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Some evaluations of Bell's inequality for particles of arbitrary spin
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Bell's inequality is applied to a gedanken experiment, where a spin singlet decays into

two spin-s particles. This is done by defining dichotomic observables depending on the spin

components. The range of settings, for which the inequality is violated by quantum

mechanics, is calculated for certain values of s. The classical limit is taken and the results

are compared to those obtained, by an alternative method, by Mermin.

I. INTRODUCTION

In 1964 Bell was able to show that a large class of
local realistic theories must yield predictions that
disagree with those of quantum mechanics, ' thus
demonstrating that the belief of Einstein, Podolsky,
and Rosen (EPR) was erroneous. Bell considered
the followin~ situation introduced by Bohm. A
pair of spin- —, particles are formed in a singlet spin

state, and with opposite directions of motion. If a
measurement of s - n, where n is a unit vector, on
one particle yields the value + —,, then a measure-

ment of s n on the second particle must yield the
1

value ——,, and vice versa, because the total spin is

zero. In this way, it is possible to predict in ad-
vance the result of measuring any component of s
on one of the particles, by first measuring the same
component of s on the other. According to the ar-

guments of EPR, concerning locality and realism, it
follows that the particle has inherent properties,
which determine the value obtained when measur-

ing any component of its spin. This implies that
the quantum-mechanical description of reality is in-

complete, and that a more refined description might
be possible. However, using the conditions of local-

ity and realism, Bell derived an inequality which
was found to be incompatible with the predictions
of quantum mechanics. Since 1964 the notion of
locality and realism has been analyzed further,
Bell's theorem has been proved for virtually every
conceivable local realistic theory, and Bell's inequal-

,J
ity has been generalized in several ways. For ex-

ample, it has been adapted to experimental tests.
Most of the results support quantum mechanics,
but so far, it has been necessary to rely on addition-
al assumptions in order to arrive at the conclusions.

Inequalities have been derived, involving the spin

components in X directions. Although for every 1V

the necessary and sufficient conditions for the ex-

istence of a local realistic theory can be expressed as

a set of linear inequalities of Bell's type, it is not

known whether these can be generated in a simple
manner. It is not even known if the inequalities for
N =3 are sufficient for all N, but it is believed that

they are not.
It is possible to derive inequalities for other sys-

tems. 7 Mermin has done this for a spin-s singlet

pair, ' and he has shown that it is violated by quan-

tum mechanics for a range of settings that vanishes

as I/s when s~ 00. In this paper, an alternative to
Mermin's approach is presented. Following a sug-

gestion by Bell, the spin-s case is handled, not by
deriving new inequalities, but by defining new di-

chotomic variables. Applied to quantum mechan-

ics, this method, despite its simplicity, works even

better than Mermin's method.

II. BELL'8 INEQUALITY

Consider the gedanken experiment with the spin-

singlet pair. If we introduce the observables

A (n)=2s n, where n is a unit vector, the follow-

ing holds: We can measure two families of observ-

ables A &(n) and A2(n) such that

IA, (n)
I
= IA, (n)

Ai(n)A2(n)= —1,
(A&(n&)A2(n2)) =f(8),

(lb)

(lc)

where cos8 =n
&

~ n2.
A~(nl) and Aq(n2) are, of course, bearing on the

two particles, respectively. If we now suppose'
that

A |(n&) is independent of n2 and vice versa, and
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that the A (n)'s have definite values for all n 's, re-

gardless of the directions chosen in the actual exper-
iment, it is straightforward to derive Bell s inequali-

ty. Choose three directions a, b, and c. For each
pair, the assumptions allow us to form the quantity

Ai(a)A2(b)+Ai(a)Ap(c) .

TABLE I. Bell's inequality for a spin-s singlet pair. {a)
Mermin's results (y =sin8). (b) The results for case I. (c)
The results for case II. (d) The results for case III.

(a)

~
(m2(c) —mi{f))

~

& —,{s+1)y

The absolute value of this can be rewritten using
(la) and (lb),

~

A i(a)A2(b }+A1(a)A2(c)
~

= ~Ai(a)A2(b)
~
[I+Ay(b)A2(c)]

=1—Ai(b)A2(c) .

Upon averaging, the equality changes to an inequal-
ity,

~
(A](a)A2(b)}+(A](a)Az(c))

~

& 1 —(A i(b)A2(c) } (2)

or, in terms off(8 },

I f(8.s)+f(8., )
I +f(8b, ) &I .

3

2

1

2
3

2
5

2
7

2

—(8y' —4y ) & —,y

5y' —6y +3y & —,y
'

(40y2 84y +96y6 —40y8) &2y

(b)

foM{8) (x =cos8)

——(x+x )

——(3x —2x +3x )

(9x + 15x 33x +25x )

(c)

foM{8) (x =cos8)

90'

38.17'

24.08'

17.58'

90'

49.81'

34. 11'

25.84

A suitable choice" is to let 8b ——8„=8 and

8b, ——28, which gives the inequality we are going to
use,

f(28)—2j'(8) &1 . (4)

Note that this holds as an equality for 8 =0. If lo-
cality and realism are assumed the derivation of
Bell's inequality is valid for every IA;(n;)I, i =1,2
that satisfies (1). We shall focus our attention on
experiments where a spin singlet decays into two
spin-s particles. Here the observables A i(n ) and

A2(n) will be functions of the spin s of the two
particles, respectively. The function f(8} will be
analytic. ' That is important, since it means that
the inequality (4) will be violated at least for angles
near 8=0. Indeed, for small 8, f(8} can be ex-
panded in a MacLaurin series:

1

2

1
3

2

2

—(1—4x )

—( —2+6x —9x )

7 ( —3—9x +30x —25x )
1 89 45 2 555 4 525 6 1225 8—( ——+—x ——x+—x — x)9 16 4 8 4 16

(d)

foM{8)= —1+, cos"{8/2)
S+—

2

45'

26. 16'

18.52'

14.35

90'

63.86'

52.00'

44.96'

violation will be called 8 . Before specifying AI
and A2 we will so discuss Mermin's method.

f(8)=—1+c8 "+0(8 "+'), c & 0, n Ez+

and the inequality (4) becomes

(2"—2)8'"+O(8'"+') &0,

which is clearly violated. The maximal angle of

III. MERMIN'S METHOD

Mermin derived a new set of inequalities. If
m;(n;) is the value of s; n; obtained in a certain
measurement on a singlet pair, the following rela-
tion holds:

mi(a)m2(b)+mi(a)m2(c)=mi(a)[mz(b)+m2(c)]=mi(a)[m2(b) —mi(c)] &s
~
m2(b) —mi(c)

~

.

(5)
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The expectation value of mi(a)m2(b) is'

&m, (a)mz(b))= ——,s(s+1)a.b . (6)

because in that case m~ ———m2. The quantum-
mechanical correlation function is obviously given

by

For large s Mermin considers the case when a and b
are nearly orthogonal and therefore the angle be-
tween them is n. /2+8. Similarly the third direc-
tion c is chosen in the same plane as a and b mak-
ing an angle of n. /2+8 with a and an angle of
m. —28 with b. The inequality now becomes

—,(s+1)»n«&
I
m2(b) ml(c)

I
~

m) EM)+

m2EM2

p(mi, m2),

AM(8)= g + X — X
m) EM)+ m) EM) m) EM)
m2 EM2+ m2 EM2 m2 EM2+

(10)

For small s the inequality assumes the forms given
in Table I(a}. For large s, it is convenient to put
8 =a /s and the final result, when s ~ ca, is

dx sin(4a sinx)1— & —3a,
4Q sinx

which is violated for a & 0.56S9.

IV. METHOD OF
DICHOTOMIC OBSERVABLES

+1 if mi EM~+,
A) ——'

—1 if mi CMi (9a)

and similarly

+1 if mz&M2+,
A2 ——'

—1 if mz&M2
(9b)

In order to get perfect anticorrelation for 8 =0 it is
necessary to choose M2+ ———M, and M i = —M+, ,

We will now construct the observables A i(n) and
A2(n ). First divide the possible outcomes of a mea-
surement of ni s i into two sets: M i+ and Mi . If
a measurement of ni s i yields the value mi, then

Ai is defined by

(12)

and I I
mi, m2)„- „- I are the common eigenvectors

of the commuting spin operators s i
.n i and s 2 ni

If we insert this g, in the expression for p (m i,m2)
we will find that

1
p(mi m&}=

I &
—mi 1m'2s+1 n&n2

(d' )~,m2 (13}

(The explicit form of d', is given in Ref. 12.}
It remains to decide how to partition the m values
into two sets. This can be done in very many ways.
The three choices made here are not necessarily the
most important ones, but their symmetry gives
them a few technical advantages, and perhaps an
aesthetic appeal.

where p(m i,mz) is the joint probability of finding

n) s )
——m) and n2 ~ s2 ——m2. Mathematically

p(mi, m2)=
I &y, Imi, mg)„- „-

I

where g, is the singlet wave function'

1
S

(2 +1)' ' ( —1) +'Im, —m)-

I (half-integer spins only) Mi = I —,, »»I =Me
1 3

—,, ——,, . . ., —sI =M,

II (integer spina only) Mi = IOI =M2

(14a)

(14b)

(1Sa)

M, = I
—s, —s + 1,. . ., —1, + l, ... ,s I =Mi+ .

III (all spina) Mi+ ——IsI, Mi =I —s),
M, =I —s, —s+1, . . . , s —1]=—M2+ .

(1Sb)

(16a)

(16b)
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S

FIG. 1. Comparison of the results for small s in the
four cases.

FIG. 2. The classical model for case I.

A. Results for case I (a)

For small values of s the summations in (10) can
be performed. ' The results can be found in Table
I(b). For large s we may, as Mermin did, put
8 =a/s. Then one can perform many summations,

just keeping the two leading powers of s, by replac-

ing them by integrations. The result is
2n

00

AM(8)= —1+—g c„
$ n=1

n

c„= g ( —I)"+~
(n!) „p o

or, with an integral representation,

1+0—
$2

(17)

2 " cotx
f&M

———1+ [Jo(a sinx) —1]dx
%$ —~ X

1+0—
$2

When s is large, 8~ = 1.8248/s, which is more than
three times larger than Mermin's value.

B. Results for case II

The first few correlation functions are found in
Table I(c). For large s we can again let 8=a/s.
Here we need but one element of the rotation ma-

trix:

AM(8) = —1+ [1 (doo) l ~

s+1/2 (19)
FIG. 3. (a) The classical model for case II. (b) Projec-

tion of (a).
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But for large s, doo(a/s) can be "identified" with
Jz(a) by inspection. So

C. Results for case III

In this case the correlation function is simply

and when s is large 8~ = 1.1207/s.

(20)

1 —cos4, 8
S+—

2
2

2=—1+

fqM(e) =—1+
S+ ~

(21)

(q)
S-"l

8J

0 ~

"d.$$

(c)
S+$

-O. s'i

FIG. 4. (a)—(c) Correlation functions for case I (Ref.
15). The classical case is linear and the quantum-
mechanical case is curved.

FIG. 5, (a) —(c) Correlation functions for case II. The
classical functions are convex and the quantum-
mechanical functions are sinusoidal. Two independent
particles will have a correlation f=—(2s —1)~/(2s + 1) .
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Now something new occurs when s is large. Instead
of e=a/s, we get e=a/vs and

AM(8) = —1+—(1—e ' )+0a~2

s s

(22)

When s is large 8~ = 1.1040/v s, which is substan-
tially "better" than all previous results, yet this is
the simplest case.

We compare the results for the four cases in Fig.

s sine) —,s sine . (24}

Test this function in Bell's inequality (3):
(25}

The classical counterpart to case I is also obtained
when s is considered to be an ordinary vector.
Then A (n ) =sign(n . s ) and from Fig. 2 it is readily
seen that

2gf j(8)—= (Ai(a}A2(b)) = —1+, 0&8&m .

V. Classical limits ~8.,+8.,—~ ~+8b, &n. =-- (26)

It might be instructive to compare the quantum-
mechanical results with those from classical
mechanics.

In Mermin's case we want to calculate
(

~

s .a+ s .b
~
), but this is easy when s is just a

vector of magnitude s:

I
s '&+s b

I

= ls. ll~+b I

= /s, /2sin =2/s, /sine,
2I9

2

(23)

where the z axis is taken along the direction of
Ia +b The . average of

~
s,

~

is —,s, so
(

~

s a+ s b
~
) =s sine, and the inequality is

trivially satisfied:

O,b+0„+Hb, (2m. ,

0„(8,b+Hg, . (27)

These relations are automatically satisfied for every
choice of a, b, and c, so Bell's inequality does hold.

Case II on the other hand requires more work. A
natural suggestion is to represent the spin with a
vector of magnitude s + —, and to let s .n be round-
ed off to the nearest integer {for integer spin s}.
With this procedure, every value of m will have the
same probability.

Look at Fig. 3. If s points through a shadowed
surface, A&(a)A2(b)=+1 (remember the comple-
mentary definitions of Ai and A2), and if it does
not, A i (a )A2(b )= —1. We need the solid angle of a
spherical "lune" I.s(8 ), and of a ring, Bs ..

5 . d —p . d +p p cos(8/2)
Ls (8 ) =2 2 arc cos +sin —arc sin —arc sin —2 arc tan

d 2 d (1—p) d (1+p) d
for 8)5,

(28a)

I.s(8)=0 for 8&5, (28b)

5 4m.
B5——4m sin —=

2 2s+1
The correlation function can then be written

(29)

f,i(8)= — 3—
2s+1

+ [L,(8)+I.,(~ 8—)] . -1
(30)

The correlations functions for cases I and II are

where sin(5/2) = I/(2s+1), d =cos(5/2), and
p= [cos (5/2) —cos (8/2}]'~ have been intro-
duced;

given in Figs. 4 and 5, respectively.
The third case is similar to the second. Here we

have sin(5/2) = 1 —I/(2s + 1) and

4 1f,j 1+ ——Ls(—~———e),
2$ + 1

(31)

where s can be both integer or half integer.
It is not immediately obvious that the two last

correlation functions satisfy Bell's inequality (3),
but they are derived from models which are both lo-
cal and realistic, so we can safely conclude that they
do.

In connection with Fig. 4 we should mention a
remark due to Bell. If f(8) is subject to the re-
strictions (i) f(n. 8)= f(8 ), (ii) f(—0)=—1; (iii)—
f(8) satisfies Bell's inequality (3), then f(8) cannot
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FIG. 6. A function which does not violate Bell's in-

equality. The slope is k & 2/~ or 0. FIG. 7. A function which does violate Bell's inequali-
ty. f(8)= —cos8+(28/n )[1—(28/m ) ], 8 =31'.

f(n8)(nf(8)+n —I -=

8
1

f(8)—( —1)

(32)

for which 8 =tr yields the desired result

f-
n

2
& —1+—

n
(33)

To prove the last part, consider the function in Fig.
6. It is not hard to verify that it satisfies conditions
(i), (ii), and (iii), but it is not bounded by the classi-
cal limit.

It is also possible to produce functions, which do

give stronger correlation than that given by the clas-
sical straight line for arguments 8 =ir /n (and
8=m. —n. /n) n =1,2, . . .. This does not have to be
true for other arguments.

To see this, first note that if all three directions
are chosen in the same plane, then, from Bell's in-

equality (3),

f(8+@)&f(8)+f(@)+1=-

not exceed the classical limit, but nevertheless
violate Bell's inequality (see Fig. 7).

VI. CONCLUSION

The range of settings for which quantum
mechanics violate Bell's inequality has been calcu-
lated for three different sequences of dichotomic
observables. The results are found to be of the same
magnitude, at least for small s, and in every case
larger than those obtained by Mermin, who used a
more sophisticated approach. It has been shown
that a violation always occurs, and the choice of ob-
servables does not seem to be critical. It is also not-
ed that the violation of Bell s inequality is not pri-
marily due to the strength of the correlation but de-
pends crucially on the shape of the correlation func-
tion, although a strong correlation is necessary.
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hypothesis of local realism. Several ways to do this
have been suggested, see Refs. 4—6.

~ ~The choice is obtained by looking for a locally maximal
I

f(8 ) =g d ~dpi',

violation when B,b is fixed.
~~f(8 ) will be formed from rotation matrix elements:

ds (8) g( l)r
' ' l cos{s+mi)!(s+m2)!(s—mq)!{s—m2)! i 2( g/2) ' ~ (sing/2)

(s +m2 —r)!(s —m
&

—r)!(m &
—mz+r)!r!

~3The quantum-mechanical expectation value of
m&(a )m2(b ) is easily calculated using the singlet wave

function {12),
(m&(a)mq(b))—:(P, ~

s, a sq. f
~ Q, )

=a b(g,
~
s) a sp a (g, )

S

a ~ m
2s+1 ~

= ——s(s+1)a
3

t4That this really is the proper wave function can be veri-

fied by operating on it with s ~ n and the correspond-

ing step operators.
L. S. Bartell {Dept. of Chemistry, Ann Arbor, Michi-

gan) has independently worked out the spin- —case

(with positive and negative m values lumped together)
(private communication to J. S. Bell).


