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The gauge-invariant background-field approach is used to discuss a non-Abelian gauge
theory containing fermions in curved space-time. Renormalization of the theory at the
one-loop level is presented using dimensional regularization, heat-kernel techniques, and a
curved —space-time momentum-space method.

I. INTRODUCTION

An area of recent investigation concerns interact-
ing quantum field theory in curved space-time. It is
particularly important to know if such theories are
renormalizable, a fact which is not completely obvi-
ous to show since standard flat —space-time
momentum-space techniques may no longer be
used. So far renormalizability has only been shown
for interacting scalar fields' and quantum electro-
dynamics in fairly general space-times. (Weaker
results have also been obtained in specific space-
times. See Ref. 3 and below for more details. ) In
this paper we study the renormalizability of a non-
Abelian gauge theory containing fermions on a
curved background.

The method used here consists of a computation
of the effective action using the gauge-invariant
background-field method. '0 Dimensional regu-
larization" along with heat-kernel techniques' '
and the curved —space-time momentum-space
method of Bunch and Parker' are usixi to analyze
the divergences. This approach offers several ad-

vantages over the standard diagrammatic analysis.
First, by explicit construction it can contain only
gauge-invariant combinations of the background
field. Second, it cuts down the number of graphs
which need to be considered, involving only one-
particle-irreducible vacuum bubbles. There is no
need to examine the n-point functions separately for
each n since they are obtained by functional dif-
ferentiation of the effective action with respect to
the background fields.

These, or similar, techniques have been used for
non-Abelian gauge theories in flat space-time. '
Results for scalars or spinors in combined classical
gauge plus gravitational backgrounds may be found

in Refs. 6, 17, and 18. On S massless QED and
scalar electrodynamics have been studied by Drum-
mond and Shore' and Shore. ' ' Luscher has re-
cently given results for Yang-Mills theory on S in
a multi-instanton background. In weak gravitation-
al backgrounds, Utiyama has analyzed QED, and
Ichinose and Omote have studied non-Abelian

gauge theories. Panangaden has shown renormal-
izability of QED at the one-loop level in an arbi-
trarily curved, but topologically trivial space-tine.

In this paper we prove that a non-Abelian gauge
theory containing fermions is one-loop renormaliz-
able in curved space-time. In the special case where
the gauge group is U(1), the theory considered here
reduces to QED; thus, this paper contains an alter-
native to and generalizes the proof of Panangaden. '
In our view the background-field method provides a
simpler approach than the conventional diagram-
matic method. (This is true even in flat space-time. )

For the theory containing non-Abelian gauge fields
plus fermions considered here, using the conven-
tional approach it would be necessary to calculate
18 diagrams which contribute to the two-, three-,
and four-point functions. (Details may be found in
Itzykson and Zuber, for instance. ) In curved
space-time the situation is even worse since the ex-
pressions for the propagators calculated using the
momentum-space approach' involve more terms
than in flat space-time, leading to more complicated
expressions to evaluate. This is clear even in
Panangaden's QED calculation where only three
graphs need to be evaluated.

In Sec. II we present our notation, and the
relevant expression for the one-loop effective action
obtained via the gauge-invariant background-field
method is given. In Sec. III the divergences are
computed, and it is shown that the theory is renor-
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malizable to one-loop order. A brief discussion is
contained in Sec. IV.

II. THE GAUGE-INVARIANT
BACKGROUND-FIELD METHOD

F„„=ay„a—„A,+[A„,A„] .

Equation (2.6) is the infinitesimal form of

A& U(g)A„U '(g) —[B„U(g)]U '(g)

(2.9)

(2.10)
Let I T'] be the set of generators of the Lie alge-

bra of some group G which has dimension ¹ The
generators will be taken to be anti-Hermitian and to
satisfy

[Ta Tb] yabeTc (2.1)

C2 ( Gg ) = T'T' . — (2.2)

Any repeated Latin indices will be summed over
from 1 to E. Suppose that the generators T' corre-
spond to a representation Gx of G with dimension
dx (i.e., T' may be taken to be a dx Xdz anti-
Hermitian matrix). Let C2(Gx ) denote the quadrat-
ic Casimir operator for this representation:

F„,~U(g)F„,U '(g) .

In place of (2.4) we may take

IrM=
2 f dv tr(Fq F" ) .

—l

4g'C2(G, q }

(2.1 1)

(2.12)

Let f(x) be a multicomponent spinor field which
transforms under G as

for U(g)=exp(8'T'). (8' are the coordinates of
g EG in the group manifold in a neighborhood of
the identity. ) From (2.9),

Then, 1((x)~U(g)1{(x) . (2.13)

tr(T'T )=— C2(Gii)5,b .b dR

The usual Yang-Mills action is

IvM[A]= —, f du, F„',F'"",

(2.3)

(2.4)

It is assumed that U(g) provides a unitary dF
dimensional representation Gb of G. [We are con-
cerned here with the case where g(x) contains d~
four-component Dirac spinors. ] The adjoint spinor
g(x) transforms as

where du~=[g(x)]'~ d x is the invariant volume
element on the space-time manifold, and

Fq„BqA' d„A~+gf——'AqA—„' . (2 5)

(We choose to work on a Riemannian space-time
rather than a Lorentzian one. ) It then follows that
IvM is invariant under the infinitesimal gauge
transformation

f(x)~f(x)U '(g) . (2.14)

D~P~ U(g)D„Q

provided that

(2.15}

Let D& be the covariant derivative computed us-
ing the appropriate spin connection as well as the
gauge connection. For f(x) transforming as in
(2.13),

A'~A'+f '8 "A' dq8', —— (2.6) (2.16)

where 8'(x) are the parameters of the transforma-
tion.

It proves convenient in the following to deal with
the Lie-algebra or matrix-valued connection. De-
fine

with A& acting on p by matrix multiplication. The
matrix A„ is taken in the same representation as g.
V& contains the spin connection and is a multiple of
the group identity. If p(x} represents a set of fields
transforming covariantly in the same way as the
curvature in (2.11), then

Ap ——gA pT', (2.7)
D,0=~,4+[A, 4] (2.17)

where T' is a matrix in the adjoint representation
G,s of G. It is this object which has the geometri-
cal meaning of a connection in a principal fiber
bundle. Define also

gives its covariant derivative.
Let Ie„-"(x)J denote the vierbein field which sat-

isfies

Fpv ——gF~v T (2.8)

Then F„ is the curvature given in terms of A„by

pv p v ~p&~

8'p,v=e pe v&"" ~
p cT

(2.18a)

(2.18b)
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The caret denotes an orthonormal frame index. De-
fine Hermitian y matrices to satisfy IF[/, Q,A]= —i f duxQ(g M—)Q, (2.23)

(2.19)

Then g(x)gg(x} is invariant under G, as well as
under general coordinate transformations, where

where M is Hermitian and satisfies (2.22).
The gravitational part of the action is taken to be

IG ———f du„( —2A+xR +aiR""F R&

9=yi'e-"D, . (2.20} +aiR""Rq„+aiR ), (2.24)

[M, U(g)] =0 .

The infinitesimal form of (2.21) is

(2.21)

[M, T']=0.
The fermion part of the action is taken to be

(2.22)

The notation of Coleman is followed here.
and f are to be treated as independent anticommut-

ing c numbers. Let M be the spinor mass matrix.
If g(x)MQ(x) is to be invariant under G, from
(2.13) and (2.14) it is seen that

where A, v, a i, a2, and ai are constants. [A is the
cosmological constant and a. =(16m G) ' where G is
the Newtonian gravitational constant. ] The curva-
ture conventions of Ref. 26 are used here. Note
that there are no possible nonminimal terms which
may be added to give a gauge-invariant renormaliz-
able theory. This is no longer true, however, if
scalars are included.

Let A„(x) denote the arbitrary background gauge
field, and P(x}, f(x) the background spinor fields.
The partition function is taken to be

Z[Jp,p;A, g,f]= f [dg][df][SA]expI —IvM[A+A] IF[$+$—,$+f,A+A]

IG+J."A—i'+4p+O'I (2.25)

Ap —+ UAp U (2.27)

The background gauge field therefore transforms in
the usual way. Both the background and quantum
parts of the fermion fields are taken to transform as
in (2.13) and (2.14). The sources J„', p, and p are
taken to transform in the same way as A„', tP, and i}'j,

respectively. [Note that

where J,", p, and p are source terms, with p and p
independent anticommuting c numbers. Here [O'A]
is the relevant functional measure for the gauge
fields which includes the well-known gauge-fixing
and ghost terms, and may also depend on the
background field. It is required to be invariant
under the action of G.

From (2.25) it is clear that the fields may be re-
garded as being split up into the sum of a
background-field part A&, P, or f, and a quantum
part A&, g, or P which gets integrated over in the
functional integration. Only the quantum parts are
coupled to the sources. A„+A„must transform
under G as in (2.10); however, we are free to choose
the background gauge field to transform as

Ap~UAqU ' —(BqU)U (2.26)

with the quantum part of the gauge field transform-
ing covariantly as

JqA '"=
~

tr( JqA &),

D„A"=V„A"+[A„,A "] (2.28)

which transforms covariantly under (2.26) and
(2.27). As a gauge-fixing term choose

I&F——
2 f dv„tr[(D„A&) ]

2ag Ci(G,&)

(2.29a)

z f dv„tr[A "D„D„A"],
2ag C2(G g )

(2.29b)

where J„=gJ„'T'with T' in the adjoint representa-
tion. ] It then follows that the expression for Z in
(2.25) will involve the background fields only in a
gauge-invariant manner provided that at the same
time we perform the gauge transformation (2.26) on
the background field, we perform the change of
variables (2.27), (2.13), and (2.14) in the functional
integration, and transform the sources in a relevant
fashion.

Let D& be the covariant derivative formed using
the background-field gauge connection. Then be-
cause A" transforms as in (2.27), from (2.17) we
have
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where the second line follows from the first upon an

integration by parts. a is an arbitrary real constant.
With this choice of gauge-fixing condition the ghost
part of the action may be seen to be

IoH = f dv„ii(x)[ D —A&—D„

(D—qA" )]ri(x), (2.30)

where g and q are the anticommuting ghost fields
which transform as in (2.14) and (2.15) under gauge
transformations. [The result in (2.30) follows im-

mediately from DeWitt's more general result. ] The
result in (2.30) is manifestly gauge invariant. The
functional measure indicated in (2.25) is

[&A]= [dA][de][dpi ]exp( IoF I—GH ) .—

(2.31)
A A

The effective action I [A, P,P] may now be
found, for example, by the Legendre transform
method. It is a functional of only the background
fields and is invariant under background-field gauge
transformations. Write

(2.32)

where I Div contains all of the divergent terms and
I REo contains all of the regular terms. It then fol-

lows that I Dqv and I RE& must be separately gauge
invariant provided that the regularization scheme
respects gauge invariance. This means that if the
theory is to be renormalizable I Dqv must be a linear
combination of IyM [A ] and quantities in

IF[A,g,f ] with divergent coefficients which may
be absorbed by a renormalization of the background
field and spinor mass. (In addition there may be a
divergent term independent of the background
fields. )

The effective action is formed from one-particle-
irreducible vacuum bubbles only, although in the
background-field formalism the propagators and
the rules for vertices are changed from the usual
ones. In order to obtain them the action is expand-
ed in powers of the quantum fields. Because the ef-
fective action involves only one-particle-irreducible
graphs, the terms which are linear in the quantum
fields may be dropped. From (2.12},writing

4

IyM [A +A] =Iy M [A ]+ g IyM [A,A],
n=1

(2.33)

where the superscript figure in parentheses
represents the power of the quantum field which oc-
curs, we have

IyM[A, A]=
2 f du„tr[A&( g&„D +D„D—

& 2I'&„}A"],—
2g C2(G,d)

IyM[A, A]=
2 f dv tr[(DqA„DAq)A&A —],

g C2(G,d)

(2.34a)

(2.34b)

IyM[A]=, f du„(g„g„~ g„~g„)tr(A A—i'Ai'A") .
2g C2(G,d)

(2.34c)

where

3

+ g IF'"'
n=1

(2.35)

In obtaining IYM an integration by parts has been
performed. IyM and IyM gives the rules for the tri-
linear and quapic gauge field vertices, respectively.
For I@[A+A,Q+t/i, g+g],

I~[A+A, 4+4,f +&l =IF[A 4,P)

(2) (3)
IGH ——IoH+IG

where

(2.37)

IF ' i f du„—gg——f . (2.36b)

IF gives the rule for the vertex involving two spi-
nor and one gauge field lines. Note that the qua-
dratic part of the action is not diagonal due to cross
terms between the spinor and gauge fields. For the
ghost part of the action

IF '=' i f du [—Q(g M)g+pgf— I'o'H= f du.fl D'ln— (2.38a)

+4AA ~ (2.36a) IoH ———f du~g[A&D~+(D~Ai')]g . (2.38b)
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IoH is the inverse of the background-field ghost
propagator. IoH gives the rule for the vertex in-
volving two ghost and one gauge field lines.

The tree-level contribution to the effective action
1s

(2.39)

with all fields and coupling constants bare. The
one-loop contribution is

r"'[A",y, l(]=—ln f [df][dl(][dA][dg][dg]exP( Iv'M—Iop—IP '—IoH—) .

Integration over the ghost fields using the usual rule for integrating over anticommuting fieldsi9 gives

1'"=—lnDet( —D )—ln f [dg][dg][dA]exp( IvM—Io„—IP ') —.

(2.40)

(2.41)

Note that A& is in the adjoint representation everywhere except for IF ' where it is in the fermion representa-
tion GF

An immediate consequence of (2.27}and (2.17}is that

[D~,D„]Ai =R~„ii'Ap+[Fq„,Ai] (2.42)

with the curvature conventions of Ref. 26. This leads to

(2.44)

where we have defined

IyM+Iop ———, UgA'" —gp„D + 1 —1 u DpD„+Rp~ —2'„'A ", (2.43)

where [ . ]'s denotes the matrix element of the quantity enclosed by the square brackets.
The remaining functional integrals in (2.41}may be evaluated by completing the square in the argument of

the exponential. Make the following change of variables in the integration over the fermion fields, assuming
as usual that the measure is translationally invariant:

f(x)~g(x)+ig f du, g(x')A(x')S(x', x),
g(x)~P(x)+ig f dv, S(x,x')A(x')g(x'}, (2.45)

i [9,——M]S (x,x ') =5(x,x') . (2.46)

[Here 5(x,x') denotes the biscalar Dirac distribution which satisfies f du„5(x,x'}f(x}=f(x'}.] The one-loop
effective action is now

I'"=
2 lnDet[h&„" (x,x')+2g P(x)y&T'S(x, x')T y„P(x')]—lnDet( —D )—lnDetS '(x,x'),

(2.47)

where b„'„(x,x') has been defined by (matrix notation)

[ 5"iD +(1—1/—a)D"Di+R"i„2F"i]h „(x,x')—=5"„5(x,x') .

The matrices T' and Tb appearing in (2.47) are those appropriate to the fermion representation.

(2.48)

III. THE DIVERGENCES OF THE ONE-LOOP
EFFECTIVE ACTION

In order to obtain the divergent part of I'" we shall adopt dimensional regularization" and heat-kernel
techniques. ' ' The notation of Ref. 3 is followed here. Let I2 be a second-order elliptic operator of the
orm

I2 D+Q(x)—— —

for some (inatrix-valued) Q (x). Then the pole part of ln DetIi is

(3.1)
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PPIlnDetI2] =2e ' f du„trE2(x, I2),
where e = (4n ) (n —4) (with n the space-time dimension) and

E2(x,I2)=,~ [(12CIR +5R 2R—""Rq„+2R""i'Rq„p )I+30W»W»+180Q2 —60RQ —60D Q] .

(3.2)

(3.3)

I is the identity matrix in the appropriate represen-
tation for the type of field upon which I2 acts, and

W» is the matrix-valued curvature defined by

I

niques for a+I in the special case of a flat space-
time with a covariantly constant background gauge
field. )

[Dq,D„]=W» . (3.4)

The quantity Ez(x,I2) appears in the asymptotic ex-
pansion of the heat kernel. The result in (3.3) may
be found in Ref. 30. (The result for Q=O is in Ref.
6.)

If we now attempt to analyze the divergences of
(2.47) directly using (3.2) there are immediate prob-
lems. The first is that although the last two terms
in (2.47) involve operators of the form (3.1) so that
(3.2) and (3.3) may be used, the first term involves a
nonlocal object vitiating a straightforward applica-
tion of the above result. If we had been studying a
pure gauge theory this nonlocal object would not
have been present. [In addition the last term in
(2.47) would also not be there. ] Even in the pure
gauge case

(», x)x=[ gq„D +(1—1/a)DqD„—

+R„„2F„„]5(x',x) —(3.5)

is of more general form than (3.1) if a+1 so that
(3.3) no longer holds. For this reason we shall re-
strict ourselves to the +=1 gauge. There would
seem to be no impediment to repeating DeWitt's
calculations, for example, to find E2 for the opera-
tor (3.5) although we do not pursue this here.
(Shore ' has obtained results using heat-kernel tech-

I

A. Pure gauge theories

In order to obtain the one-loop effective
action for a pure gauge theory, set /=/ =0 in
(2.47) and ignore the fermion loop contribution (the
last term). Then,

I'"[A]=—, lnDetb, '» —lnDet( D) . —

(3.6)

If we choose a= 1, then b, '„, is of the form (3.1)
where

Q»(x) =R» 2Fq, .— (3.7)

from which [see (2.42)]

W»i.'=Ri.i.'+Fi,~i.' . (3.9)

Equations (3.2) and (3.3) then lead to (discarding
integrals of total divergences)

The matrix-valued curvature may be obtained from
(2.42). Because 5 '» acts on the quantum part of
the gauge field which transforms as in (2.27),

[Dq,D„]Ai„=[Wq„ii',Ap] (3.8}

PPI —, 1nDeth '»I =e ' fdu~[ —, NR +»NR""R»—„,NR»~ R»z—~ ———, tr(F&g»)j .
A

2 A
2We require next E2(x, D) when D a—cts on ghosts. Since the ghost fields transform as scalars under

general coordinate transformations, and like (2.13) and (2.14) under gauge transformations W» F&„. From——
(3.2) and (3.3),

PPIlnDet( —D )] =e ' fdu„[ „NR 90NR&"R—&,+»N—R—&"i' R»z + , tr(F&,F&')] . — (3.11)

In both (3.10) and (3.11), trI, & N, where I,z is the——unit matrix in the adjoint representation, has been used.
From (3.6},(3.10), and (3.11), the divergent part of the one-loop effective action for a pure gauge theory in a

general curved space-time is

PPII'"[A]I =e ' fdu„[ —„NR + „NR"'R»——„ONR—»I' R&,~———,—tr(F&„F&")]. (3.12)

Introduce background-field and coupling-constant renormalization factors by (see, for example, Ref. 15)



27 BACKGROUND-FIELD METHOD AND THE RENORMALIZATION. . . 1809

(3.14)

(3.13)

«2—2zpaa=P a p, .

(The subscript "B"denotes a bare quantity. ) The t Hooft unit of mass is introduced to keep the dimensions
of the renormalized coupling constant and background field the same for all n as for n=4 F. rom (2.7), (3.13),
and (3.14),

A~g ——ZgZg A~ .1/2

From (2.8),

P„„,=z,z„'"[a„a„a„w—„+z,z„'"J[„,w„]) .

(3.15)

(3.16)

Because we know by explicit construction that the background field can occur in the effective action only in a
gauge-invariant way, we must have'

ZgZQ —1 o

Thus the matrix-valued background field and field strength do not get renormalized. Write

Zg ——I+fi5zg" +0(fP),

Zs ——1+fi5zs"+O(A ) .

Because of (3.17),

5Z„'"=—25Z,"' .

Write also,

~,=~"-4[~+F5~"'+O(r')],
a.ii

——p,
" [a+A5ir'"+O(fi )],

a;s ——Ii" [a; +A' 5a;"'+. 0( iir}] (i =1,2, 3}.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21a)

(3.21b)

(3.21c)

The 0 (fi) contribution to the pole part of I'o' is therefore

n —4
PPII' 'J = 5Z"' Jdu„tr(F „F"")

2g C2(G,d)

—P" fi Jdu„( 25A '+5ic ' R—+5ai R""i' R„„+5aiR&~R„„+5a3 R ) (3.22)

The pole terms in the one-loop effective action
(3.12) are seen to be of the same form as those ap-
pearing in the classical action. The theory is there-
fore renormalizable in a general space-time with
counterterm s

I

In addition, from (3.20),

5Z„"'=——,g C2(G,d)e (3.23g)

gives the renormalization of the background field.

5Z,'"=—"
, g'C, (G.,)~-',

sw"'=o,
s~~'~=o,

5a2 ———.4, Ne(])

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.23f)

B. The inclusion of fermions

Return now to the full expression (2.47) for the
one-loop effective action. Consider first of all the
pole part of the last term arising from the fermion
loop:

ln DetS '(x,x') =Tr ln[ —i(g —M)]

=Tr ln[ —i(@+M)],



DAVID J. TOMS

lnDetS '(x,x')=
2 Trln( —9 +M ) . (3.24)

[Because of (2.22), [M,g] =0.]
Write

Dp ——ay+ rp+Ap (3.25)

where l"& is the spin connection. Since I z is a mul-

tiple of the group identity, and A& is a multiple of
the unit spinor matrix, [I„,A„]=0. Thus, we may
write

where we have used the fact that the Dirac trace of
an odd number of y matrices vanishes. (The second
line follows by expanding ln[ —i (g —M)] in powers
of M. Alternatively, introduce (y&) =1 where

1 5 —1 Il +31 4 on the right-hand side of
Det[ —i(g —M)] and commute one y5 through the
9 using {ys,g] =0.) Therefore,

For Dirac spinors (see for example, DeWitt with a
change of sign due to curvature conventions )

1
p cT

~pcv =
4 ~pvpa 'V 7 (3.28)

It then follows by contracting (3.4) with y"y"
that

A2 A2 ] I A=D ——,R + , y"y—"F„,.

From (3.24)

ln DetS '(x,x')

(3.29)

Q (x)=M2+ —,R , yI'y "F„„—, —
18'~„——4Rq„p yPy +F~„.

(3.31)

(3.32)

,
'

Train(

—n'+—,R+M—' , y~y—F—'„„).

(3.30)
This is now in a form where (3.2) and (3.3) may be
used, with

8'p„——Ap~+ F~„,
where

~„„=a„r,—a„r„+[r„,r„] .

(3.26)

(3.27)

The trace occurring in (3.2) is over both spinor and
group indices; thus trI =4dF where the factor of 4
comes from the Dirac trace. It is straightforward
to show that

PP{lnDetS '(x,x')I =e ' Jdv„[ „dFR „—dpR""R—&—„,~ dFR"'~ R&„~+2tr(M )

+ —,R trM2 , tr(F„„F"——")]. (3.33)

Note that the matrices appearing in the last term are those appropriate to the fermion representation, so that
by (2.3),

tr(F„„FI")= — C2(Gp)g F„',F'I'" . (3.34)

Turn next to the first term in (2.47). Although, as we have already remarked, heat-kernel techniques are not
directly applicable, we may instead proceed as follows. Use the identity

ln Det(A +8)=Tr ln(A +8)=Tr lnA +Tr ln(1+A '8}

and then expand the second term in powers of A '8 to give

—ln Det(A +8)=—Tr lnA —g Tr[(A '8)"] .2 2 28n=1

We are interested here in

A =b, 'q"„(x,x'),
8 =2g f(x)y&T'S(x,x')T"y„f(x') .

(3.35)

(3.36}

(3.37)

The pole part of the first term in (3.35) is just that for the pure gauge theory given in the preceding section
[see Eq. (3.10)].

The n = 1 term in the summation in (3.35) involves

Tr(A 'B)=2g fdv dv b&„(x,x')g(x')y"T S(x',x)T'y"g(x) . (3.38)
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In order to evaluate this use Bunch and Parker's curved —space-time momentum-space method which in-

volves the introduction of a Riemannian normal coordinate system. Here, because we are considering a gauge
theory, we must be more general and use a synchronous coordinate frame. The result is, that if G (x,x') sat-
isfies

then

[—D „2+Q (x)]G (x,x') =5(x,x'),

d k;I,. I
G(x,x')= f e' '» +O(k )

(2m )" k

(3.39)

(3.40)

where I is the identity matrix, and all indices have been suppressed. Here x"=x'"+y" with x'" the origin of
the coordinate system. Higher-order contributions to (3.40) may be evaluated and involve curvature invariants
and the background field. These terms would be required at the two-loop level. Because A& vanishes at x'
in a synchronous frame, we may work with a vanishing background gauge field and put it back in at the end

by invoking gauge invariance.
Writing S(x',x)= i (g„+M—)G(x',x), it follows that G(x',x) satisfies (3.39) with Q(x) =M . Therefore,

k k» i (ijt +—M}
O(k 3)

(2m. )" k
(3.41)

in a synchronous coordinate frame. Also,

d "k
gab( i) ik» ~b 8+ +O(t —4}

(2n )" k
(3.42)

It follows immediately from (3.41) and (3.42) that the divergent part of 5„',(x,x')S(x',x) in a synchronous
coordinate frame is identical to that in flat space-time and is given by

PP [b,„'„(x,x')S (x ',x) J
= iI5,b5„e—'(il» —2M}5(y) . (3.43)

It may also be seen from (3.41}and (3.42) that all terms with n )2 in the summation (3.35) do not contain any
ultraviolet divergences.

The result in (3.43) may be written in the generally covariant form

PP I B,„'„( ,xx)S( 'x, )xI =+iI5,bg„„(x')e '(7 '+ 2M)5(x, x') .

which reduces to (3.43) in normal coordinates. It then follows from (3.38) that

PPI Tr(A '8)
I =4ig C2(Gb )e ' fdu„g(x}(W 4M)f(x) . —

(3.44)

(3.45}

At this stage we now invoke the requirement that I Div contain only gauge-invariant quantities to put A back
in:

PPITr(A '8)I =4ig C2(G»)e ' fdu„g(x)(J) 4M/)(x) .— (3.46)

From (3.35},(3.10), and (3.46) we therefore have

PP I in Det[b&„" (x,x')+Zg 1(t(x)y& T'S(x,x') T y„hatt(x')] I

=e 'fdu„[ , NR2+ „N—R"—"R„, „—,NR""~ R„—,~+ 3C2(G,g}g'F„'„F'""+»'g'C2(Gb)i'(8 4Mb/'] . —

(3.47)

The complete pole part of the one-loop effective action, from (3A7), (3.11), and (3.33) is

PPti'"J=e 'fdu„I „(d +10N)R——+ „(d +22N)R"'R„,—+ „,(7d 26N)R""i R„„—
—2tr(M ) ——,R trM + —,g [11C2(G,q) 4(db/N)C2(GF)]F&—„F'""

+2ig Cq(G~)i'(x)(g 4M)g(x)—] . (3.48)
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In addition to the renormalizations occurring in (3.13), (3.14) and (3.21), let

+n/2 —Z f(X) (3.49a)

n /2 —2Z ) /2@ (

Mg ——Z~M,

where

ZF ——1+.fi5ZF" +0(fi ),
ZM —1+RSZ~'+O(A' ) .

Then the O(fi) contribution to the pole part of I' ' is

ppI I (0)] @n—4gz(1) JdU pa papv

Jdu„[ 25A"'—+5)r"'R +5a'"R""I' R, +5a' 'R""R +Ba R ]

it's" —4 Jdv„f(x)[5Z'"8 (5Z'"—+5Z"')M]f(x) .

(3.49b)

(3.50)

(3.51)

(3.52)

(3.53)

5zs"—
—,g 11C2(G,g) —4 C2(GP) e

(3.54a)

SZ„'"=——,g 11C2(G,d) —4 C2(GF } e

SA")=tr(~')2e-',
5a'"= ——' trM2e

3

Sa(,"= „',(7d, —26N)~-',

5a 2"———„(dF+22N)e

5a(2" ————„,(d~+10N)e

5Z'"=2g2C (G }e

5ZM" =6g C2(G&)e

(3.54b)

(3.54c)

(3.54d)

(3.54e)

(3.54f)

(3.54g)

(3.54h)

(5.54i)

The result (3.54a) for the coupling-constant renor-
malization agrees with that of the standard refer-
ences.

IV. DISCUSSION

In the preceding sections the renormalization of a
non-Abelian gauge theory containing fermions has

The divergent parts of the one-loop effective ac-
tion (3.48) are of the same form as terms appearing
in the original action. The theory is therefore re-
normalizable in curved space-time with the choice
of counterterms,

been presented at the one-loop level in a curved
space-time. The result in Sec. III used the
momentum-space method of Ref. 1 and therefore
required attention to be restricted to trivial topolo-
gies. This means that the proof does not immedi-
ately extend to the case of twisted spinor fields
which may exist. It is likely that this restriction
may be removed in nonsimply connected space-
times whose covering space is topologically R by
writing the heat kernel as an image sum of heat ker-
nels in the covering space. As with the free-field
case, it would be expected that only the direct con-
tributions to the image sum (just the results used in
Sec. III) would lead to divergences in the one-loop
effective action. This conclusion is supported by
the result of Ford who calculated the vacuum po-
larization for both twisted and untwisted @ED in
S'gR . At the higher-loop level, the result of
Banach is relevant.

There is nothing in principle to prevent the in-
clusion of scalar fields into the analysis of this pa-
per although the details of the calculation would be-
come involved. With scalar self-interactions present
it would be found necessary in general to include
nonminimal terms involving the curvature provided
that they did not violate gauge invariance. This
may be seen from the RQ term in Eq. (3.3) which
enters into the divergent part of the effective action,
since Q [see (3.1)] will then involve the background
scalar field. As a gauge-fixing term, the generalized
R~ gauge of Shore ' would be a convenient choice.

It is also possible to use the momentum-space
technique of Ref. 1 even in flat space-time for the
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background-field propagators. This allows the ex-

ploitation of the use of the background-field propa-
gators as fully as possible, although since an expan-
sion in powers of the background field results, the
details would be similar to those in Abbott's' pa-
per.
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