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One-loop renormalization of Coulomb-gauge @ED
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In this article I present a physically motivated renormalization scheme for Coulomb-

gauge QED. This scheme is useful in calculations involving QED bound states. I imple-

ment this scheme to one loop by calculating the electron self-energy, the electron self-mass,

and the renormalization constants Zl and Z2. Formulas for the dimensional regularization

of some noncovariant integrals useful in one-loop Coulomb-gauge calculations are given.

I. INTRODUCTION

The gauge invariance of quantum electrodynam-
ics allows one to choose a formulation of the theory
to suit the problem at hand. For many problems the
best formulation is in terms of a covariant gauge.
Bound-state problems, however, are best handled in
the Coulomb gauge.

Although the advantages of the Coulomb gauge
for bound-state problems have been recognized for
some time, the consistent use of the gauge has been
frustrated by the lack of a renormalization scheme
tailored to the Coulomb gauge. The typical response
to ultraviolet-divergent graphs in a bound-state
problem has been to gather the offending graphs
(along with others as required) into a "gauge-
invariant subset" of graphs, and to evaluate these
graphs in a covariant gauge. However, since the
constituent fermions in a QED bound state are not
precisely on-shell, the gauge independence of the
gauge-invariant subset is not exact, and corrections
must be considered. Bound-state calculations in
QED can be simplified by using the Coulomb gauge
consistently throughout.

In this paper, I give a renormalization scheme
that is convenient to use for bound-state problems in
Coulomb-gauge QED. I define the scheme in Sec.
II. In Sec. III, I present an explicit calculation of

the one-loop electron self-energy function in a form
that is useful for many applications. In Sec. IV, I
use the self-energy function to find the one-loop
electron self-mass and wave-function renormaliza-
tion constant. In Sec. V, I find the vertex renormali-
zation constant by examining the one-loop contribu-
tion to the vertex function. Finally, in the Appen-
dix, I present formulas for the dimensional regulari-
zation of some noncovariant integrals that are en-
countered in one-loop calculations in the Coulomb
gauge.

II. A USEFUL RENORMALIZATION SCHEME

The (bare) QED Lagrangian in 2ro dimensions
with a gauge-fixing term appropriate to the
Coulomb gauge is'

, Fq„F"' —[[Bq——(n r))nq]A& j

+ trt[y[i r) ep(to)A]—mp j P,—

where n is a timelike unit vector and P is the gauge
parameter. The coupling ep(to)=ep(ls) " is the
product of the (dimensionless) bare coupling with a
power of an arbitrary mass p. In the following, ls
will be identified with the physical electron mass I,
where m =mp+5m. The Feynman rules follow
directly from the Lagrangian. They are pictured in

Fig. 1. The photon propagator is

is(p)
Dq~'(k) = krak

k' —( k)'
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FIG. l. The Feynman rules of QED.
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and the electron propagator is
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FIG. 2. Expansion of the full photon propagator in
terms of the vacuum polarization tensor.

I/k 0
DP„(k)= 0 57/ki

lJ
(4)

in the frame where n =(1,0), with 5 J
——5,J

—k;kj.
Renormalization deals with the behavior of the

full propagator and vertex function. These func-
tions are defined as follows. The full photon propa-
gator (times i ) is the sum of all connected photon-

(3)
f'P —ltd

In the usual Coulomb gauge the gauge parameter is
zero, and the photon propagator has the form

—) II „(k) = P(====)~ (===-) p

+ ~ ~ ~

FIG. 3. Graphical definition of the vacuum polariza-
tion tensor.

photon graphs. The full photon propagator is pic-
tured in Fig. 2 in terms of the vacuum polarization
tensor

II„„(k)=(k'g„„-k„k„)II(k'),
where the vacuum polarization tensor (times i ) i—s
the sum of all one-photon-irreducible amputated
photon-photon graphs. The graphical definition of
II&„is given in Fig. 3. The transversality of II&„fol-
lows from a Ward identity. The series indicated in

Fig. 2 can be summed, with the result

iD„'„(k)= k'[1+II(k')]
ki kv (nk)

k' —(nk)' k' —(nk)'

The full electron propagator (times i ) is the sum
of all connected electron-electron graphs. The full-
electron propagator is depicted graphically in Fig. 4.
The graphs in Fig. 4 involve the electron self-energy,
which (times i) is th—e sum of all one-electron-
irreducible amputated electron-electron graphs. The
self-energy is defined graphically in Fig. 5. Sum-

ming the series for the full electron propagator, one
finds

iS'(p) = (7)
y p rn —X(p—)

The full vertex function is the sum of all one-

photon-irreducible, one-electron-irreducible, ampu-
tated vertex graphs. These graphs are pictured in

Fig. 6.
I assume that the renormalization of QED in the

Coulomb gauge proceeds essentially as it does in the
covariant gauges. Indeed, in writing the bare I.a-

grangian in the form (1), I assume that the counter-
terms generated in the Coulomb gauge have the usu-

al covariant forms

(&,X""fr(ia)y, pygmy, yy) .

This assumption is justified by Heckathorn. i A set
of finite renormalized propagation and vertex func-
tions can be defined according to

D„'„(k)=ZiD„"„(k),

S'(p) =ZiS "(p},
I'„'(p',p) =Z, 'I „"(p',p) .

(8b)

(8c}

~p
—)Z(p)=( - )~( = )

The physical mass m is defined by requiring electron
propagation when p =m . The physical coupling is
defined by requiring the interaction energy of two
distant stationary charges to behave as a/r, where
a=e /4m=— „,. The normalization conditions for
the electron propagator and the vertex function will

be chosen to correspond to the physical conditions
encountered in QED bound-state probleins.

The statement that m is the physical electron
mass means that the electron propagates over arbi-
trarily large distances when p =m . This condition
can be translated to a condition on the full electron

is (p)
I ~p

+ =8 + =&CD +'" + = — +

FIG. 4. Expansion of the full electron propagator in

terms of the electron self-energy.
FIG. 5. Graphical definition of the electron self-

energy.
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—(~o(pi) I'x (p,'p) = —) ~0 (~)y), —(&o(pi)+),(p,'p) E=2m+ O(ma )

and typical momenta

(
~ p ~

)=O(ma),

(14)

FIG. 6. Graphical definition of the vertex function.

the natural point at which to define S"(p) is at
p =mn. This momentum characterizes an electron
at rest in the frame specified by the timelike vector
n. I require

propagator S'(p}. The inverse propagator has the
following form:

[S'(p)] '=yp —m —&(p)

=am +by p+cg.y n, .

Sa( )
y mn'+m

2 2p~mN (p —m )
(16)

corresponding to free propagation forward in time
for an electron at rest in the given frame. This
determines Z2 as I will now show.

The form of the full propagator for p near mn is

where a, b, and c (functions of p and (=p.n) can
be calculated perturbatively from Feynman graphs.
The full propagator itself is found by inverting
(S'}

apm —(bp+cp}y mnS'(p)—
~~ (p m)—m (5/Bp )h(p, m )

~
2

(17)

S'(p) = am by p —cgy—n

m b(p, g)

where

(10) where ap ——a(m, m), etc. From the vanishing of
lL(m, m) and the fact that

a= —1+O(o,'), b=l +O(a), c=O(a),
2

b,(p,g)=a (p, g) —b (p, g) 2m if follows that

(18)

2( 2g)

—2b(p, g)c(p g) 2m

Now m is the physical mass if

h(m, g) =0 . (12)

The mass shift 5m must be chosen so that this equa-
tion holds. It is not immediately obvious that such
a 5m exists, since (12) is a complicated relation in-
volving the electron energy g, while 5m is a con-
stant, independent of g. However, 5m is known to
be gauge independent. In a covariant gauge the cor-
responding 6 has no explicit g dependence, and the
equation

Z2 [2m (a'+b——'+c') bp /ap J— (21)

I define the vertex-function renormalization con-
stant Zi so that the renormalized vertex function
I „(p',p} is effectively y„ for electrons at rest:

(y p'+m)I'&(p', p)(y p+m)

ao+ ho+co ——0,
and so

ap(y mn+m)
2 2 2 i t i 2 2

p m~ (p —m )m [2ap(a'+b'+c') bp /m ]—
(20)

where a'=(8/Bp )a(p, m) ~, &, etc. In light of
Eqs. (8b) and (16), the renormalization constant is in
view,

h(p =m )=0 (covariant gauge) (13) (y mn+m)yp(y mn+m) .. (22)
p', p-+mn

can be solved for 5m. This same 5m must solve
(12}.

Another condition is still required to fix the elec-
tron wave-function renormalization constant Z2.
This condition is given when S (p) is normalized at
some point in momentum space. Since the typical
@EDbound-state, positronium, has energy levels

The corresponding relation for Z& is

—,(y.n + 1)n"I&(mn, mn) —,(y.n + 1)
1= —,(y n+1)Z (23)

With this definition, Ward's identity can be used in
the usual way to show that Zi ——Z2.
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Finally, the photon propagation function is nor-
malized at k =0:

related by

e =Z3ep2 2 (26)
D~„(k) —Dq„(k) .

k2~0
(24)

The reason for this choice of normalization is seen
when one considers the interaction of two distant
(

~

R
~

&&1/m) stationary charges. The interaction
energy of two such charges is related to the
(2' —1)-dimensional Fourier transform of
Doo(k =O, k); it is

2Z
(25)

4~/R
f

I normalize e so that this interaction energy is
e /(4m

~

R
~

), so the bare and physical couplings are

Gauge invariance can be used to show that the vacu-
um polarization tensor H&„ is gauge independent,
the same in the Coulomb gauge as in any of the co-
variant gauges. Since

D„„(k)=[1+11(k')]-'D„„(k), (27)

it follows that Z3 ——[1+II(0}] ' is gauge indepen-
dent as well.

III. THE ELECTRON SELF-ENERGY

To one loop the electron self-energy has two con-
tributions (pictured in Fig. 5),

(28)i X(p—) =i5m+ f (dk)' [ iep(r0)—y„] [ ieo(co—)y„]iD""(k) .
y (p —k) —m

The Coulomb-gauge photon propagator is given in Eq. (4). The momentum integral in (28) can be evaluated
using the formulas for the dimensional regularization of noncovariant integrals presented in the Appendix.
The result is

X(p) = (3D+4)—5m — D(y p m)—
4a 4m

—f lnX[(1 —x)y p+m]+2 f dx ln Y[(1—x)y p —m]
dx

0 Mx 0

' dx+2yp f "' x f dui~

in the frame where n =(1,0) with

1
D = —ys +In(4n. }

2 —N

and

(30)

X=1+(p /m )(1—x),
Y=1—(p /m )(1—x)—ie,
Z=1 (po /m —)(1—u)+(p /m~)(1 xu) ie. — —

(31a)

(31b)

(31c)

Because a real electron-photon pair can be created from a virtual electron only when p & m, X(p) is real
when p2 & m and has an imaginary part when p & m 2. To verify this, consider the expressions

Y=x+ — (1 x) ie, — —m p
m

(32a)

2 2

Z =uX+ (1 u) ie- —
m

(32b)

Neither Y nor Z is negative when p &m, but whenp &m both Yznd Z are negative for some values of
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their parameters. The required reality properties of the self-energy are thus obtained.

IV. DETERMINATION OP 5m AND Z2

(33a)

The one-loop values of 5m and Zq can be found by using the general formulas of Sec. II with the explicit
form of the self-energy found in Sec. III. The quantities a, b, and c are

a(p, g)= —1 — (3D+4)+ — D+ f lnX+2 f dx lnY
4n. m 4m 4' 0

b(p, g)=1+ D+ —f lnX(1 —x) —2 f dx lnY(1 —x)+2 f x f du lnZ

aIld

(33b)

c(p', 4)=———+ f ""
lnX(i —x)—2 f "' x f dulnZ (33c)

To 0 (a) the mass-shell condition (12) takes the form

a(m, g)+b(m, g)+c(m, g) =0. (34)

A short calculation shows that this condition is satisfied when

5m = (3D+4) .
4m.

This is the same 5m as that found in the covariant gauges.
The one-loop Coulomb-gauge wave-function renormalization constant Z2 is found using (21}. It is

a
Z2 ——1 — D.

4m

(35)

(36)

An important property of the Coulomb gauge is the fact that no infrared problems occur in the evaluation of
Z2.

V. DETERMINATION OF Zi

As stated before, Z& ——Z2 in this renormalization scheme. This statement can be verified to one loop by
looking at the one-loop vertex correction graph (Fig. 6) in the Coulomb gauge,

—ieo(ro)Aq(p', p) = f (dk)„'[ ieo(r0)y„—], [ ieo(co)yq]— [ ieo(co)y„]i—D""(k) .~ y(p —k) —m y (p —k) —m

(37)
Now Z& is obtained from the vertex function by

—,(1+y )Z~ ' ———,(1+y }I0(mn, mn} —,(1+y )

= —,(1+y )[yo+Ao(mn, mn)] , (1+y ), —

where n =(1,0), so

—,(1+y )(Z~ ' —1)=—,(1+y )Ao(mn, mn) —,(1+y )

(dk)„"
=-, (1+y')

4~ 4 2 ci)—2

y„[y (mn k)+m]y—o[y (mn —k)+m]y„
(k 2k mn)2—

(38)

X»"(k)—,(1+y') . (39)
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The integral is readily evaluated, and

Q
Zi ——1 — D.

4m

VI. CONCLUSION

(40)
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In this paper, I have given a complete account of
the one-loop renormalization of Coulomb-gauge
QED. No problems, ambiguities, or surprises were
found. The renormalization scheme is tailored to
the physical situations found in QED bound states,
and should prove useful in calculations involving
such systems.
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APPENDIX

Feynman graphs in the Coulomb gauge give rise
to noncovariant integrals. The dimensional regulari-
zation of such integrals was considered by
Heckathorn, and I follow his basic method. Let
d =2' be the dimension of spacetime. I assume
that spacetime contains one time dimension and
(2' —1) space dimensions (as opposed to the
d = —,d + —,d decomposition of Heckathorn).

Formulas for the dimensional regularization of
several useful one-loop integrals are as follows:

(Alb)

(Alc)

='-'"c,
(k' 2k p M-')-

& —1&~ ' dx(dk)" = ' ' x '(1—x)~ 'C,
M2) ( k 2 g2)& r(a)l (P) o v x

r

(dk)„" = ' ' dx x '(1—x}~ 'C
(k2 —2k p —M~)+(k2 2k.p' M'2}~ r(~)r(P) 0

II 8
(k —2k.p —M ) (k —2k p' —M' )~( —k 2 —A,2)"

' dxf f dyy '(x —y)~ '(1 —x)r-'C, (Ald)

(dk)„"
(k —2k p —M ) (k —2k.p' —M' )~(k —2k.p"—M" )r

1 xf dx f dyy '(x —y)~ '(1—x)r 'C, (Ale)
r( )r(p)r(q)

II 8
(k —2k p —M ) (k —2k.p' —M' )~(k —2k p"—M" )r( —k 2 —iL )

( —I)~

r(~)r(p)r(&)r(s)
where C is related to 8 by

(Al f)

a=i c= (A2a)

8=kq, C=(AQ)q (A2b)

B=kqk„, C=(AQ)„(AQ)„~ „—2Aq„ (A2c)

8=k~k„kg, C=(AQ)q(AQ)„(AQ)g
~

——,[A„,(AQ)g+A„g(AQ)„+Ay~(AQ)„]

(A2d)
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In the covariant integrals (Ala), (Alc), and (Ale) the matrix A is given by

Ap„——gp

In the noncovariant integrals (A lb), (Ald), and (Alf) the matrix A is

(A3)

1/x 0
Apv gpv+ 71pnv

OX
(A4)

The quantities g, Q, and 5 are given for the various cases by

(a) g=a, Q=p,
b, =Q'+M';

(b) g=a+P, Q=px,
b, =QAQ+M x+A, (1—x);

(c) g=a+P, Q =px+p'(1 —x),
b, =Q +M x+M' (1—x);

(d) 4=~+0+~ Q=py+p'(x —y},
b, =QAQ+M y+M' (x —y)+A, (1—x);

(e) g=a+P+y, Q=py+p'(x —y}+p"(1—x},
A=Q +M y+M' (x —y)+M" (1—x);

(f) g=a+P+y+5, Q =pz+p'(y —z)+p "(x —y),
E=QAQ+M z+M' (y —z)+M" (x —y)+A, (1—x) .

Consistency conditions such as

(ASa)

(ASb)

(A5c)

(A5d)

(A5e)

(ASf)

(dk)~ = (dk)~
(k —2k p —M ) k ' (k' —2k p —M')

are satisfied by these formulas.

(A6)
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'The notation and conventions of J. D. Bjorken and S. D.
Drell [Relativistic Quantum Mechanics (McGraw-Hill,
New York, 1964)] are used throughout this paper.

2J. D. Bjorken and S. D. Drell, Relativistic Quantum
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D. Heckathorn, Nucl. Phys. 8156, 328 (1979).
The .notation (dk)„=d "k, (dk)' =(dk)„/(2m) ", and

{dk)„"=(dk)„/iW is used to simplify the expressions.

5The electron propagator in the Coulomb gauge has been
considered by K. Johnson [Ann. Phys. (N.Y.) 10, 536
(1960)] who presents his result in a spectral form. A
spectral form for the electron self-energy is given by C.
R. Hagen [Phys. Rev. 130, 813 (1963)]. See also K.
Hailer and L. F. Landovitz, Phys. Rev. D 2, 1498
{1970). I find the form of the self-energy given in the
present paper to be more convenient for actual calcula-
tions.


