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Inhomogeneous axial gauges are investigated chiefly in the framework of free-field

(Abelian) theory. According to the spacelike or timelike character of the fixed four-vector

and the nature of the coupling between the Lagrangian multiplier and the gauge fields,

these gauges involve 2, 3, 4, or even 5 degrees of freedom, of which only two are physical.

Gauges with 4 or 5 degrees of freedom involve an indefinite-metric formalism which is

built with some details in complete parallelism with relativistic gauges. It is shown that the

temporal gauges are not related to the Fermi gauge by a transformation A„'=A„+B„X.
The absence of Faddeev-Popov ghosts in the non-Abelian case is also discussed as well as
the nature of the (n k) singularities in the propagator.

I. INTRODUCTION temporal gauge is not related to the Fermi or the
Coulomb gauge by a transformation

Axial gauges A„'=A„+a„X. (3)

n A=O

where n is a given four-vector, are frequently used
in the framework of perturbative calculations in
non-Abelian gauge theories because the Faddeev-
Popov' ghosts decouple from the action. These are
generalized by inhomogeneous axial gauges which
are characterized by a gauge-fixing term

n.AKn A,1

2a
(2)

where a is a parameter and K is the Fourier
transform of a given function of k and n k. For
these inhomogeneous gauges, the ghosts are present
in the action but do not play any role in perturba-
tive calculations because any ghost loop contribu-
tion vanishes. Among these gauges, the case K =0
and a = —1 (planar gauge) is particularly interest-

ing and frequently used in QCD calculations be-
cause the propagator takes a very simple form.
Some difficulties are, however, present. '

The aim of this paper is to discuss these gauges
with respect to the number of independent variables
which are involved and to build up the appropriate
formalism for the free-field theory. Many little
known facts are illustrated. Among them, let us
mention (1) the (n k) singularities in the propa-
gator, which are free for spacelike n are fixed to the
principal values for timelike n (Ref. 6) and (2) the

When it is necessary, the indefinite-metric for-
malism is built with some details in complete paral-
lelism with the case of relativistic gauges. The
difference between the singular limit for a =0 with
different J."s which lead to the same propagator is

displayed and the absence of Faddeev-Popov ghosts
in non-Abelian theories is also discussed. We show
that the ghost part of the Lagrangian and the La-
grangian itself are both Becchi-Rouet-Stora (BRS)
invariant, so that the ghosts do not play any role.

We organize our work as follows. In Sec. II we
build up, with the help of a Lagrange multiplier, the
most general Lagrangian describing inhomogeneous
gauges and discuss the number of independent vari-
ables which are involved according to the different
values of the parameters. In Sec. III, we discuss the
Faddeev-Popov ghost problem. In Sec. IV, we
briefly attack the propagator-singularity problem.
In Sec. V, we build up a general formulation of the
indefinite-metric formalism, which is applied to
various particular cases. In Sec. VI, we discuss the
relation between different inhomogeneous gauges
and between them and the Fermi gauge. Finally,
we conclude with some remarks in Sec. VII.

II. GENERAL INHOMOGENEOUS
AXIAL GAUGES

Let us consider the axial-gauge condition (1). It
can be introduced inside the Lagrangian through
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the help of a Lagrange multiplier S,

W= —4F&„FI'"+Sn A, (4) g+h =b+c =0. (14)

and we may generalize the procedure by adding a
term involving only the S field,

W= ——F FI'"+Sn A ——aS4 pv 2 (5)

If we generalize further the procedure, the most
general free Lagrangian coupling the Lagrange mul-

tiplier S to the gauge field through n A is

,F»—F&—"+fSn
.A +g B&n A 8"S

+hn BSn Bn A +kSn Bn A

——,aS + , bB&S—B"S+—,c(n BS)2 . (6)

rr&=" =a(ay„)

F&+n&(g—BpS+hnpn BS+knpS},

Ils = =gBpn A +hnpn Bn A +bBpS
aw

(7)

We restrict ourselves to cases for which equal-

time quantization can be carried out, i.e., we take ei-

ther n =(1,0,0,0) or n =(O, n}. In both cases, we

have

The primary first-class constraints (12) and (13) im-

ply the secondary constraints

(f +gh)S —8"II"=0,

(f+gb, )Ao+ (bh a)S =0 .—

(16)

(17)

Except for the case a =b =c =f=g =h =k =0
for which the gauge is not fixed, Eqs. (12), (13),
(16), and (17) form a set of four second-class con-

straints and the number of independent pairs of
variables reduces to 3.

We will have only one primary constraint (12} if
g+h =0 but b+c+0. Then

A = —,
I
II

I
+ —,

I
8

I
II 8 A f—SA-

+gdkAodkS+ , aS'+
2 bdk—SdkS

If k+0, the constraints (12) and (13) are second
class and the number of independent pairs of vari-
ables reduces to 4. If k =0, (12}and (13) are first-
class constraints. In that case, the Hamiltonian
density can be written

I
II I'+

I
B I' fSA—o+gr)kApr)kS

+ —,aS + 2bBkSBkS —II 8"Ao . (15)

+cnpn BS . (8)
Equation (19) implies the secondary constraint

From Eq. (7), it is clear that, for n =(0,n), we will

have II =0 in contrast to the case n =(1,0,0,0).
These two cases must therefore be distinguished in
the following.

(1) n=(1,0,0,0):

gk Fk0

IIP=(g+h)ay +ks,
11,=(g+h)ago+(b+c)aP'.

(9)

(10)

rr' —kS =0, (12)

rI'=0 (13)

Except for particular cases, we can conclude from
Eqs. (9) to (11) that 5 independent degrees of free-
dom are involved with inhomogeneous axial time-
like gauges. The number of independent degrees of
freedom can be reduced if there exist some con-
straints between II, S, and IIs. In particular, we
will have two primary constraints:

(f+gb)S 8 II" —II =0-
b+c (19)

forming a second-class set. Again, the number of
independent degrees of freedom is equal to 3.

For timelike n, we have 3, 4, or 5 degrees of free-

dom. When only three independent pairs of vari-

ables are involved, the inhomogeneous axial gauges
are class II (Ref. 8) generalizing the temporal gauge.
This happens when no time derivatives are involved

in the coupling between the Lagrange multiplier
and the gauge field. If a time derivative of the po-
tential but not of the Lagrange multiplier is in-

which, with (12), forms a second-class set if k+0.
Again, if k+0, there are four independent vari-

ables.
If k =0, Eq. (12) implies the following chain of

secondary constraints:

II =0 ~(f+gh)S —8 II"=0~(f+gh)iis ——0

~(f+gh)[(f +gh)Ap —(a bh)S] =0—
(20)
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volved, 4 degrees of freedom are present and the
gauge is of class III and involves an indefinite-
metric formalism. We shall study it in the follow-
ing. If a time derivative of the Lagrange multiplier
is involved, 5 degrees of freedom are necessary and
this gauge does not fall into the usual classes. Here,
again, an indefinite metric is necessary. This can be
easily seen in the particular case of the Lagrangian
(6) with g= —1, a =b =c=f=h =0. The di-
agonalizing transformation

~o' l 1 —1 U

S ~p 1 1 V (21)

induces a wrong sign for the kinetic term of the V
field.

Let us recall that it is precisely in that case that
the self-energy is nontransverse in Yang-Mills
theory. This could be related to the fact that the
gauge does not fall into the usual classes.

IIs —g(n II —n BAo)=0 (25)

+—aS +—(n aS)2 2

Equations (22) and'(25) imply the following chains
of secondary constraints:

II =0 ~a"n =0 ~[f—h (n a)2]S =0,

IIs =0 ~ [f—h ( n a )~]H A

if b =g . If g+0, Eqs. (22) and (25) are second-
class constraints and 4 degrees of freedom are re-
quired.

If g =0, Eqs. (22) and (25) are first class and we
can write the Hamiltonian as

~=—,
(
II )'+ —, (B['—nkakW'+fsn A

+An BSn Bn A —kSn Bn.A

(2) n=(O, n)
Here, we always have a primary constraint

H =0

while

(22)

+[a —c(n a) ]S=o

~[f—h(n a) ](n n —n ado),
(28)

n k Fko+gn kag

n, = ga, n A+—bap'.

We can have a second primary constraint

(23)

(24)

which form a set of six second-class constraints.
Only two pairs of independent variables are in-
volved and the corresponding gauges are class I.

If b+g, there is only one primary constraint and

,
'

~

n ~'+-,' ~B~'—nkak~o+, (II,—gH rr —gH a~o)'+fSH A —gakn AakS
2(b —g )

+hn aSn an A —kSn an A+ —,aS + —,bakSakS ——,c(H aS) (29)

From Eq. (22) results the secondary constraint

a'n' — g, H a(n, —gn rl+gn. &o)=0.b— (30)

Equations (22) and (30) are second class if g+0 while, if g =0, the following chain of constraints is implied by
(22):

n'=O ~aknk=O ~H a[f—h(n. a)']S=O ~H. a[f —h(n a)']ns ——0

~H a[f —h(H. a) ]n.A=O n. a[f —h(n a) ](n II —n BAo)=0. (31)

This is a set of six second-class constraints reducing
to 2 the number of degrees of freedom.

The situation is similar to but simpler than that
in the timelike case. If a time derivative is involved
in the coupling between the Lagrange multiplier
and the potentials, 4 degrees of freedom are present.
As in the timelike case, it can be noted that an in-

I

definite metric is necessary. Moreover, since the
constraint (25) or (30) implies a spatial derivative of
Ao, the variable canonically conjugate to the pri-
mary constraint (22), the theory is nonlocal and
such gauges are again fundamentally different from
the usual gauges. If such a time derivative does not
occur in the Lagrangian, we are faced with the
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physical degrees of freedom only and there is no
essential difficulty as in the usual axial gauge.

III. THE FADDEEV-POPOV GHOSTS

is a symmetric operator.
Under the BRS transformation,

5A„=a„e +gfI,AI'er

(42)

5u;=P;~5coj, 8„5a)J=O. (32)

Before introducing the ghosts in non-Abelian

theory through BRS invariance, let us recall the re-
sult of the Noether theorem in a weaker form than
that usually used. Let =' mean equality when field
equations are used. The net result of the Noether
theorem is the following. Let W be a Lagrangian
depending on a set of fields u; and their first deriva-
tives B&u; submitted to the transformation

(43)

5g = nA—5A, , (44)

where 5A, , rl, g~ are anticommuting objects, we

have, since K is symmetric,

5S= f d"x 5&=—, f d x 5(n A Kn A )

= f d xn AK. 5n A (45)

Then,

5& =' Bp/'5''

with

Jl 5(5 )
v Jl

(33)

(34)

and the action can be made invariant if we add the
Faddeev-Popov ghosts term

SFp ———f d x (~Kn Dg ri~

= —f d'xg,'n Dgg&, (46)

where

5& =8 k"5a) (35)

The conserved current is then j/' —k/' instead of j/'.
This remark allows us to add to the Lagrangian
four-divergences or terms of the form n.Bg(x),
which could alter the variation of the Lagrangian
but not the conserved current. Adding such terms,
the Lagrangian (6) generalized to the non-Abelian
case becomes

(36)

If the Lagrangian is invariant, the current (22) is
conserved. Equation (33) is, however, more power-
ful than this particular result. We may indeed have
a noninvariant Lagrangian satisfying

g' =Kg (47)

,F&„F""+fS—n A +gd&n. A 8"S

+hn BS n Bn A +kS n Bn.i
——,aS S + —,bB„S B&S

+ , cn dS n BS—~ .g~n D.—

gal~~.

(4&)

The Euler-Lagrange equation with respect to g
reads

and the symmetry of K has been used.
This is the usual and simplest way to obtain the

ghost term. However, we want to work with a local
Lagrangian containing only fields and their first
derivatives. Including the ghost term, this Lagrang-
ian reads

where

l. =f—gH —h(n 8) +kn 8,
M =a+bCl+c(n. B)

(37)

(3&)

n.Dpq~ = 0

and, with the help of Eq. (42), it implies

5n A ='0.

(49)

(50)
Since the field equations with respect to S~ read

MS~ =Ln 'Aa,

we can write, when M is nonsingular,

W= ——Fp„F" +—n 3 Kn A

where

K =LM 'L

(39)

(40)

(41)

The transformation law of S~ is not specified. In
order to be in agreement with Eqs. (39) and (50), we

take

5S~ =0
and it can be seen that the particular transformation
of g~ does not play any role in the calculation of
5W up to the validity of field equations. We could
take
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='0 (52) IV. THE PROPAGATOR SINGULARITY

if the whole set of transformations [Eqs. (42}, (43),
(51), and (52)] is consistent with the definition of
the BRS current and canonical Poisson brackets or
commutation relations.

Since 5&='0,

ggn ~~
g a

a(a„A;)
'+ a(a„„) " (53)

=0, (54}

so that the time component of the conserved current

J' = 11."5A„+11„.5q

satisfies

[Jp(x),A„(y) j, y
——' —5A„(x)5' '(x —y),

(55)

jJo(x),ri~(y) j„» =' —5ri (x)5's'(x —y),

(56)

[Jo(x»& (y)jx =y = [Jo(x»Cab')j. =s =o

(57)

which are consistent with the assumed BRS
transformations. Let us remark that, for relativistic
gauges, the situation is quite different. The con-
sistency imposes the transformation law

5g. = —11.'5X .

Here, both the original and the Faddeev-Popov
Lagrangians are invariant under the modified BRS
transformations and the ghost term can strictly be
dropped out without destroying BRS invariance.

This is an important difference between our and
the usual formulation where a paradoxal situation
occurs. Indeed, ghosts are necessary to formulate
the usual BRS invariance (and consequently to
deduce Slavnov-Taylor' identities) while any ghost
loop vanishes as can be checked by a formal calcula-
tion.

independently of the transformation on g . From
the canonical Poisson brackets, we derive

I 5A „(x),A „(y)j„„=j 5A „(x),ri~(y) j„,=„,

= [5A„(x},gati(y) j„, s,

=[5' (x),A~(y) j„, ~,

= [5ri (x),ri~(y) j„, „,

We have already treated this probelm in a previ-
ous publication for some particular cases (axial
spacelike and timelike gauges, aoAO ——aS gauges,
timelike planar gauge). Our conclusion was that the
propagator singularity (n.k) is not fixed for
spacelike n while, for timelike n, the principal value
is requested. We refer to Ref. 6 for details and
summarize here only the main points which are also
generalized to any inhomogeneous axial gauge.

For spacelike n, II =0 is always a primary con-
straint so that Ao can never be an independent vari-
able. It is given by another constraint which is ei-
ther (25) or (28) or (30) or (31). All these equations
involve an inhomogeneous differential equation

n aAO ——X (58)

D„,(g =x —y) = (0
i
A„(x)A, (y) i

0),
we have

(60)

and

Dz„(g)= (0
~
Az(x)A„(y)

~
0)

= (0
i A„(y)A„(x)

i
0)

=D„„(—g) (61)

(0
~
[A„(x),A„(y)]

~
0) =2i ImD„„(g) . (62)

Since, in any case, as can be seen from Ref. 6 or
from Sec. VI, we have in [Ak(x),Ai(0)], a term of
the form

for which the Green s function is not fixed if boun-

dary conditions on Ao are not given. This indeter-
mination of the Green's function i's already present
in the canonical equal-time commutation relations
and is obviously carried over to the propagator.

For timelike n, the situation is quite different.
n a is an evolution operator and any differential
equation involving this operator sets an initial-value

problem instead of a boundary-value problem in the
spacelike case. In the free-field theory, commuta-
tion relations for any time can be obtained without
ambiguities from the solution of the Cauchy prob-
lem and equal-time commutators. Since the propa-
gator used in perturbation theory is defined as

D„„(x}=8(xo)(0
~
A„(x}A„(0)

~
0)

+0(—xo)(0
i A„(0)A~(x)

i
0), (59)

where A& is the free field, it is given without ambi-

guity. Indeed, if we set
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0
m

lCBkBi

where m is an odd number and C =C(b, ) is some
real constant or a real function of the Laplacian
operator, a term

1 & m
0

—,1Ca,a,
ixi

is present in (0
i
Ak(x)AI(0)

i
0). This term induces

a term

x p e(xp)
2 lCBkBl

in the propagator. Its Fourier transform gives a
principal value

1

k m+1
0

The use of field equations easily implies that there
is no corresponding real part in (0

i
Ak(x)Ai(0)

i
0}.

For timelike n, the principal-value prescription is
therefore unavoidable.

Our result is in contradiction with the conclusion
of a paper by Caracciolo, Curci, and Menotti. "
These authors compute the Wilson loop in the tem-

poral gauge and compare the results with those ob-
tained in Fermi and Coulomb gauges. They con-
clude that the principal-value prescription for the
propagator singularity in the temporal gauge is ex-

cluded and they add a nontranslational-invariant
term to the propagator. Owing to the absence of a

V. INDEFINITE-METRIC FORMALISM

Let us write

A&(x) =(2n. )
i f d k[a&(k)e

(I }elk'x] (63)

where A„(x) is assumed to be self-adjoint with
respect to a sesquilinear form to be defined later.
We note here that we cannot, in general, write

special gauge transformation between the temporal
and the Fermi gauges (see Sec. VI) we think that
such a comparison is dangerous. Therefore the con-
clusion of Ref. 11 could be changed into the impos-
sibility of comparing loop calculations (which are
gauge dependent) in gauges which are not related by
a special transformation. Also dangerous is the
decomposition of the potentials into longitudinal
and transverse parts. In the temporal gauge, in con-
trast to the Fermi or the Coulomb gauges 8'm' does
not commute with A;, so that the decomposition
into longitudinal and transverse parts is not a
canonical transformation leading to a separation be-

tween physical and nonphysical degrees of freedom.
In fact, both difficulties are related and this could
explain why the results of Caracciolo, Curci, and
Menotti are confirmed in Ref. 12 where the im-

plementation of Gauss's law in the temporal gauge
leads to a singular nontranslational-invariant propa-
gator.

3

A&(x}=(2n )
i f d k 8(kp)5(k ) g e&'(k)[a;(k}e k "+a; (k)'e' ]. '

i=0

Equation (64) is a plane-wave development specific to the Fermi gauge where Az(x) satisfies

QAq(x) =0 . (65)

We assume that a„(k) and a„(k) are, respectively, annihilation and creation operators satisfying the following
commutation relations:

[a&(k),a„(k')]= [a&(k),a„(k')]=0,
[a&(k},at(k')]=a&„(k)5' '(k —k') .

(66)

(67)

These commutation relations can be obtained in the following way. First, we solve the Cauchy problem and
use canonical commutation relations to obtain [A„(x),A„(0)] for any time xp. Second, we derive
(0

i A&(x)A, (0) i
0}according to the rules mentioned in the previous section and take the Fourier transform in

order to get Eqs. (66) and (67).
For relativistic gauges,

&q', (k) =—gq„8(kp)5(k ) —(1—a)8(kp)5'(k2)krak„. (68)
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For the gauge

n.Bn.A =a.S (69)

with timelike n,

k„k„—n k(k„n, +n„k, )

(n k) k—
5' k——,[krak„nk —(kqn„+nqk„)] ——,akqk, 5' '(n k)

k
(70)

while for the planar-type gauge with timelike n [Lagrangian (6) with g = —1,f=h =a =c =0],

krak„(1+b} nk (—nqk, +n„kq )

(n.k) —k

——,[k„k„(1+b)—n k(k&n„+n&k„)] 2k

~
k,p) =a&(k)

~
0) (72)

The value of a&„(k) for a general inhomogeneous
axial gauge could also be obtained but the particular
cases (70) and (71) are sufficiently illustrative to
avoid this straightforward but tedious calculation.

A one-particle state of polarization p and four-
momentum k is obtained from the vacuum by

k g=0. (76)

For such states and all the above a&„(k),

(g ~g) = —f d k 0(ko}5(k }g~(k}g„(k)

We define physical states by restricting the ad-
missible g by

(k,p (
k', v) = (0

~

a&(k}a„(k')
~
0)

=a„„(k)5' '(k —k') . (73)

8(ko)5(k )d'k
ko2

Then

i f. ) = f d k f"(k) ik, p) . (74)

(f ~g) = f d kd k'(k, p ~

f"(k)g"(k')
~

k', v)

= f d k f"(k)a„„( k)g"(k) . (75)

Equation (75) defines a sesquilinear form in the
one-particle state. This is the form with respect to
which 3& is assumed to be a self-adjoint four-
vector. It is clear, from Eq. (68) where a =1, that
(7S} reduces to the usual Gupta-Bleuler' sesquilin-
ear form when the Fermi gauge is used. It is also
clear that it is only in that gauge that we can speak
about unphysical states as longitudinal and scalar
photons, i.e., particles of zero mass. In all other
gauges, such an interpretation in terms of particles
is possible only for the physical states.

Such states, for any k and p, form a basis of the
one-particle space and, for any state

~
f) of this

space, we can write
&0.

On the subspace 4 ' defined by Eq. (76), the sesqui-
linear form is non-negative. If we define 4 ' as the
subspace of 4 ' for which

g=kh(k}, go —— ~
k~ h(k}

(78)
ko

the physical one-particle Hilbert space can be ob-
tained as A /A" completed with respect to the
norm induced by the sesquilinear form. Such a
construction is well known, as is the construction of
the Fock space, and can be found in any textbook'
for the Fermi gauge. It is sufficient to make the re-
placement

(79)

to generalize the results to any indefinite-metric
gauge.
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Less known is the relation between Eq. (76) and
the Maxwell equations. Let us first work with rela-
tivistic gauges for which the field equations are's

and, for a+0,

(OIn BS Ig)=0~k g=O. (91)

d"F„„+"d,S =0,
B&A@——aS .

(80)

(81)

Moreover, the transformation (84) with

X(x)=—,'(a' —a) f d'y Ixo —yo I5"'{x—y)S{y)

(92)
Since classical Maxwell equations must be valid be-
tween physical states, we impose

(82)

changes the gauge a into the gauge a' as can be
checked at the level of field equations and commu-
tation relations for any time,

which, in a gauge different from the Landau gauge
(a+0), is equivalent to

('{('phys I
~ Ais I fphys & =0

In particular,

(0
I
s)"A„

I g ) =0 k g =0

(83)

and so is the relation between Maxwell equations
and Eq. (76) established for a+0 gauges. For the
Landau gauge, following Lautrup, "we use the ex-
istence of a gauge transformation

A„'=A„+a„x, S'=S,
X= —,(a' —a)b, '{xoBoS——,S)

(84)

(85)

between two relativistic gauges characterized by the
parameters a and a'.

Because S is invariant and satisfies

[Aq(x), S(0)]=iBq[xo5' '{x)],
[S(x),S(0)]=0,

Xp
[A&{x),Ao(0)]= —iaB&i)o 5' '(x)i'

~m~n
[A (x),A„(0)]= i g—„+ D(x)

+ ~m~n4n'

Xp—iaB 8„,5' '(x)

(93)

(96)

[S(x),S(0)]=0, (86)
The invariance of S and Eq. (94) will assure Eq. (91)
also for a =0.

it is clear that (0
I
S

I g ) =0 does not depend on the
particular sesquilinear form which is used to deAne
it. Therefore

(OISIg)=0~k g=O, (87)

which is true for a+0, is also true for a =0.
The same reasoning can be repeated mutatis mu-

tandis for inhomogeneous axial gauges. From the
Lagrangian (6) with f=g =b =c =0, h =1, for in-
stance, the field equations are

VI. RELATIONS BETWEEN DIFFERENT
GAUGES

In the previous section, we already discussed the
relation between gauges characterized by different
values of the parameters a. Here, we will discuss
how gauges of different types are related. In partic-
ular, we will try to relate the three gauges character-
ized by a =b =c =0 and, respectively, f=g =0,
h=l, f=h=O, g= —l, g=h=O, and f=l, bya
gauge transformation

d"F&, n„n dS =—0, . (88) Ap ——Ap+BpX . (97)

n.Bn A =aS . (89)

Here (timelike n),

(OI n.A Ig) =(2m. ) f d kg'(k)n"
n sn A( k) ik x. .
pv

(90)

These three gauges give rise to the same propagator.
Before discussing this point, we will show that

the Fermi gauge and the i)oAo ——0 gauge cannot be
related by a transformation (97). Let primed quan-
tities be those of the BoAo gauge while unprimed ob-
jects are those of the Fermi gauge. According to
Eqs. (79) and (88),

n„(n B)S'=—B,S .
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This implies

(n a)'s'= —os
which are both equal to zero but also

(99)

is also not unique.
In the same way, the field equations and commu-

tation relations from the Lagrangian (6) with
a =b =c =f =h =0, g = —1, are

and

-n aS=n as (100) B„F„'„—n S'=0,
Hn A'=0,

(110)

(n a) S=O. (101)

a"I'q„+n„s =0,
nA =00

while commutation relations for any time are

[A q(x),A o(0)]= [S (x),S (0)]=0,

(102)

(103)

(104)

[Ak(x),At (0)]= i gkt+— D(x)

Equation (101) is clearly incompatible with a non-

vanishing Poincare-invariant S.
The same result can also be obtained from propo-

sition 2.2 of Strocchi and Wightman. ' Equation
(70) does not take the particular expression needed
for a relation by Eq. (97) between this gauge and the
Fermi gauge. Let us also remark here that the tem-

poral gauge differs from the Evans-Fulton' gauge

although the propagators are the same.
Let us now relate the gauge aoAo ——0 to the tem-

poral gauge Ao ——0. In this last gauge, field equa-

tions are

[Aq(x), A o (0)]= [S'(x),S'(0)]=0,
Xp

[A„'(O),S (0)]=ia„f D(x, t')dt,

(112)

(113)

[Ak (x),A/ (0)]= i g—kt+ D (x)

l Xo
+4 aa-

47r
(114)

We can go from this gauge to the aoAo ——0 gauge by
a transformation

with

A„=A„'+B„X,
n.BS=C3S'

(n a)2X= —n an.A'.

(115)

(116)

(117)

Equation (117) again does not possess a unique solu-

tion since, with

X(x)=——,
' I d ye(xo —yo)5' '(x —y)n.A'(y)

+a S'(y), (118)

l Xo
+4 akat

4n

[S'(x),A„'(0)]=—ia„a"'(x) .

(105)

(106)

Corresponding quantities in the aoAo ——0 gauge are

given by taking a =0 in Eqs. (88), (89), and (93) to
(96).

The transformation

we can recover the correct field equations and com-
mutation relations of the aoAo ——0 gauge for any
value of a.

Nonuniqueness of the transformation between
these different gauges is related to the fact that dif-
ferent numbers of degrees of freedom are involved.
Moreover, none of these gauge conditions fixes
univocally a representative for the system.

A~ ——Ap+ BpX,

S'= —n as'

(107)

(108) VII. CONCLUSIONS

with

X(x)=——, I d'y e(xo —yo)5"'(x —y)n A(y)

(109)

allows us to go from the aoAo ——0 to the temporal
gauge. Such a transformation is however not
unique since we can add to X defined by Eq. (109) a
term an. BS and get the correct field equations and
commutation relations. The inverse transformation

We have discussed, from the point of view of
free-field theory, many properties of inhomogene-
ous axial gauges which are free of Faddeev-Popov
ghosts in non-Abelian Yang-Mills theory. These
gauges offer a large choice of different kinds of
theories, from a theory with only 2 degrees of free-
dom to a theory with 5 independent degrees of free-
dom. For spacelike n, 2 or 4 degrees of freedom are
requested depending on the absence or the presence
of a time derivative in the coupling of the gauge
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condition with the Lagrange multiplier. The case
with 4 degrees of freedom is a nonlocal field theory
affected with an indefinite metric and has not been
studied further. This singularity may be at the ori-

gin of some difficulties with these gauges. The
timelike case is always a local theory with 3, 4, or 5
degrees of freedom. Theories with 4 or 5 degrees of
freedom are indefinite-metric theories for which we
have developed a general formulation whose

Gupta-Bleuler formalism is a particular case adapt-
ed to the Fermi gauge. There is no ambiguity in
fixing the propagator singularities in these timelike

gauges. We have also shown that a sometimes used
transformation between the Fermi and the timelike

general axial gauge does not exist while the relation
between the different types of inhomogeneous axial

gauges is not univocally fixed. These conclusions
are not affected by the presence of an interaction.
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