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In the general framework of stochastic control theory we introduce a suitable form of sto-

chastic action associated to the controlled process. A variational principle gives all the main

features of Nelson s stochastic mechanics. In particular, we derive the expression for the
current velocity field as the gradient of the phase action. Moreover, the stochastic correc-
tions to the Hamilton-Jacobi equation are in agreement with the quantum-mechanical form
of the Madelung fluid (equivalent to the Schrodinger equation). Therefore, stochastic con-

trol theory can provide a very simple model simulating quantum-mechanical behavior.

I. INTRODUCTION

Methods based on the theory of stochastic pro-
cesses have been very useful for the investigation of
the physical properties of quantum-mechanical
models and quantum field theory (see, for example,
Refs. 1—7 and references quoted therein). In fact, in
the last few years there have been continuous efforts
to enlarge the overlapping area between quantum
mechanics and probability theory, not only from the
point of view of methods and techniques, but also
with reference to physical interpretation (see, for ex-
ample, Refs. 8 and 9). Moreover, the merging of
quantum mechanics and probability theory stirnulat-
txl research aiming at the foundations of a new
"quantum probability" theory (see, for example,
Ref. 10 and previous references quoted therein).

It is very well known that there is a close relation
between classical mechanics and deterministic con-
trol theory. " In particular, the Hamilton-Jacobi
equation can be understood as a programming equa-
tion for an optimal control problem, as will also be
recalled in Sec. II. Therefore, on the basis of the
previous considerations, it is very natural to investi-
gate possible connections between quantum mechan-
ics and stochastic control theory. Here a typical dif-
ficulty arises. In fact, the programming equations
of the standard versions of stochastic control theory
are not time-reversal invariant in general and
describe a typical parabolic behavior. On the other
hand, quantum mechanics is time-reversal invariant
and the resulting candidate for a programming
equation is the Madelung form of the Hamilton-
Jacobi equation with quantum-mechanical correc-
tions. In this case the programming equation de-
scribes some kind of hyperbolic behavior, with no
essential dissipation involved.

But it is easy to see that a proper choice of the
stochastic action allows a generalization of the clas-
sical case. Then it is possible to reach the objective
of connecting stochastic control theory and
quantum-mechanical behavior. The purpose of this
paper is to give a complete and concise account of
the emerging general structure.

For related work on the connections between
quantum mechanics and stochastic control theory,
we refer to Refs. 12—14, where different ideas and
techniques are developed. The analogy between
nonlinear filtering and quantum physics is investi-
gated in Ref. 15. The relevance of stochastic control
theory for classical mechanics is stressed in Ref. 16.

The paper is organized as follows: Section II is
dedicated to a brief review of the classical case,
showing the connections between classical mechan-
ics and deterministic optimal control theory. For a
more detailed and precise treatment we refer to Ref.
11. Our considerations are introduced in order to
familiarize the reader with the general structure of
the problems in control theory and prepare the
grounds for a natural generalization to the stochas-
tic case. In particular, we find it of some interest to
recall that, even in classical mechanics, the
Hamilton-Jacobi principal function S can be intro-
duced as a field of Lagrangian multipliers, connect-
ed with a constrained variational problem, where in-
itial and final densities of the classical fluid in con-
figuration space are kept constant.

In Sec. III we introduce the general frame of the
stochastic control theory employed in the following.
In particular, we recall some of the useful formulas
connected with the solutions of stochastic differen-
tial equations.

Section IV contains the definition of the stochas-
tic action associated to the general controlled pro-
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cess. Various different action functionals are intro-
duced and their connections are pointed out. We
also find it convenient to give the explicit expression
for the variations of the action functionals as a
consequence of a change in the controlling drift
field.

The main results of this paper are found in Sec.
V. In fact, we establish two equivalent versions of
the stochastic variational principle. In one version
the variations of the controlling drift field are con-
strained in such a way that the density of the con-
trolled process is kept fixed at initial and final times.
In the other version only the initial density is fixed
and no constraints are put on the control field, but
additional terms are introduced in the action func-
tional. The equivalence of the two principles allows
the interpretation of the phase function S as a field
of Lagrangian multipliers connected with the con-
straint of fixed density.

The stochastic variational principle then allows us
to derive the whole structure of stochastic mechan-
ics. ' ' In particular, we show that the expression
of the mean velocity field as the gradient of the
phase action follows easily as a consequence of the
variational principle, as in the classical case. More-
over, the stochastic corrections to the classical
Hamilton-Jacobi programming equation are shown
to reproduce correctly the quantum corrections, pro-
vided the strength of the disturbing noise in the con-
trol equation is properly adjusted as a function of
the Planck constant. Therefore the Schrodinger
equation can be interpreted as a consequence of the
stochastic variational principle.

Finally, Sec. VI deals with possible further
development and applications of the theory.

q(t}=v(q(t), t) . (2)

The control field u is some given time-dependent
vector field on M. Here

v(', t}GR", tp(t(ti .

Standard conditions of regularity on U (see, for ex-
ample, Refs. 20 and 21) assure existence and unique-
ness for the solution of (2) for soine given condition
at time t', to(t

q(t') =x' . (3)

In some cases it is relevant to show explicitly in the
notation the conditions (3}. Then we write q (t;x', t')
for the solution of (2} satisfying (3).

The following properties hold:

q(t;x, t}=x, q(t;q(t';x, t),t')=x,
q(t;q(t', x",t"),t') =q(t;x",t") .

For sufficiently regular fields F(,t) on R", we define
the substantial time derivative through

developed later, where all essential features are more
or less direct generalizations of the classical case.

Let us consider a dynamical system with configu-
ration space M. For the sake of simplicity we as-
sume M=R", but our considerations can be easily
generalized to the case where M is a general
Riemannian manifold, with metric given by the ki-
netic energy, as will be shown elsewhere. '9

We consider trajectories of the type

[rp, ri ]Bt~q (t) EM

evolving in time according to a feedback control law
enforced by the differential equation

II. CLASSICAL MECHANICS
AND DETERMINISTIC CONTROL THEORY

(DF)(x, t) = lim (ht) '[F(q(t+bt;x, t},t+ht)
b,t~o

We only recall some basic facts. For a more com-
plete treatment we refer to Ref. 11. Our account
will be very simple and pedagogical. In fact, we
consider this section as a preparation for the more
complicated case of stochastic control theory

I

F(x,t}];—
clearly it is enough to know q(t') for t' in a small
interval containing t in order to evaluate (5).

By taking into account that

F(q(r+Ar;x, r), t+ht) F(x,r)=(d,F)(x,t—)ht+(VF)(x, t) [q(t+br;x, t) x]+O((ht) ), —

q (t +ht;x, t) x= u (x, t)4t +O—((b,t)'),

we immediately have

(DF)(x, t) =(B,F)(x,t)+U (x, t) (VF)(x, t) . (7)

In particular, for the specification field

q(x, t) =q(t;x, t) =x,

I

we have

(Dq )(x,t) = u (x,t),
while for the generic trajectory q (t',x, t) we have

(Dq)(t', x, t) =0, (10)
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as a consequence of the control equation (2}. In fact,

(Dq)(t';x, t) = lim (ht) '[q-{t',q{t+bt;x, t), t+«)
h,t~o

—q(t', x, t)],

which act as a kind of Lagrangian multipliers, as
will be clear later.

For some given smooth field Si( ) on M, we de-
fine

J(x,t;ti,S, ;v) =I(x,t;ti', u)+Si(q(ti, x,t))

(16)
and {10)follows from the last of (4).

From the definitian (5},we also have the transport
equation

t(
Rq (ti ) ti ) +{q(—tp ) tp) = f, (DF)(q {t),t )dt,

0

(12)

for tp & t & t i. Then we have the property

J(xo, to, ti,Si ,v) ='J(xp, to, t;S'„u)',

where to & t & ti and the field S, is given by

S,(x)=J(x,t;ti—,Si,u) .

(17)

where q(t) is a general trajectory controlled by u

with end points q (tp) at tp and q (ti ) at t i

We introduce the canonical Lagrangian

W:TM~R,

(x,v) ~ W(x, v) = —,mu —V(x ),
(13)

where TM is the tangent bundle on M,x EM, and
v ETM (the tangent space to M in x). Here we

have simply M=R", TM=R"&R", xER", and
v GR".

Then the action —I spent by the controller, while

moving the point from time t, starting at x, ta time
t i, is defined as

t(
I(x,t;t„v—) = W(q(t';x, t),

t

v(q (t',x, t), t'))dt', ( l4}

for tp & t & t, Notic. e that I in (14) depends only on
th. spo:ification of v in the time interval [t, t i]. The
fallowing additivity property holds:

I(xp tp'ti, u)= I(xp, tp't'u)

When there is no danger of confusion we keep only
the specification (x, t;u) in (14) and (16) and
suppress the dependence on t&,S~ in the notations.
As a consequence of (7) and (10), we have that I and
J satisfy the following transport equations with the
appropriate final boundary conditions:

(DI)(x, t;u) =W(x, u (x,t)), I(,t, ) =0, (19)

(DJ)(x,t;v)=W{x,u(x, t)), J(.,ti)=Si(.) .

(20)

The basic laws of classical mechanics, i.e., the
Newton second principle of dynamics, or the
equivalent Hamilton-Jacobi equation, can be easily
established through variational principles by exploit-
ing the functionals I or J.

Consider, for example, J. In addition to the con-
trol u(, t}, tp &t &t appearing in (14) and (16), we
introduce also another control u'(, t), tp & t & ti, and
call D', J', and q'(t;xp tp) the corresponding sub-
stantial derivative, action functional, and controlled
trajectory. Then we have

+I(q(t'xp tp) t'ti'v) (15)
D'(J' J)=W(x, u'(x, —t))

W(x, v (x,t))—+(D D')J—
(21)= —,m(v' —u )+(u —v'} V'J .

Let us now integrate along q'(t;xp tp) tp & t & ti' by
exploiting the transport equation (12) and the com-
mon boundary condition in the second equation in
(20) for J and J', we have

(22)

for to & t (ti.
It is very well known that action functionals of

this type find applications in the classical calculus
of variations, where usually some additional condi-
tions are enfarced for the end points of trajectories.
It is therefore also convenient to introduce action
functionals with additional end-point contributions,

I
~'

2VJ
J(xp, tp,'u') J(xp, tp,'u) = —,m, (u—' —u) —v' —v (q'(t;xp, to), t)dt .

0 Pl

Now we exploit this basic formula along two lines.
First of all let us define

5u (x, t) =v'(x, t) u(x,t)—(23)

and consider in (22) only first-order variations in Bu.

Then we have

(5J)(xp tp v)

t&

=m U'
'o ill

(q(t'»o to) t)dt .
(24)
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Therefore, if we assume that under any small varia-
tion of the control u~u+5u the variation of J is
zero, then we must necessarily have

V B,S+ (VS)'+V =0.
2ppl

(32)

u (x, t) =—(VJ)(x,t;u),1

m
(25}

S(x,t)=J x,t; VJ''m (26)

for any point x reached by the controlled trajectory
at time t, tp & r & t, . Therefore if we impose
5J=0 Vxu, then (25} must hold everywhere.

Formula (24) shows the typical structure of the
classical variational problem. In fact, we can im-

pose 5J(xp rp'u}=0 for xoE8, where d' is some
open set of the configuration space M. Then the
condition (25) will hold in the casual shadow of d',
i.e., for all points x which can be reached at time t
by trajectories controlled by v and starting in 8 at
time to. In the next sections it will be apparent that
this typical "fibration" of the classical variational
problem does not carry through to the stochastic
case, where some average procedure will be neces-
sary in order to introduce action functionals.

It is clear that the gradient condition (25} implies
the Hamilton-Jacobi equation. In fact, if we call S
the functional J corresponding to the stationarizing
control (25),

Therefore for some a(t) we must have

B,S+ (VS)'+ V =a(t) .2'
Putting

(33)

S(x,t) =S(x,t) J—a(t'}dt', (34)

we have that S satisfies (27} and (28), while still
u =VS/m.

The second way of exploiting formula (22) leads
to considerations of optimal control theory. In fact,
assume that a solution S exists for the Hamilton-
Jacobi equation (27} with the boundary condition
(28). Consider (22) with u given by the Hamilton-
Jacobi control u =VS/m, so that J=S, and for a
generic O'. Writing u in place of v' for convenience,
we have

J(xe tp u) —S'(xp tp)

= —m J (u VS/m) —(q(t;xo, to), t}dt . (35)
0

Since the right-hand side is negative unless U satis-
fies u =VS/m, we have that the Hamilton-Jacobi
control is optimal in the sense that

then we must necessarily have

(a,S)(x,t)+ ' (VS)'(x, r)+ V(x)=0,
.2'

with the boundary condition

J(xo ro'u) &S(xo to) Vu xpEM

while

J(xo, to VS/m) ='S(xo to)

(36)

(37)

S(,ti)=Si( ), (28)

=(a,u)(x, t)+(u.Vu)(x, t) . (29)

following from the second equation in (20). It is im-
portant to recall that (27} is equivalent to the second
principle of dynamics in the following hydrodynam-
ical form. Define the acceleration field through

a (x, t) = (D )(xu, t)

It is also possible to show that the field S&, appear-
ing in the definition of the action functional J in

(16), can be interpreted as a field of L'agrangian mul-

tipliers, corresponding to a new variational problem
where the action functional now is I, defined in (14),
but the variations of the control field are not free
but subject to suitable constraints. We give some de-
tails about this rather remarkable fact, which holds
also in the stochastic case, as will be shown in Sec.
V.

Notice that for u =VS/m, (29) reduces to

a (x t) = VBtS+—(VS)
1 1

Ptl 27tl

Therefore (27} implies

a (x, t) =——(V V)(x),
1

(30)

(31)

First of all let us introduce a kind of hydro-
dynamic picture in classical mechanics, also in refer-
ence to the control problem. Instead of considering
single trajectories we consider clouds of particles
moving under the action of the control field. There-
fore we assume that some density po( ) is given at
the initial time to on the configuration space. By
acting on each single particle the control field will
let the density p(, t) evolve in time according to the
continuity equation

and this is the Newton equation in local form. Vice
versa if (30) and (31) hold, then (B,p)(x, t) = V[p(x, t)u (x, t)]— (38)
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with initial condition

p(, tp)=pp( ) . (39)

and the backward equation

(D'p)(x, t;x', t') =0, (43)

The connection between the fluid picture and the
particle picture is easily established by introducing
the transition "probability density" from time t' to
time t defined by

p(x, t;x', t') =5(x q(t;—x', t')) . (40}

The 5 function on the right-hand side assures the
deterministic motion of the particles forming the
fiuid. Notice that (40) is meaningful also for t & t'.
The deterministic transition probability (40) satisfies
the forward equation

where D', defined in (7), acts on the (x', t') variables.
The following identity of the I& olmogorov type is
also easily checked as a consequence of (4):

p(x, t;x, t )= f p(x, t;x', t')p(x', t',x, t )dx

(44)

with no restriction on the ordering of t, t', t". Final-
ly, the evolution of the density can be easily ex-
pressed in the form

(d,p)(x, t;x', t')+V [p(x, t;x', t')u(x, t) ]=0 p(x, t) = fp(x, t;x', t')p(x', t')dx' . (45)

with boundary condition

lim p (x,t;x', t') =5(x —x'),
t~t'

(41)

(42)

Variations of p and p under a change of the control
variable v —+u'=u+5V can be easily found starting
from (43}. In fact, by using the same method as
given by (21) and (22), we find

p'(x„t, &xo&to) p(x)&t)&x—p&to)= Vp'(x, &t),x&t) (u' v. )(x&—t)p(x, t;xo, tv)dx dt, (46)
tp

where p and p' refer to the controls v and u', respectively. By exploiting (45) we have also the variation of the
density in the form

t)
p'(x|, tl) —p(xi, ti)= f, f Vp'(x„t, ;x,t) (v' u)(x, t)p(—x, t)dx dt .

p
(47)

Now we are ready to establish a constrained variational principle. We consider I(xo tp't]'u) and its first-
order variation

t)
(5I)(xz, to, t~', v)=m [5v (VIlm u)](q(t'xp t—o) t)dt

o

=m [5u (VI/m v)](x, t)p(x,—t;xo, to)dx dt,
tp (4g)

which is found by following the same method lead-
ing to (24). Notice that I does not contain the boun-
dary term with S|,as J in (16). It is also convenient
to introduce the average

A (to, t t&po&v) = —f I(xo&tp&t~ &'v)po(xo}dxo

(49)

Then (48}and (45) give

(5A )(to, t ),Pp' v)

under the following constraint for 5V:

(5p)(xi, ti)=0, Vxi . (52)

From (47) we have

tl
5p(xi, ti)= f, fVp(xi, t„x,t) (p5V)(x, t)dx dt .

(53)

Then the constraint (52) obliges p5u to be "orthogo-
nal" in

L'(R"&& [t„t,],dx dt)

to all functions of the type

Vp(x„t& ,x,t), Vxl . '

tl= —m f, f [p5V (VIlm u)](x, t)dxdt . —
p

(50)
(54)Now we explore the consequences of the varia-

tional principle

(5A)(tp, t),'po,'u) =0 (51)

Therefore from the condition (51) and the identity
(50), we cannot conclude that u =VI/m must be
true but only that the difference v VI/m must be—
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in the linear hull spanned by functions of the type
(54) for all values of xi. Therefore there must be
some Si(.) such that

mu(x, t)= VI(x, t;v)

+V JSi(xi)p(xi, ti,x, t)'dx( . (55)

v (x, t) = (VS)(x,t) lm,
while it is simple to check that Eq. (27) holds for S,
with the boundary condition (28). In conclusion, we
have seen that the constrained variational problem
(51) and (52) is equivalent to the variational problem
based on J. They both lead to the Hamilton-Jacobi
structure. The principal function S can be interpret-
ed as a field of Lagrangian multipliers associated to
the constraints of fixed density. From this point of
view S is the field conjugated to p, in agreement
with the fiuid picture of classical mechanics as ex-
pressed by Eqs. (27), (38), and (57) (the Hamilton-
Jacobi fluid).

Let us remark that the constrained problem corre-
sponds to making stationary the average action A of
(49), under variations of u, while keeping fixed the
boundary densities p(, to) and p(., t, ). Since it is al-

ways possible to smoothly interpolate many p(, t)
between fixed end-point densities, there will be many
possible choices of u compatible with the can-
straints, as follows from (38) interpreted now as a
condition on u in correspondence of some interpolat-
ing p.

Let us conclude this section with a few remarks
related to obvious extensions of the methods recalled
here. Clearly it is possible to consider more general
Lagrangians than those of type (13). Of particular
physical interest is the introduction of terms corre-
sponding to generalized Lorentz forces,

Therefore, if we define, for u given by (55},

S(x,t) =I(x,t;u)+ J S((xi)p(xi, ti,x, t)dx(,

(56)

then the constrained variational problem (51) and
(52) enforces the Hamilton-Jacobi form of the con-
trol

J is modified through the introduction of terms re-
lated to the initial time t() I.n the following sections
the whole scheme will be generalized to the stochas-
tic case.

III. KINEMATICS OF THE CONTROLLED
STOCHASTIC THEORY

In stochastic theory we promote the classical vari-
able q(t) to a diffusion Markov stochastic process,
still denoted by q (t), taking values on the configura-
tion space M=R", with a given initial distribution
p()(. ) at time t(). The control equation (2) is replaced
by the Ito stochastic differential equation

dq (t) =u(+)(q (t), t)dt +dw (t), (60)

where now u(+)(, t) plays the role of feedback con-
trol field and w (t) is a Brownian motion on R" with

E(dw (t)
i q (t) =x )=0,

E(dw (t)dw (t)
~ q (t) =x ) =2vI dt

(61}

with initial condition

p(, to)=pp( ) ~

For the transition probability density

(65)

(dt & 0} . (62)

In (62), I is the unit matrix corresponding to the Eu-
clidean metric on R" and v is some fixed diffusion
coefficient. We refer to Refs. 23 and 19 for the gen-
eralization to nonflat Riemann manifolds.

In (61) and (62), E(A /B) are conditional expecta-
tions denoting the average of the random variable A

under the condition that the event B happens. In
general, we denote by E(A) the (unconditional) ex-
pectation of the random variable A. For the density

p(, t) of the process we have

E(E(q(t), t)) = J F(x,t)p(x, t)dx, (63)

while (60) implies the forward diffusion equation

((},p)(x, t) = V.[p(x, t}u(+—)(x,t)]+v(bp)(x, t)

(64)

&~&+A (x, t) v (x, t) . (58) p(x t;x, t ), t&t,
All considerations developed in this section can be
extended to (58) with obvious modifications. For
example, now the Hamilton-Jacobi condition (57)
would read

we have the forward Fokker-Planck equation

((}p)(x,t;x', t') = —V (pu(+) )+vip
with initial condition

(66)

u (x, t) = [A (x, t)+(VS)(x, t)]lm . (59) lim p(x, t;x', t')=5(x —x') .
t—+t'+

(67)

Moreover, it is possible, by time-reversal invariance,
to consider variational problems where, for example,

Notice that p depends only on u(+) (not on po). The
density is propagated in time through
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p(x, t) = f p (x,t;x', t')p(x', t')dx', t & t' .

It is also convenient to introduce

u( )(x, t)=u(+) —2vVp/p,

and define the osmotic velocity'

1

u (x,t) =
2 (U(+) —

U( ) )(x,t) =vVp/p

=2vVR,

(68)

(69)

(70}

(&(+)F)(x,t) = V—(Fu(+) )+vdd',

(O)'F)(x,t) = V—(FU),

(5O)F)(x,t)= V' (F—u )+vdd,
1O'= i (O'(+)+O'(-)»

15O'=
2 (O'(+) —O'(-)) ~

Then (64), (74), (73), and (70) can be written as

(& p)(x, t) =(O'(+)p)(x, t) =(&p)(x,t),
(5&p)(x,t) =0 .

(75)

(76)

where

p(x, t) =exp[2R (x,t)] .

The current velocity is defined as

U(x, t)= —,(U(+)+u( ))(x,t) .

(71)

(72)

(B,p}(x,t }=—V.(pu )

or in the backward form

(73)

(B,p)(x, t ) = —V.(pu( ) ) —vip . (74)

It is also useful to introduce the linear diffusion
operators

Then the diffusion equation (64) can be equivalently
written either as a continuity equation

Notice that we could also assume either v or v~ ~
as

control fields. In the first case, p would be defined
through (73) with initial condition (65). Then (70)
and (72) would give u(+) and u( ) in the form

(77)U(+ ) (x, t ) =u +u
)

In the second case, p would be defined through (74)
and (65), and (70} and (72) would give u and u(+) as
functions of u( ) and p. We prefer to keep u(+) in
the central position as a control field because it ap-
pears in the basic control law (60} and in the follow-
ing Ito-Girsanov formula.

Standard theorems '" give the sufficient regular-
ity conditions on v~+~ which assure existence and
uniqueness for the solutions of (60). More general
control fields u(+) can be introduced, if the solution
of (60) is defined through the Ito-Girsanov formula
(see, for example, Theorem V 102 of Ref. 11).

It is useful to introduce mean forward and back-
ward derivatives D~+~, which generalize the substan-
tial derivative D in (7), according to the standard
definitions' '

(D(+)F)(x,t)=+ lim (bt) 'E(F(q(t+ht}, t+ht) F(q(t), t)
i
q(t)—=x) .

at~ 0+
(78)

It can easily be shown that

(D(+))q(x»t) =u(+)(x»t)» (79)

where q is the specification field q(x, t)=x, already
introduced in (8). For a generic field F(,t), under
appropriate conditions of smoothness, we have

(D(+ )F)(x,t ) =(B,F)(x,t )

I

(WF)(x, t) =U.VF,

(5&F)(x,t)=u VF +vdd',
1 1~= 2(~(+)+~(-))» 5~= z(~(+)—~(-))»

so that

D[+~ ——8, +M~+~, D =8,+M, 5D =5M,
(82}

+u(+)(x, t) (VF)(x,t)

+v(~)(x, t) .

We can also introduce the transport operators

(W(p)F}(x,t)=u(+) VF+v~,

(80)

(81)

1 1=
2 ( (+)+D(—)} 5D= i (D(+)—D( ))

Notice the following conjugation properties in
L (R",dx):

O'(t+)=M(+), Ot=W, (5&)t=5D ~ (83)
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While on the Hilbert space L (R"XR,pdxdt), we
have'

—E(F(q(t), t)G(q(t), t))d
t

D(+) = —D(~) ~ (84) =E((D(+)F)(q(t),t )G(q(t), t ) )

It is convenient to recall that conditional expecta-
tions can be easily expressed in terms of transition
probability densities. In particular, we have, for
t &t',

E(F(q(t), t) )(q(t') =x') = f F(x,t)p(x, t;x', t')dx,

+E(F(q(t), t)(D( )G)(q(t), t)) . (88}

Moreover, the following conditioned transport equa-
tions hold, as a counterpart of (12), for tp

while, in the case of forward conditioning,

E(F(q, (t'), t') )(q(t) =x )

(85)

=p(x, t) ' f p(x, t;x', t')F(x', t')p(x', t')dx' .

E(F(q(t i ) ti )
~

q(tp) =xp )—F(xp t0 )

t)= f, E((D(+)F)(q(t), t)
~
q(tp)=xp)dt,

F(xi ti ) —E(F(q(tp) tp)
~
q(ti ) =xi )

= f E((D( )F)(q(t), t)
~
q(t() =x) )dt .

p

(89)

(90)

(D(+)p)(x, t;x', t') =0, (87)

where D(+) is defined in (80) and acts on the (x', t')
variables. We also have'

I

(86)

Clearly, p(x, t) must be different from zero if (86}
has meaning. In fact, only in this case is it possible
to impose the conditioning q(t) =x.

Now we list some useful expressions involving the
forward and backward derivatives defined in (80).
First of all let us recall that the backward Fokker-
Planck equation for the transition probability can be
written as

Equations (89} and (90) follow easily from the
definition (78) and the Markov property. In some
cases it is useful to compare two different processes,
one, q(t), evolving under the control v(+), and the
other, q'(t), evolving under v(+). According to the
general frame outlined before, we assume that both
processes have the same distribution density po at
time to. Then we can easily give, under suitable reg-
ularity conditions, an explicit expression for the
averages of functionals F(q'} of the process q'(t), for
tp & t & ti, in terms of the same functionals F(q) for
the other process q (t), considered as a known refer-
ence process. In fact, the Ito-Girsanov formula22"
gives

E(F(q'))=E F(q)exp f [5U(+)(q(t), t) dw(t) ——,5v(+) (q(t), t}]dt
2V p

where

5U(+)(x, t) =(U(+) —U(y) )(x,t) .

(92)

Finally, we give the explicit expression of the variations of the transition probability density and the density
corresponding to a change (Eq. (92)] in the control drift field, while the external Brownian noise and the initial
density are kept fixed.

We follow the same method leading to (46} in the classical case. In fact, we start from (87} and exploit the
.trick explained in (21), but using D(+) in place of D. Then we use the transport equation (89) instead of (12).
Also, in the stochastic case, we end up with an expression similar to (46},where now p and p are not given by
(40), as in the classical case, but are the solutions of (66) or (87}with initial condition (67). For the variation of
the density in the stochastic case we still have an expression similar to (47), in fact (45}and (68) are structurally
the same. The explicit expressions for the stochastic case are

p'(xi, ti,'xp, tp) p(xi, ti, xp, tp)= — Vp'(x(, t»x, t) 5U(+)(x, t)p(x, t~xp~tp)dxdt ~
fp

t)
p'(xi, ti) —p(xi, ti)= Vp'(x, t„xt) 5v(+)(x, t)p(x,.t)dxdt .

tp

I

This typical procedure will be also exploited in the
following [see Eq. (110)].

This ends our discussion about the kinematical

properties of the stochastic control theory.
reader will notice that we have written most of Sec.
II having in mind the generalization to the stochas-



1782 FRANCESCO GUERRA AND LAURA M. MORATO

tic case. In fact, the classical and the stochastic
cases are very similar and most of the structure is
preserved, provided we take care of the fact that the
Brownian disturbances produce the splitting of the
velocity field u in u(+) and u( ). Some physical
consequences of this splitting with reference to the
quantum uncertainty principle and Bohr com-
plementarity are analyzed in Refs. 24 and 25. In the
next sections, we generalize the contrained and un-
constrained forms of the variational principle to the
stochastic case.

IV. THE STOCHASTIC ACTION FUNCTIONALS

where u(+) is the control field and u( ) is defined
through (69}. Notice that the Lagrangian field de-

pend not only on U~+] but also on the initial density
pQ. This is a peculiar aspect of the theory. Clearly
(93) is time-reversal invariant. In fact, for the time-
reversal transformation we have's

t~ t'= t,q(t)~ q'(t') =—q(t),
IX~X =X

U(+ ) (x, t )—+ U (+ ) (x,t ) = —
(Up ) ( yx)t~

(94)

As v —+ 0, (93) reduces to the classical case.
In analogy with (49), let us define the average sto-

chastic action, spent by the controller in order to
move the system from the time tQ to time ti, ti & tQ,
for some initial distribution pQ( ),

A(tQ, t),pQ', u(+))= f, E(W(q(t), t))dt

= f ' f W(x, t)p(x, t)dxdt, (95)

with W given by (93). Notice the additivity proper-
ty

A(tQ ti~PQ&u(+) ) =A(tQ t'PQ'U(+) )

(96)+A(t, t) ,p), u(~) ), '

where p, is p(.,t) and tQ & t & t, .
Let us point out the following intuitive physical

picture at the basis of (95). Let sQ tQ, s), . . .,s~ =ti-—
an equipartition of the interval [tQ, ti], with

The main problem for the formulation of stochas-
tic variational principles, leading to a simulation of
quantum-mechanical behavior, is to find the right
action. Our proposal is the following.

In analogy with the classical case (13), we intro-
duce the Lagrangian field defined by

W(x, t)= —,mu(+)(x, t) u( )(x,t)—V(x),

(93)

&= (ti tQ—)/N. First of all let us consider a classi-
cal trajectory q (t); then we can assume the limit

"-' [q(s +i)—q(s )l'
M(tQ, t, )= —,m lim g 5s

hs~Q, Q (~)i
(97)

as an expression for the kinetic part of the action in
the interval [tu, ti] according to the definitions (14)
and (49). For the stochastic case let us modify (97)
in the form

[q(s;+ i) —q(s;)]
M(tQ, t))= —,m lim

hs 0 ~

fq(s;}—q(s; i}l

(98)

Clearly (97) and (98) give the same limit in the clas-
sical case, because the change is only of second order
in lb. On the other hand, the limit (98) does not ex-
ist in the stochastic case because q(t) is nowhere dif-
ferentiable. But we can take (conditional) averages
on W in (98) before and then take the limit. Then it
can easily be shown that we have

E(dc/(tQ, t) ))=—,m (v(+) v( ))(x,t)
0

Xp(x, t}dx dt, (99)

so that the kinetic part of (95) is correctly repro-
duced. On the other hand, the limit in (97) would
give divergent results also in the case where some
average is taken before. It is clear that the tendency
of the Brownian motion to produce highly irregular
trajectories for q(t) favors (98) over (97) as far as the
convergence is concerned. In fact, the contributions
in (98) come froin scalar products of the displace-
ment in each infinitesimal time interval multiplied
by the displacement in the next interval. It is clear
that only a physical explanation of the nature of the
underlying Brownian motion could also produce a
deeper justification of (98). For the moment (98),
and the equivalent (95), are taken as basic assump-
tion of our theory.

Notice that (93) can be written in equivalent form,

W(x, t) = —,m(u —u )(x,t) —V(x), (93')

by exploiting the current and osmotic velocities de-
fined in (70) and (72). The minus sign before u in
(93') is physically relevant; it means that the osmotic
part of the action plays more a role similar to a po-
tential rather than a kinetic contribution. This is in
agreement with the Schrodinger variational formula-
tion for stationary states of quantum-mechanical



27 QUANTIZATION OF DYNAMICAL SYSTEMS AND STOCHASTIC. . . 1783

systems, where u and Venter with the same sign in
the energy functional.

It is also useful to introduce conditioned expecta-
tions for (98). It is very simple to prove, exploiting
the Markov property and the expression (85), that

E(~(tp ti)
~
q(tp)=xp)

1= —,m (v(+)'+2vV u(+) )(x,t)
f0

Xp(x, t'xp, tp)dx dt . (100)

A(tp, ti',Pp~u(+) )

f I(xp tp'ti v(y) )Pp(xp)dxp . ( 106)

Equations (103},(104), (105), and (106) are the coun-
terparts of (14), (19)i, (19)2, and (49), respectively.

In analogy with the classical case it is also useful
to introduce action functionals with additional end-

point contributions. For some given smooth field

Si ( ) on M we then define

J(X,t;t),S),U(+') )=I(X,t;ti, U(+') )

Analogous expressions hold for a forward condition-
ing at time t&. Then we are motivated to introduce
the following forward and backward Lagrangian
fields:

+E(S,(q(t, )) iq(t)=x},

B(tp, ti', pp, Si', u(+) )

(107)

W(+)(x, t) = —,mu(+) (x,t)
1

+mv(V u(+))(x, t) —V(x), (101)

=A(tp, t),'pp,'u(~) ) —E{Si(q(ti )))

f J(x() t() ti Si u'( ~) )pp{x()}dx() . (108)

for which one can easily prove

E(~(q(t), t)) =E(W(+)(q(t), t)) . (102)

One easily checks the following:

(D(~)J)(x,t) =W(+)(x, t),

We also define, the tp & t & ti,

I(x,t;ti qu(+ ) )

=—f E(W(+)(q(t'), t')
~

q(t)=x)dt'

f ~(+)(x', t')p(x, t';x, t)dx dt' .

(103)

J(,ti)=Si(.) .
(109)

In order to introduce and prove variational princi-
ples it is necessary to obtain explicit expressions for
the variations of the stochastic action functionals,
introduced before, when the control field is changed
from v(+) to some other u(+) ——u(+)+5u(+), while
the initial distribution is kept fixed. We follow the
same route as in (21). With obvious short-hand no-
tations, we have

Notice that I satisfies the transport equation

(D(~)I)(x,t) =W(+)(x, t), (104}
D(+)(J —J}=~(+)—~(+)+(D(+)— (+)}J

=[—,m(v(+)+v(+) }+mvV
with the boundary condition —VJ] 5u(+) . (110)

I(,ti) =0 .

Moreover,

(105}
Then the transport equation (89) and the boundary
condition in (109) give

(5J)(xp, tp) =—f, f ([ ,
'
m(u(+)+u—(+))+mvV VJ] 5v(+)—))(x,t)p'(x, t;xptp)dx dt . (111)

0

If we multiply by pp(xp), we integrate on dxp, and get rid of V 5U(+) through a simple integration by parts on
dx, then we obtain

t
(5B)(tp,ti)=, [ , m(u(+)+u( )) —VJ]5u(+)(x, t)p—'(x, t)dxdt .

0

By following the same method, but exploiting I in (110) in place of J, we also get
t

1

(5A)(tp, ti)= [—,m(v(+)+u( )) VI] 5u(+)—(x, t)p. '(x, t)dx dt,
0

which is the counterpart of (50). To the first order in 5u(+) we have

t)
(5B)(tp, ti) = f, f (mu —VJ) 5v(+)(x, t)p(x, t)dx dt,

(112)

(113)

(114)
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(5A )(rp, t) )= f, f (mu V—I) 5v(+)(x, t)p(x, t)dx dt
0

I.et us also recall that the first-order variation of the density at t ( is

(5p)(xi, ti)= Vp(x), t„x,t) 5v(+)(x, t}p(x,t)dxdt,
'o

(115)

(116)

as follows from the second equation in (92). Then
we can state the equivalence between the variational
principle based on 5B=0 and the constrained varia-
tional principle based on 5A =0 with 5p(xi, t) ) =0,
Vxi. In fact, as in the classical case, the condition
58=0 for any 5u(+) implies, as a consequence of
(114), the Hamilton-Jacobi condition

u(x, t) =(VS)(x,t)/m, (117)

where we called S the value of J for the stationariz-
ing field (physical control field). On the other hand,
if 5A =0 for any 5v(+) satisfying 5p(, t) ), we cannot
conclude that mv —VI =0, but only

mu VI=V—f Si(xi)p(x), t»x, t)dx(, (118)

1 2(D(+)S)(x,t)= —,mu(+) +mvV u(+),

$(,ti}=S(( }.
(119)

(120)
I

for some suitable function Si. But (118) is
equivalent to (117} in view of (107), provided the
boundary term Si in (107) is chosen in agreement
with (118). Therefore, also in the stochastic case
there is the interpretation of the S function as a field
of Lagrangian multipliers associated to the density
constraint at the final time in the variational princi-
ple.

Notice that, while in the classical case the varia-
tional principles are based on conditions of the type
5I(xQ iQ)=0 oi' 5J(x() rp)=0, here in the stochastic
case they are based on the averaged conditions

5A —=E(5I(q(tp), tp)) =0,
5B—=E(5J(q(tp), to)) =0 .

In this way the density enters in an essential way in
the dynamical evolution, as the next considerations
show. In fact, let us now investigate the conse-
quences of (117). Since S coincides with J for the
stationarizing field we have

l

But for u(+) we have

v(+ )
——v +u =VS/m +2v VR (121)

2v =()i'/m .

Then the ansatz

(123)

g(x, t) = [p(x, t)]'~ exp S(x,t)—
fi

(124)

reduces the two real equations (73) and (122) to the
Schrodinger equation

fi
i))i(B,Q)(x, t) = — (hg)(x, t)+ V(x)f(x, t) .

2m

(125)

If we do not impose (123), then for the wave func-
tion (124} we find some nonlinear equation in-
stead of (125).

Clearly all our considerations extend to the case
where the action functional J is modified through
boundary terms at the initial time to and in the case
where linear terms in v are introduced in the La-
grangian field (93).

Finally, notice, on the basis of Eqs. (124}, (107),
(103},and the connection between S and J, that the
expression of the phase function S is given in terms
of the physical contr'ol field v(+) ——(VS+RVR)/m
as follows:

as a consequence of (117) and (70). If we substitute
(121) in (119), then we find the following Hamilton-
Jacobi equation with stochastic corrections:

(5,$)(x,r)+ ' (VS}'(x,r)+V(x)
2m

—2mv [(VR) (x,t)+(ER)(x,t)]=0. (122)

The connection with quantum mechanics is estab-
lished in the standard way. ' ' First of all we fix
the diffusion constant so that

t)
S(x,t) =E(S)(q(t) )) )(q(t)=x) f E (W(~)(q(r—') r')

~
q(r) =x)Ch', rp & r & r), (126)

where q(t) is the process subject to the physical control field. If the initial value S() of S is known, then we can
write (126) in the equivalent form

$(x,r)=E($,(q(r, ))
~

q(r)=x) +, E(W( )(q(r'), r') ))q(r)=x)dr', r, &r &r, ,
0

(127)
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as can be easily checked on the basis of the transport equations (89) and (90) and the conditioning identities (85)
and (86}.

As a consistency check of our theory it is also possible to connect the stochastic Lagrangian field (93) with
the standard Lagrangian

L(g(, t),g*(,t),p(, t),1('(,t))= f (g—*f pf—') —&p &g' Vp—ip* (x,t)dx, (128)

giving rise to (124) through Euler-Lagrange indepen-
dent variations of g and tP~ In f.act (128), with the
ansatz (124), reduces to

1
L = —f a,S+ " (VZ)'+ (VS)'

2m 277l

+ V (x,t)p(x, t)dx . (129)

VI. CONCLUSIONS AND OUTLOOK

We have seen that it is possible to choose the La-
grangian field in a stochastic variational problem so
that the resulting programming equation corre-
sponds to the Hamilton-Jacobi equation with the
right quantum corrections. From this point of view
stochastic quantization' ' ' *' can be based either
on the smoothed form of the second principle or
dynamics or on a stochastic variational problem.
The advantage of this second method relies on the
fact that the gradient form of the velocity fields fol-
lows from the variational principle and is not an in-
dependent assumption.

We have given two equivalent forms of the varia-
tional principle. For one version boundary terms are
inserted in the action functional and unconstrained
control drift variations are allowed. For the other
version the action functional does not contain boun-
dary terms, but the control variations are restricted
so that the density is kept pointwise fixed at the end

A simple calculation shows that (129) gives Eqs. (73)
and (122} of the Madelung fluid through Euler-
Lagrange independent variations of S and p. On the
other hand, by exploiting the continuity equations
(73) and (117)one easily finds

L = ——f S(x,t)p(x, t)dx+E(W(q(t), t)),d
dt

(130)

where L is defined in (128) and (129), W is given in

(93), and q(t) is the associated process. Since the to-
tal time derivative is irrelevant we have the
equivalence between our stochastic variational prin-
ciple and the standard variational principle leading
to Schrodinger equation from (128).

points of the generic time interval of variations.
This equivalence between the two principles allows
the interpretation of the phase function S as a field
of Lagrangian multipliers associated to the density
constraints. Therefore S can be considered as a vari-
able conjugated to p, according to the usual hydro-
dynamical picture.

While in classical mechanics and in standard sto-
chastic control theory the variational principles are
usually expressed in optimal form, where the func-
tionals are not only made stationary with respect to
control variations, but acquire optimum values
(inaxima or minima), we have not considered here
this problem. We plan to deal with it in the future.

The extension of our considerations to the case
where the configuration space is a general Rieman-
nian manifold is straightforward and is considered
in Ref. 19. In this framework it is interesting to see
the interplay between geometric features and the
ability of the Brownian motion to feel second-order
effects, as shown, for example, in Ref. 23.

Of particular interest is the case where the under-

lying configuration space is not simply connected.
Then the variational principles, even in the classical
case, can have a more refined formulation, where
boundary terms or density constraints may depend
on the connectivity properties of the trajectories.
This peculiar feature may lead to siinulation of the
half-integer-spin effects in the case of rotating bod-
ies or to spin-statistics effects, according to the
development of general ideas already pointed out,
for example, in Ref. 33.

Variational principles, very similar to those
described in this paper, were considered for the
ground-state process of Euclidean field theory, in
the frame of a general program aiming at the con-
nection between classical statistical mechanics and
quantum field theory. It would be interesting to see
whether similar interpretations hold also in our case.
In particular, the stochastic action functional could
be connected to entropy properties of the trajectories
appearing in the Ito-Girsanov formula.

Finally, we would like to remark that the kinetic
metric enters in our theory in two different places.
Firstly, it gives the kinetic action (as in classical
case), but it also determines the underlying Browni-
an disturbance (see also Ref. 23). A natural exten-
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sion of interesting remarks by Davidson seems to
suggest that the Brownian disturbance could be in-
troduced without any relation with the kinetic
inetric on the configuration space.

Therefore it would be very interesting to include
also in the controller domain the metric associated
to the Brownian motion, providing a wide genera1i-
zation of the stochastic variational principles intro-
duced in this paper.

But it is clear that major progress in the whole
program of stochastic quantization would coine
from a better understanding of the physical origin of
the underlying Brownian motion, so that, in particu-
lar, the form of stochastic action, assumed in this

paper, could be explained in more fundamental
terms.
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