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It is known that the Schwinger-Dyson equation for the electron propagator S(p) in quan-
tum electrodynamics is linear if the full vertex in this equation is approximated by a special
form (the longitudinal vertex) which satisfies the Ward identity and which yields exact re-
sults in the infrared regime. However, the approximate equation cannot be multiplicatively
renormalized (nor is it properly gauge covariant) using only the longitudinal vertex. In the
present work, we construct a transverse (i.e., identically conserved) vertex which, when ad-
ded to the longitudinal vertex, yields an equation for S(p) which remains linear and exact in

the infrared, but which is multiplicatively renormalizable and gauge covariant. In the ultra-
violet regime, the equation gives the known results of renormalization-group-improved per-
turbation theory. The essential difficulty which is overcome by the present analysis is that
of overlapping divergences, which are mishandled if only the longitudinal vertex is kept.

I. INTRODUCTION

It is no news that the main difficulties in using
Schwinger-Dyson (SD) equations are their non-
linearity and lack of an adequate scheme for trun-
cating the infinite set of equations. Remarkably, in
gauge theories there is an approximation to the
fermion —gauge-boson vertex which is exact in the
infrared and which removes both the above hin-
drances at one stroke for the fermion propagator. '

The approximation method, called the gauge tech-
nique, expresses part of the vertex in terms of the
fermion propagator in such a way that the Ward
identity is exactly satisfied [see Eqs. (I)—(3) below].
This part of the vertex, called the longitudinal ver-
tex, is exact in the infrared limit of vanishing
gauge-boson momentum. The remaining part —the
transverse vertex —is identically conserved and must
therefore vanish at least linearly in the gauge-boson
momentum when this quantity is small. When only
the longitudinal vertex is used in the SD equation
for the fermion propagator, this equation becomes
both linear and self-contained.

The main problem with the gauge technique is
that, while correctly yielding the infrared behavior
of the propagator, the ultraviolet behavior is in-

correct, and, in fact, the gauge-technique SD equa-
tion is unrenormalizable due to the improper han-

dling of overlapping divergences. Moreover, the
propagator does not have the correct gauge-
transformation properties in the ultraviolet re-

gime, ' a problem closely related to the lack of re-
normalizability.

In the present paper, we propose a solution to
these problems for quantum electrodynamics (QED)
by constructing an approximate transverse vertex to
all orders of perturbation theory. A similar treat-
ment for non-Abelian gauge theories, such as quan-
tum chromodynamics, will be given elsewhere. We
study QED in the absence of fermion loops and are
concerned with only the leading logarithmic effects
in the IR and UV regions. Within the context of
our approximation, we shall show that the trans-
verse vertex can be represented by a simple form
which is generalized to all orders in perturbation
theory, that when this transverse vertex is included
in the kernel of the SD equation, the SD equation is
still linear, and that this effective kernel obeys a
simple power law. Renormalization is demonstrated
such that all the overlapping divergences are re-
moved, leaving a cutoff-independent equation whose
ultraviolet behavior is that of renormalization-
group-improved (RGI) perturbation theory. The
mass term for the full electron propagator yields
two solutions, both with the bare mass vanishing in
the limit of infinite cutoff. The first describes chiral
fermions with no mass term, and the second yields a
mass term, showing chiral-symmetry breaking in the
Baker-Johnson-Willey sense.

We now possess a propagator which is exact in
the infrared (i.e., near the mass shell) and behaves as
expected for the ultraviolet regime in QED with a
fixed point. This does not guarantee that the ap-
proximate propagator, which solves the linear SD
equation, is close to the exact propagator in the
intermediate-energy regime. Nevertheless it is
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reasonable to hope that a smooth joining of exact ul-
traviolet and infrared results —which is what the
linear SD equation accomplishes —will not depart
too far from the truth at middle energies. What we
claim to have done here is produce a linear SD equa-
tion which treats correctly both momentum regimes
where the characteristic QED expansion parameter
a ln(1 —p lm ) (p is the fermion momentum, m its
mass) is large; where it is not large, our equation can
be systematically iinproved by adding a few terms
based on comparison of perturbation theory to the
linear equation.

II. THE TRANSVERSE VERTEX
AND SELF-ENERGY KERNEL

In the gauge technique, one writes down a spectral
representation for the full fermion propagator and
the full vertex function using the same spectral den-
sity for each, such that the vertex satisfies the Ward
identity. That is, if

(p —p')~I„(p,p')=S '(p) —S '(p') .

Unfortunately, this approach specifies only the
longitudinal part of the vertex, leaving the trans-
verse part unknown. As we have noted, the trans-
verse vertex must vanish like q =p —p' near the fer-
mion inass shell (p=p'=m), thus yielding no lead-
ing contributions to the IR behavior of the propaga-
tor. This is because a conserved vertex has the
kinematical structure io&„q" or q~ q —p&q, etc.,
and there are no massless particle poles to eliminate
the powers of q. However, this power of q is impor-
tant in the UV, and understanding the nature of the
transverse vertex is the key to resolving the problem
of the overlapping divergences and the renormaliza-
tion of the SD equation.

When Eqs. (1) and (2) are used in the Schwinger-
Dyson equation for the renormalized fermion propa-
gator, and the photon propagator is given by

krakD
|MV gjLCV

S(p)= dw
p(w)

p —w+ie(w)ri
'

then (from now on our i' prescription is under-
stood)

S(p)I'„(p,p'}S(p')—:fdw p(w) y„
1 1

P —W P —W

(2)

satisfies the QED Ward identity

the SD equation takes the linear form

(p —mo)S(p) =Z2

+fdwp(w) XL(p, w) . (4)
1

Here XL (p, w) is the one-loop fermion self-energy for
a fermion of mass w and is independent of p. The
subscript I. reminds us that only the longitudinal
vertex has been used in the SD equation. Ignoring
the nonlogarithmic contributions,

a A
XL (p, w) = f dP[(4 —g)w —2(1 —g)(1 P)p] ln-

4n' 0 w2 —(1—P)p~

A2 2 2 2 2
=(4—g) w ln + ln

4~ "N2 p2 W2

p2 4 p4 2 p2—(1—g) p ln + In
4m ~2 p4 N

(A—:UV cutoff) .

The w integrations in (4) are such that the IR
(p=m} support comes from the region w=m. Thus
in the infrared we write p =w,
p w=(p w)(p+ w—)=2w (p —w), and X—L
behaves as

When UV problems are ignored, XL as given in
(5) or (6) yields the correct exact infrared behavior at
the propagator. To see this, remove the pole term in
the spectral density by writing

XL, (p, w)= ln
2 +g (p —w}ln

3aw A a A

4m ~2 4m. W

W2 2—(2+/) (p —w) ln
2m W

(6)

p(w) =5(w —m)+o(w) . (7)

Then, using Xz as given by (6) in (4), carrying out
a straightforward mass renormalization using
the lowest-order perturbative result mo ——m
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(3—aml4m}lnA lm2, and taking the imaginary
part of the resulting SD equation, we arrive at

(w —m)e(w)(r(w) =—(2+() -8(w —m )
277

3(x
me(w)o(w) lnw /m

4m'

—(2+/} fdry'o(w')
2%

FIG. 1. Diagrammatic representation of the self-
energy kernel X of the linear Schwinger-Dyson equation,
in terms of the longitudinal and transverse vertex func-
tions.

X8(w —w' ) .

The second term on the right-hand side of (8) is
an ultraviolet effect (it diverges for large w and
vanishes as w ~m ). If we omit this term, then (8)
yields the solution

(r(w) =—(2+() 2' W —m

2 2
—(2+g')+/2

X 8(w —m }.
W

(9)

[Compare this to (28b} and the resultant propagator
given by (31b).]

The infrared behavior predicted in (9) is correct.
If one attempted to include the UV contributions in
(5) or (8), the SD equation would yield the correct
0 (a) propagator, but any attempt to go beyond this
in a self-consistent way would yield a cutoff-
dependent propagator, due to the appearance of
overlap logarithms of the form

p2 2 2

a ln ln +O(a ),
m m

which are not removable by multiplicative renormal-
ization (i.e., Z2 ' would necessarily be momentum-
dependent). Using only the longitudinal vertex in
the SD equation leads to a mishandling of overlap-

ping divergences.
Recognizing that the vertex given in (2) is incom-

plete, we proceed to improve the SD equation such
that it also yields the correct RGI UV behavior. We
will construct a transverse self-energy kernel

Xr(p, w) ("transverse" since it is due to the trans-
verse vertex) such that, when the full self-energy
kernel X—:XL +XT is used in place of XI in Eq. (4),
the resulting SD equation is correctly renormalized
while remaining linear in p. (X is shown schemati-
cally in Fig. 1, where the photon line is a free co-
variant propagator, and the fermion line is a free

propagator of mass w. )

To show this we resort to perturbation theory in
powers of a. Transverse effects first appear in the
fourth-order [O(a )] self-energy, or in the second-
order vertex. Define the second-order transverse
vertex as

T(2)(p

pl�

)A(2)(p pl )AL(2)(pp I ) (10)

A„(m, m)=0, w =p=m, (loa)

which is consistent with Z& ——Z2 when the vertex
and propagators are renormalized on-shell.

We have calculated A&' ' as defined in Eqs. (10)
and (10a), and discuss details in the Appendix. We
should also mention at this point that recently Ball
and Chiu have calculated the second-order longitu-
dinal and transverse vertex in QED. They use a
similar ansatz of solving the Ward identity to define
a longitudinal vertex, though our A&' ' differs from
theirs by a transverse piece. They present the trans-
verse vertex in much more detail than we do (in our
appendix}, breaking it down to one common scalar
Feynman integral and writing it in terms of mani-
festly conserved forms. However, our interest in the
vertex is motivated by the linear SD equation and
we are more concerned with the UV and IR limits
with an eye towards generalization to all orders, so
we give as an alternative an effective transverse ver-
tex which retains two important properties of the
true transverse vertex: the correct UV behavior and
the infrared condition (10a). Our effective trans-
verse vertex is given by (q =p —p')

A&
' is the renormalized second-order Feynman ver-

tex and A&' ' is the second-order longitudinal vertex
as given by the gauge technique. The kinematical
structure of A& is such that it must vanish at least as
fast as q =p —p' when q~0 (e.g., A„-o„,q") All.
leading infrared effects are contained in the longitu-
dinal vertex. To avoid the possibility of spurious
kinematical singularities in the transverse vertex as
q~O, we regulate A„as given by (10) with the
mass-shell boundary condition
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A "(p»p') = , [—(1 k—)(p'r, p p—r,p')+ , (—4 k—)w [» r, l I&'"(p p'»

da)da2dai5(1 —g a;)(1—ai)
(2)K (pp )=2

2 2 i2 24~ (1—a[)N —aia2p —a)ai p' —a2a3q

Far off-shell, —p &
2 » —p &

2 »m 2, w
2 »m 2,

where p =p if
~ p ~

&
~

p' ~, and vice versa, we
find

E"'(p,p')= ( —p, ) 'ln[( —p, ')/( —p, ')] .
(12a)

Note that for the p =p', q =0, the term in curly

brackets in (ll) vanishes while I(. ( '(p,p') is regular

on-shell: p =w =m . There is thus no infrared

logarithm in (11). [However, this effective trans-

verse vertex yields an incorrect gauge-dependent

anoinalous magnetic moment. It is straightforward

to modify the coefficient of E' '(p,p') in (11) such

that our effective transverse vertex is correct in the

UV and reproduces the correct anomalous magnetic

inoment. The resultant function is modestly more

unwieldy than (11), and, for our purposes, unneces-

sary. ] Calculating X'r '(p, w), we find

X(4)( )
~ 2f d q g+gq q—"/q )

(2n. ) q'

X A~ (p p —q) y
1

P q —w

[(4—g)w —(1—g)p]
3 a
2 4m

A
)& ln (13)

W —P

f«p «w »m . This makes explicit the leading
logarithms in the ultraviolet coming from
Near-shell, X'T'(p, w) is

W2 2

0 a'ln
N

which is nonleading. The leading ultraviolet loga-
rithms contain an overlapping ( —lnA lnp ) diver-

gence.
We have continued our study of Xr through sixth

order. No straightforward definition of the fourth-
order transverse vertex has been found that relates
A„' ' to the full vertex and the gauge-technique
longitudinal vertex, while preserving a linear SD
equation. The straightforward generalization of
(10)—that A&' ' is the difference between the full
fourth-order vertex and A„' '—Noes not work. This

is to be expected, though, since through the SD
equation and the gauge technique, the fourth-order
longitudinal vertex remembers" the second-order
transverse vertex, thus obscuring the definition of
A&' '. That is, the sixth-order fermion propagator
as given by the right-hand side of the SD Eq. (4) de-

pends not only on the sixth-order self-energy kernel,
but also on a convolution of the fourth-order spec-
tral function with the second order XL. We have
corrected Xl. by adding the transverse contribution
XT . Thus the fourth-order p already contains some(4)

transverse information.
These sixth-order calculations do tell us how to

fix up (4) such that it does renormalize correctly.
This, in turn, gives us a clue as to how to construct
the transverse vertex. We find, with E( '(p,p') as
given in Eq. (6), that a useful fourth-order transverse
vertex A„' is found by substituting I(.(~) in the
right-hand side of (11),where

I:"'(p»p')= 2 f d—P)dP2dPi
4m

X5(1—XP; )(1—P) )

X&"'(~Ppp, ~Ppp') .

(14)

This form is valid in the UV, and as E' ' has no
leading IR singularities, IR difficulties generated by
(14) will be less than leading. In general,

It-(2n+2)(p pi)

=(—1)"2 fdp, dp2dp36(1 —Xp;)(1—p, )
3a
4m

XE' "'(y P,p, ~P,p') . (15)

Of course, there is no reason to expect the kinemati-
cal form of A&

' '(p,p') to be retained order by order
in perturbation theory, but this suggests defining a
full transverse vertex A&(p,p') with the same
kinematical structure as AzT( '(p,p'), and with
E (p,p') satisfying the integral equation
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K(p,p') =IF' '(p,p') —2
4m'

X fdp(dp2dp35(1 —X p;)(1 —p))

—p' » —p »w, (16) can be solved by iteration
beginning with the asymptotic form (12a) to yield

&(p,p')=—1 1 "
( —1)" 3a

3 P'~
n 1

n! 4n.

X&(V I32p, ~Pqp'), (16)
X {in[(—p')/( —p')] I" .

(17)

where K' '(p,p') is given by Eq. (12). The
remainder, A& —A& —A&T, is less than leading in both
the IR and UV. Then, far off-shell,

With A„as defined above, we calculate XT(p, w)
in the UV ( —p »w ), using p' as the integration
momentum:

XT(p, w):ie —f Di"(p —p')A (p,p'), y„(2m)'

=——,[p(l —g) —w(4 —g)] f n=1
'n+1

= —,[p(1—g) —w (4—g) ] g (n + 1)! 4a

' n+1

n+1
A

n

ln ~

(18)

p p(O) +p(2) +p(4) +p(6) + ~ ~ ~

X(2)+X(4)+X(6)+.. .

mo ——m —5m —5m —5m(2) (4) (6)

(19)

Here D&„ is the free gauge-covariant photon propa-
gator and we have rotated p' to Euclidean space to
do the angular integrations. Divergences have been
regulated by the introduction of a momentum cutoff
A and only leading logarithms have been kept.

When XT(p, w), as given by Eq. (18), is added to
XL, (p, w), as given in Eq. (5), and the resulting com-
bination used as the self-energy kernel of the linear
SD equation (4), the leading logarithmic contribu-
tions to S(p) are renormalized by Z2

' and the resul-
tant terms yield the leading UV behavior of S(p)
without disturbing the already correct IR behavior.

We have extended our analysis in the UV by look-
ing for a form of XT which has the UV behavior
given in (18), but also exactly renormalizes our im-
proved SD equation. This is possible because, with
renormalizability as a constraint, the UV form of
the nth order SD kernel X is dictated by the form of
X and p at orders less than n. For example, consider
the following expansion in powers of a. We write

dwp' '(w)
5 (2) dwp' '(w) 5m' '

p —m +5m
p —w p —w p —m

1=Z " '+ dwp' '(w) X' '(p, w)—W

+ X' '(p, m) . (20)
1

We know X' '(p, w) =XL (p, w) as given in Eq. (5) ex-
actly. XL contains not only the leading logarithm
a ln(A / —p ), but also leading logarithms reduced

by powers of w /p . Since we can solve for the
second-order propagator exactly, we know p' ' exact-
ly. Thus we can do all the integrals involving p' ' in
(20), which will result in cutoff-dependent terms of
the overlap type. The cutoff dependence must be re-
moved by the mass and wave-function counterterms
in a manner consistent with multiplicative renormal-
ization, and hence a minimal form of X' ' is speci-
fied to remove overlapping divergences. We have
used this procedure through sixth order in the self-
energy kernel and find that this renormalization is
essentially effected by the replacement of
[ln(A / —p )]"in Eq. (18) with

1 Afdpln 2 2w' —(1—P)p'

where the superscript denotes the order of the ex-
pansion, e.g., p' ' is O(e ) or O(a ). Of course, p' '

is just the pole term 5(w —m). Collecting fourth-
order contribution to the SD equation, we find

(up to polynomials in P in the integrand). Note that,
with this form, the logarithms in X7 have the same
branch structure as those in XL . Then, with the def-
inition
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X(p» w }=XL, (p~ w ) +X T(p~ w }

=—pA(p, w )+wB(p, w ),
A and 8 are given by

(21)

dependent.
Equations (21} are the main result of this paper.

When used in the linear SD equation, (21a) yields an
improved UV behavior over our previous leading
logarithm result given in Eq. (18). In the following
two sections we use X(p, w) as defined in Eqs. (21) in
the SD equation, demonstrate renormalization, and
then give the resulting solutions for the spectral
function p(w} and the propagator S(p).

B(p,w )

=-, (4—g)

X l— A

w —(1—P)p

' —3a/4e

(21a)

A(p-', w )=—2(1—g)
4m

' —3a/4m
1 A

0 2 (1 P) 2d 1—

plus nonleading logarithms as below (13), for —p
or w &&m . Notice that the leading term in X is
exactly XL as given in Eq. (5). For p =w =m2,
these reduce to

III. RENORMALIZATION

These forms (21a) and (21b) have been explicitly
verified using perturbation theory through sixth or-
der. However, a simple calculation shows renormal-
ization to all orders.

When X as given in (11) is used in place of XL in
(4), it turns out that the SD equation is manifestly
cutoff independent. To show this, separate the SD
equation into Dirac even and odd parts:

fdw (p —m w)
p(w)

p —w

=Z2 '+ fdw [p A(p, w )
p —w

1 A
X f dP(1 —P)ln

w —(1—P)p
(21b)

fdw 2 2(w —mo)
p(w)

p —w

+w B(p,w )], (22a)

AB(p,w )=(4—g) f dPln 2 2
.

4m o w2 —(1—P)p2

That is, near-shell, X(p, w)~XL (p, w) [see Eq. (5)].
Note, incidentally, that the familiar power 3a/4m
appearing in these equations is gauge- (that is, (-}in-

=fdw, 2 w[A(p', w')+B(p', w')] .
p —w

(22b)

Consider (22b) first. When (21a) is used in (22b),
we have

mo fdw, , = —, f dP[4 —g—2(1 —g)(1 P)]fd—w, , w
p2 —W2 3 p p —w

A
w' —(1—P)p'

' —3a/4n

(23)

mp ——0, p(w)=p( —w) . (24}

The spectral density p has the dimensions of in-
verse mass and must vanish like 1/w (up to powers
of logarithms) in the UV. Since all the w integra
tions are UV finite, renormalization simply requires
(A } mo be finite as A —moo. (Note that the
power —3a/4~ is gauge independent. ) This admits
two solutions.

(1) If, as A ~ oo, mo vanishes faster than
(A ),then we see the simple chiral solution

From the form of the spectral function (1), we see
that no mass part of the propagator exists, mo ——0,
and the fermion remains massless.

(2) If (A )
~ mo is finite as A —+oo, we see the

realization of Baker- Johnson-Willey QED. ' To
avoid IR problems, we choose a Euclidean renor-
malization point p = —p such that

' 3a/4m
A

mp ——m =—physical mass
p

as A~~ oo. Then (23) becomes
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P —W

2
' 3a/4m.

w —(1—P}p2

p 2

mfdw P
P —W

= —, f dP[4 —g —2(1—g)(1 —P)]

really a scalar vertex, and vertices have no
overlapping-divergent skeleton graphs.

Renormalization of (22a) is not as obvious due to
the presence of overlapping divergences. The w in-

tegral on the right-hand side of (22a) also diverges
for large w. However, using (22b) in (22a) and sub-

tracting at p = —p subject to the renormalization
condition that S '=p —m for p = —p, , namely

p(w)
mofdw i &w-

P —W

Pl pal

P +Pl
= ——, f dP[4 —g —2(1—g)(1 —P)]

Thus, although mo vanishes as Ai~ oo, (23) admits
a solution such that the renormalized fermion prop-
agator has a mass term. This simple renormaliza-
tion of the mass term happens because this term is

I

yields

P —W
(26)

p2 A
X dWP W -2 2

p —w w —(1—P)p

' —3a/4~
p

2

P +W

' —3a/4m
A

w +(1—P)ju

+ —,(4—g) f dP fdw p(w)
A

w —(1—P)p

' —3a/4m
A

w'+(1 —P)p

' —3a/4m

This is now a homogeneous equation and the cutoff
may be removed by our definition of mo. Since p(w)
must vanish like I/w for large w, all the integrations
are UV finite, thus demonstrating the removal of
overlapping divergences, and hence, the renormali-
zation of the SD equation.

8(w~ —m~)

' (1—g')a/4~

o(w)=(1 —g) 4n/w
/

.m'
' —(2+)')a/4n

(2 4)
a e(w) w'

W2 ~2

IV. SOLUTIONS X8(wi —m ), w »m (28a)

Equations (25) and (27) can be solved for the spec-
tral density p to leading logarithmic accuracy, for
w »m and w=m. [Recall the discussion follow-

ing Eq. (21) concerning the UV and IR limits of the
self-energy kernel. ] Perhaps the simplest method of
solution is to separate the pole term from p as be-

fore, defining p(w)=5(w —m)+cr(w), and then to
recognize that cr can be further separated into two

parts, o, and O.„respectively even and odd in w.

Then, after taking the imaginary parts of (25) and
(27) and expanding everything in a perturbation
series in a, (25) and (27) become essentially a pair of
simultaneous algebraic equations for o, and cr„
which can be solved iteratively. Alternatively, in-

stead of making a perturbative expansion, one can
leave the resummcd structure intact, in which case
(25) and (27} can be converted into a pair of coupled
integrodifferential equations.

We find that the part of o which contributes to
the UV propagator is given by

That part of cr which contributes to the IR propa-
gator is slightly more complicated, as we need to in-

troduce an IR regulator mass to the w integrations, 9

or to define the w integrations by subtraction. With
the latter approach we find

o(w)= —(2+() a e(w)
2' W —N2

2 2
—(2+g')a/2m'

X 8(w —m2),
Pfl

w=m (28b}

up to subtraction terms.
Exact solutions for intermediate energies are not

available.
These solutions are predicted on the following

forms of the wave-function renormalization coeffi-
cient Z2 ' and the bare mass mo..
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Z2
A

' (1—g')a/4m

(29a)
The ultraviolet results are those of RGI perturbation
theory for QED with a fixed point.

mo ——m

' —3a/4n'
A

(29b)

S(x,g) =(A'x')-'&-&' i4"S(x,g'), (30)

where A is the UV cutoff. This requires a redefini-
tion of Zz to remove the cutoff dependence of the
gauge-transformed propagator, which is consistent
with (29a}.

Finally, using p(w) from Eqs. (28) to calculate the
fermion propagator gives the standard' results

2ym 2)(1—g)a/4a.

S(p)=
p —m

—3a/4n

X p+m—
m

The inclusion of the transverse vertex has yielded
the gauge-covariant form of Zq

' as given above.
Since the fermion propagator is multiplicatively re-
normalized by Z2 ', the renormalized propagator
will have the correct gauge-transformation proper-
ties (at least to leading logarithmic accuracy). That
is, if S(x,g') is the renormalized fermion propagator
in coordinate space calculated in the gauge g', then
the coordinate-space propagator in another gauge g
is given by

V. CONCLUSION

We have shown that, in spite of the very compli-
cated nature of QED over the full spectrum of fer-
mion energies, the Schwinger-Dyson equation can be
cast in the form of a linear, inhomogeneous integral
equation which contains the correct leading physical
effects for IR and UV energies. The equation is
such that all cutoff dependence can be removed pri-
or to solution without resorting to an order-by-order
expansion in a, and the resulting equations are finite
and can, in principle, be solved nonperturbatively.

This work was motivated by the need to under-
stand the SD equation and the transverse vertex in
quantum chromodynamics. Results from the use of
the gauge technique in QCD have already been
presented, " and incorporation of the transverse ef-
fects will be given in a later work.

ACKNOWLEDGMENTS

I would like to thank Professor John M. Cornwall
for suggesting this problem, and for his instructive
and patient guidance in helping me carry it through.
I would also like to acknowledge many useful con-
versations with Jonathan Sapirstein.

This work was supported by the National Science
Foundation under Grant No. NSF/PHY 80-20144.

S(p)= 1

p —m
2 2

p ~m

—p g)m
(2+g)a/2n.
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m

(31a)

(31b)
I

APPENDIX

Working out the Dirac algebra in (1) and (2) for
the longitudinal vertex yields

L'
ln

1 —0 i L
—

I [(1—a3}p'—a2l//]1'p[(1 +2)p /z3p ]

"/ (P P') =}'/ , „[&—(P)(J//l'/ +7/ P') (Pry+7/ J//'—»(P')l (A 1)
P —P

where S '(p) =p —m —X(p, m). With the usual calculation for the second-order Feynman vertex we find that
the transverse vertex in (5) becomes, in the Feynman gauge (/=0),

Pl

A„"'(p,p')= —2 J da|duqda35(1 —Xa;) y& ln

2m [(p+p')„——2(aqp+a3p')„]+m y„l

+[a| m y„+a& py„'p' —2mat(py„+yg')]

+ (1—a/ )mzyp— (A2)
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where

L"={1 a&—)m at—a2p at—a3p a2a3g

I. =(1—a, )m —a,azp —a~a3p
I 2 2 &2

I =(1—a&) m

We have used (10a) to define our subtractions.
Straightforward calculations show A& '(p,p') has the
same UV behavior, given by Eqs. (11) and (12a), as

the effective transverse vertex defined in (11). This
transverse vertex (A2) yields, of course, the correct
anomalous magnetic moment and other standard IR
results. Our effective vertex (11), which differs
from (A2), is not correct in the IR, but these effects
are beyond our approximation in any case. The im-
portant thing to note is how the transverse vertex
yields a leading logarithm in the UV but not in the
IR.
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