perturbative series for positive
values of the coupling constant. This behavior is
similar to the singular structure, signaled by instan-
tons, in non-Abelian gauge theories and implies
that the perturbative series is not Borel summable.
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V. CONCLUSIONS

The above analysis of Abelian gauge models is an

example of the complexity of the relationship be-

tween the physical charged fields, which necessarily
are nonlocal, and the basic local fields appearing in

APPENDIX

The integrals I(v;u;n) and J(v;u;n), defined by
(3.19) and (4.6), respectively, can be given the fol-
lowing parametrization:

V

I(v;u;n )=ig dpi dri2[u Io(iii —F12,u) —2(un )Ii(rii —F12,u;n )+n I2(gi —F12', u;n )],
0 0

V ~1
J(v;u;n ) = ig M dil—i dii2[u Jo(gi —ili,'u )—2(un)Ji(iii —q2,'u;n )+n J2(rii —gz, u;n)],

0 0

(Al)

(A2)

where

Io(ii;u)= J d4ke'"""(k +ie) '=i( 2)mr[(flu) —t'e]

J (il u) —J d4k e'"""E'(k;p)=i(4n)ln.12
4~

—2'Y

—( i )i+uie

Ii(g u'n)= J d4ke'"""(ku)(k +ie) '(kn+&e)

(A3a)

(A3b)

(A4a)
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Q,nd

J~(rt;u;n) = f dqk e' ""(ku)E'(k;p)(kn+ie) (A4b)

I2(ri;u;n )= —u I~(g;u;n ),
Bn"

Jq(q;u;n)= —u" J~(-rt;u;n) .a
nI"

(ASa)

(ASb)

Therefore one is left with the evaluation of I~(rt;u;n ) and J&(ri;u;n). Before performing this calculation, it is
useful to notice that, for any four-vector n, condition (3.2) leads to

(un) &u n

Furthermore, in the region n & 0 we are interested in,

(un) &u n &0,
which imphes

0&r(u;n) & 1,
r (u;n) being given by (3.23b).

In evaluating I&(rt; u;n ) it is convenient to represent it in the form

It(rt;u;n)= i —f d4ke px(ikuri)(k +ie) '(kn+ie)
dn

= —" f dt f d4kIexp[ik(ug+nt)]I(k +ie)
dg

Now the integration in k, being a Fourier transform, is easily performed and yields

I~(g;u;n)=i(2m) f dt[ (uq+tn—) +ie]
dg

Finally, taking into account (A6), one gets, in the limit @~0,

I((rt;u;n)=i(2~) [Zri (un)r(u;n)] ln
1+r(u;n).
1 —r(u;n)

(A6a)

(A6b)

(A7)

(Aga)

(A9)

The calculation of J&(rt;u;n) goes along the same lines, but it is slightly more complicated, due to the pres-
ence of E'(k;p). Using the representation (4.7a) one obtains

J~(g;u;n)= —lim 5(p, e) —f dt f dqk fexp[ik(urt+nt)] j( k ie) +— —
5~0+ d5

Performing the Fourier integral and the derivative with respect to rt, one is led to

(A10a)

J&(rt;u;n)= 2i(4~) —lim (4/p e) 5 f dt[(un)t+u rt][ (urt+nt) +i—e] ', (A10b)
d P 1+5)

dS r(2 —S)

which gives

J)(g;u;n)=i(4n)
2

ln +r(u;n)ln2 (un) l 1+r (u;n)
n uri +ie — 1 —r(u;n)

(Al 1)
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