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A slight modification of Dirac’s method of Hamiltonian analysis for constrained systems
is introduced. It leads to a verification of Dirac’s conjecture that first-class secondary con-
straints are always symmetry generators in each of the counterexamples to that conjecture
which have appeared in the recent literature. Those counterexamples associated with dif-
ferentiable Hamiltonians are studied here; the cases involving nondifferentiable Hamiltoni-
ans will be considered separately. The relationship between the Lagrangian and Hamiltoni-
an descriptions is studied in some detail and is used to motivate our calling the form of the
secondary constraints derived via this modified method the natural form of the secondary
constraints. Along the way we distinguish between symmetries of the Lagrangian (or Ham-
iltonian) and symmetries of the Euler-Lagrange (or Hamilton’s) equations; we also distin-

guish between form and content invariance.

I. INTRODUCTION

The procedure introduced by Dirac! to deal with
constrained Hamiltonian systems provides a sys-
tematic way to obtain a Hamiltonian from a La-
grangian, even when the momenta conjugate to the
generalized coordinates are not all independent func-
tions of the velocities. In many such cases, because
there are more degrees of freedom appearing in the
formal description than the number of actual physi-
cal degrees of freedom, some elements of the formal
description may be chosen arbitrarily without affect-
ing any physical predictions. This freedom of
choice implies the existence of symmetry transfor-
mations which change the value of the arbitrary ele-
ments without changing the physical state of the
system.

Dirac’s Hamiltonian formalism is particularly
suited to discover the dynamical generators of inter-
nal symmetries. In fact, some of these generators
(linear combinations of the first-class primary con-
straints) are automatically found through the deter-
mination of a Hamiltonian, Hy, which gives the
correct time development of the system. Other sym-
metry generators often appear in the formalism in
the form of first-class secondary constraints. Dirac
postulated that these latter always generate symme-
try transformations.? If this is true, then the first-
class secondary constraints can always be added to
H with arbitrary coefficients to form a new Hamil-
tonian Hp, the so-called extended Hamiltonian,
which will generate a time development physically
indistinguishable from that given by Hr.

27

Several examples which appear to contradict this
hypothesis have been found.>~® In each of these
counterexamples, as analyzed in the recent litera-
ture, there are first-class secondary constraints
which induce observable changes in the dynamical
variables; the extended Hamiltonian generates equa-
tions of motion which (unlike those associated with
Hy) differ in content from the Euler-Lagrange
equations.

Those counterexamples for which the Hamiltoni-
an is differentiable are reexamined here. It is found
that there is a method of Hamiltonian analysis
which, when systematically applied to each of these
cases, yields results in full agreement with Dirac’s
conjecture. The counterexamples with Hamiltonians
which are not differentiable will be considered
separately.’

Section II is devoted to a discussion of the Hamil-
tonian analysis to be applied to the examples of Sec.
IV. The method used here is, for the most part,
consistent with the method described in Dirac’s
book? and in the text by Sudarshan and Mukunda®;
it is therefore only sketched here. It differs from the
standard approach only in that, given in the form of
the primary constraints, it explicitly indicates a pre-
ferred form for the secondary constraints and in the
fact that this preferred form differs from the one
emphasized by Dirac in his original exposition.!
Since his emphasis was closely related to his early
definition of weak equality, we explore the concepts
of weak and strong equality in some detail and end
up with definitions which are somewhat different
from the usual ones.
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In Sec. III, the types of symmetry which may be
manifested by the examples are considered, and the
relationship between symmetries in the Lagrangian
formulation and symmetries in the Hamiltonian for-
mulation is explored. The concept of content (as op-
posed to form) invariance is introduced. The exam-
ples are analyzed in Sec. IV. First, symmetries of
the Lagrangian description are studied and are used
to predict the form of the dynamical symmetry gen-
erators. Then the Hamiltonian analysis is applied.
In each case, it is found that the first-class secon-
dary constraints generate symmetry transformations
and that they agree with the generators which have
been predicted by the Lagrangian-inspired analysis.
Furthermore, if the symmetry transformations are
applied to the Lagrangian itself, a new Lagrangian is
obtained which leads to equations of motion
equivalent to the original Euler-Lagrange equations
and to a new canonical Hamiltonian closely related
to the extended Hamiltonian. Section V is reserved
for some general comments and conclusions. It in-
dicates that the method used in this work may pro-
vide a systematic way to understand which first-
class secondary constraints generate symmetry
transformations. In fact, even this examination of a
few particular examples leads to some insight into
the connection between the symmetry transforma-
tions generated by a constraint ¢ and the symmetry
transformations generated by that secondary con-
straint X which arises from the condition d¢/dt =0.
In the Appendix, the question of the choice of form
of the primary constraints is considered.

II. THE METHOD
OF HAMILTONIAN ANALYSIS

Consider a system which has a finite number of
degrees of freedom.’ There are N dynamical coordi-
nates g, and N velocities ¢, =dg, /dt. The dynam-
ics is determined by a Lagrangian L(q,q), in terms
of which the N momentum variables are defined:

_oL
94,
If the momenta are not all independent functions

of the velocities, then (2.1) implies a set of relations

om(q,p)=0, m=1,...,.M . (2.2)

(2.1

Pn

The functions ¢,,(q,p) are the primary constraints
of the theory. The choice of form of the primary
constraints will be considered in the Appendix. For
now, we assume that we have chosen some particu-
lar form ¢,,(g,p) on which to base the discussion
which follows. In the cases to be examined in Sec.
IV, the primary constraints arise because there is

some coordinate y whose time derivative does not
appear in the Lagrangian. Thus, the momentum
definitions yield p, =0, which we will take to be the
primary constraint.

The Hamiltonian is defined to be p;g; —L. It is a
property of the Legendre transformation that, even
though the velocities cannot all be expressed in
terms of the coordinates and momenta if there are
primary constraints, the Hamiltonian depends only
on the coordinates and momenta when the momen-
tum definitions (2.1) are used.>®

Thus, we may write

H(p,q)=p;q;—L . (2.3)

The calculus of variations applied to this (con-
strained) Hamiltonian leads to the equations of
motion

PRC): S 3 m
S T (2.4)
OH _ 3m

o oy, fm
P ag; " dg;

where the coefficients u,, are unknown. If the Pois-
son bracket (PB) between two dynamical functions is
defined in the usual way, then the time derivative of
any dynamical function may be expressed as

A4 jp,q) =11, H] +umlf ]+ L .

(2.5)

The form of Egs. (2.4) and (2.5) suggests the follow-
ing useful definition. Hy, which is given by

Hr=H+up,¢,, , (2.6)

is called the total Hamiltonian. Since, at this point,
the u,’s are not determined, any terms on the
right-hand side (RHS) of (2.3) which are proportion-
al to the primary constraints can be absorbed into
the sum u,,d,,. Thus we will, without loss of gen-
erality, take H in Eq. (2.6) to be that part of the
Hamiltonian which does not include any terms pro-
portional to the primary constraints. Although the
term df /0t must be included on the RHS of (2.5)
for any f which has an explicit time dependence, its
presence is not essential to the discussion which fol-
lows. Hence, for the sake of brevity, it will not be
written out explicitly when the time derivatives of
the constraints are computed; of course, in any
theory in which the constraints are explicitly time
dependent,'® such a term will appear, but the results
derived below will be unaffected.

The primary constraints ¢,, must be preserved in
time. Thus, for each k and all i, it must be the case
that
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T _ | 2.7)
dt!

Before explicitly imposing these consistency condi-
tions, it is essential to reexamine the idea of equality
as it applies to relations involving dynamical vari-
ables. Let us start with the following simple equa-
tion involving the coordinate x,

x=0. (2.8)

Clearly the PB of p,, the momentum conjugate to
x, with the left-hand side (LHS) of this equation is
different from the PB of p, with the RHS of the
equation. Thus if the value zero were to be substi-
tuted for x in any expression before all relevant PB’s
with the expression were computed, any bracket in-
volving p, would be computed incorrectly. Since
the equality in Eq. (2.8) must be used with care it
has been given a special name and designation'; it is
called a weak equality and is written x =~0. Any
equality between dynamical functions f(q,p) and
g(g,p) is a weak equality if there exists any dynami-
cal function A(q,p) whose PB with f is different in
value (when evaluated on the hypersurface in phase
space on which the constraint equations are satis-
fied) from its PB with g.

If we now examine the equation

x2=0, (2.9)

we see that, since the value of x is zero, the value of
the PB of any well-behaved function 4 with the LHS
of (2.9) (being simply 2x[h,x]) is zero, as is its
bracket with the RHS. For this reason, Eq. (2.9)
would, in some of the literature on this subject, be
called a strong equation—but this nomenclature will
not be used here. We avoid it because the equality
in (2.9) must also be handled with care and it is use-
ful to give it a name that explicitly expresses this.
For example [py,[px,x?]] is certainly not equal to
zero and thus in (2.9), as in (2.8), we may not use the
equality before computing all relevant PB’s.

In this work, two functions f(g,p) and g(g,p)
which are equal when evaluated on the constraint
hypersurface are said to be weakly equal if there ex-
ists a set of dynamical functions h={h;(q,p)}
which contains a finite number J of elements (not
necessarily all distinct) such that

[hJ’ . -[hZ’[hlaf]]' . ]
#lhy,. . .[hy,[h1,€])...]1  (2.10)

on the constraint hypersurface. With this definition,
every constraint ¢(q,p) which can be expressed as a
polynomial in the coordinates and momenta is
wzeakly zero. Instead of (2.9) then, we should write
x°=0.

Any equality which is not a weak equality is a
strong equality. Numerical equalities are strong
equalities as are definitions.

These definitions of weak and strong equality
serve to classify equalities on the basis of their quali-
tative features. A weak equality is one which can be
broken by successive PB’s; a strong equality can
never be broken in this way. It is in this emphasis
on qualitative features that the definitions above
differ from the more commonly used definitions.!!

In order to be precise, it is necessary to specify the
constraint hypersurface on which a weak equality is

valid. In what follows, the symbol = will be used

to indicate a weak equality which is valid on that
hypersurface in phase space on which the primary
constraints vanish. The unadorned symbol =~
denotes an equality that holds on that hypersurface
on which all of the constraints to which the system
is subject are zero.

We can now require that Eqgs. (2.7) hold. We start
with the first time derivative and indicate that it is
sufficient for the equality to be a weak one,

[¢k’H]+um[¢k’¢m]z0 . (2.11)

Equation (2.11) can be viewed as a set of inhomo-
geneous linear equations to be solved? for the coeffi-
cients u,,. It may happen that this set of equations
cannot be satisfied by simply making an appropriate
choice of the u,,’s or by virtue of the vanishing of
the primary constraints. However, if the system is
consistent, it will be possible to find a solution if we
can set certain dynamical functions, X'V, to zero;
such dynamical functions are called secondary con-
straints.

Because we will eventually be interested in the
transformations they generate, we need to be as de-
finite about the form of the secondary constraints as
we can be without having a particular theory or type
of theory in mind. Equations (2.11) are linear equa-
tion; suitable linear methods can be used to solve for
the u,,’s and, in this work, only linear methods will
be used to discover the secondary constraints. To il-
lustrate this point consider a system in which the ex-
pression for ¢ (i.e., [¢p, H]+uy,[dr,6,,]1) does not
explicitly involve any of the u,,’s. Then

b =[x H]=mbp + X, (2.12a)
that is,
de XL, (2.12b)

(0)

where we assume that X' is independent of the pri-

mary constraints. If X{!’ is not identically zero, then
it must be set (weakly) to zero; it is a secondary con-
straint. No matter what its explicit functional form,
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XS,” itself is the secondary constraint and not its
square or square root or any nonlinear modification

of it. The symbol & will be used to indicate that an

equality is true if both the primary constraints and
the X'V vanish. We have ¢; (7)0.

Like the primary constraints, the secondary con-
straints must also be preserved in time. In order to
ensure that they are, the consistency procedure
which was executed for the ¢’s must be repeated for
the X''”s. Once again this may lead to definite ex-
pressions for some of the u,,’s or to further secon-
dary constraints X'®. The X®”s must also be
preserved in time and so the process continues.

The following notation will be useful. Let X7
represent a constraint which is derived during the
gth stage of the consistency procedure; that is, the
condition X\?~0 is implied by a relation
(d/dt )(a,-j)(}q_”)zO. It will sometimes be con-
venient to write a primary constraint ¢; as X}o).

Further, let = denote an equality which is valid on
q
that hypersurface in phase space on which all of the

constraints, primary and secondary, which have
been found after following the consistency pro-
cedure g times are zero; it will be called a gth-stage
weak equality.

Consistency has been assured when further appli-
cations of the consistency procedure lead only to
identities or to constraints which have already been
derived. It is important to be clear about which
constraints can legitimately be considered to have
been “already derived.” To make this determination
for any particular case we examine the action of the
constraints in question as the generators of canoni-
cal transformations, since it is this action which will
be the focus of our attention. Let C; be a constraint
which generates transformations 8,q; and 8;p; in
the dynamical coordinates: 8,9y =a;[qx,C:],
8o =a4[pk,C1], with a; completely arbitrary. If
C, is a constraint which is derived at a later point in
the calculations and if the transformations
8:2qx =aslgx,C2 ], 8pr =aslpy,C,] are, for arbitrary
a,, just a special case of 8;g; and 8,pi, then C, may
be considered to have been already derived. In gen-
eral, if C; can be expressed as a;;C;, where the C;
are constraints which have already been derived and
the ay; are well-behaved coefficients, then Cy itself
may be considered to have been already derived.
The a;; may be dynamical functions; however, even
if they are, they are never responsible for any ob-
servable changes which may be generated by Ci
since, for all dynamical functions V(q,p),

SiVig,p)=0ax[V(q,p),ax;1C;
+aaii[Vig,p),Gl,

where k is not summed over. Thus, the only
transformations induced by C; which are not obvi-
ously simply sums of constraints are those which are
induced by the action of the C;’s; we are therefore
justified in considering these latter as fundamental
and the C;’s as already derived.

For systems in which the consistency analysis is
as straightforward as it can be (and this includes
many cases of physical interest), the secondary con-
straints can simply be derived as time derivatives of
primary or already derived secondary constraints.
However, it is possible for the situation to be more
complicated. For example, it may happen that all of
the consistency relations involve the u,, but only a
subset of these relations is independent, so that there
will be secondary constraints which do not emerge
automatically. We therefore consider the general
case to demonstrate the existence of a definite form
for all secondary constraints. (These considerations
also provide a convenient algorithm for working out
these more complicated applications.'?)

Suppose that the tth application of the consisten-
cy procedure (where ¢ is less than or equal to n, the
number of applications necessary to ensure con-
sistency) yields M, distinct secondary constraints
X\, and a total Hamiltonian

Hr=HY4+pPd? (2.13)

where H'" is completely determined, the U;')’s are

completely arbitrary, and the <I>f,”’s are linear com-
binations of the primary constraints. For ¢=0,
H©=H, which is in fact completely determined,
the v,ﬁO)’s are just the u,’s, which are in fact com-
pletely arbitrary at this stage, and the &5 are sim-
ply the primary constraints. The X5 »s are not
secondary constraints, but are instead the primary
constraints.

We must impose the conditions!>
[Xi't),H(t)]+v,§’)[X£'t),(Dy)]zO . (2.14)

Let (2.14) contain R, linearly independent equations.
Consider the homogeneous equation B/[X{,®{"]

~0 and define ®'*" to be BY®; there are
(1

M, —R, such linear combinations and each has the
property that [X§,®Y*V]~0. Write the

total  Hamiltonian  as  H 4y tUyg{+D
+o DU+ where the ' t! are R, linear com-
binations of the ®” which are independent of the
@'+, When the total Hamiltonian is expressed in
this way it is clear that the conditions X ;,')zO cannot
restrict the v’ *" and so these coefficients remain
arbitrary.

We will now show that there are as many as R,
linear combinations of the X§"s for which the condi-
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tion that their time derivatives vanish serves to fix
the u/'*'"s. We will also show that there are at
least M, —R, combinations whose time derivatives
do not (weakly) involve the u/'*"’s at all; these
combinations may possibly lead to further secondary
constraints.

Define the M, X R, matrix A; to be [X, Wi+,
There are nonsingular matrices S (an M, XM, ma-
trix) and T (an R, X R, matrix), such that

1g,
SAT=A"~ BE (2.15)
where 1 R, denotes the R, X R, identity matrix. Now

consider the combinations S,, X", and define u”*”’

tobe T 'u{*+Y),
(ScbX(t) cb[X(t) (I)]

+Scb[X$,”,‘I’5,‘,+"]u,‘,f D (2.16a)

(Scme Y~ cb[Xm H(‘)]+Schbm .y (t+1) ,

(2.16b)
(Ses X5V = Sep (X5, H]

1g

+ u(t+1)f (2.16¢)

The last M,—R, equations do not involve the
coefficients u’ at all and may possibly lead to fur-
ther secondary constraints X\’ )~S o[X,HP). If

the first R, equations are still lmearly independent
after the X' *! have been set to zero, then they
determine the first R, u”s. If only R, of these R,
equations are independent at this point, then there
will be R,—R/ linear combmatlons of the \Il("*”
which we will denote by ® *! with d running from
M,—R, to M,—R/, whlch have -the property
[x o ‘D('“)] 0 There will also be R, indepen-

dent combmatlons of the W{*'s which we will
denote by W *!" with m running from 1 to R, .

The total Hamiltonian may now be rewritten in
terms of the WY +'’s and the complete set of
<I>(‘+”’s, and the procedure outlined above for the
<I>?’+1 s and the ¥’ +'”s can again be followed.

Let us assume that n applications of the con-
sistency procedure are sufficient to ensure that the
constraints are preserved in time. The total Hamil-
tonian can be written as

Hr=H+U,@,+v"o" , .17

where the U,,’s are fixed, the v\™’s are arbitrary, and
the <I>a" ’s are linear combinations of the primary

constraints which have weakly vanishing PB with
every constraint, primary or secondary. Now that
the consistency procedure has been completed there
are K secondary constraints. They may be added to
the primary constraints to form the set
C={¢,(p,q):¢,~0, t=1, M+K}. A dynamical
function is said to be first class if it has weakly van-
ishing PB with every element of C, i.e., with all of
the constraints, primary and secondary. Any
dynamical function which is not first class is second
class.?

The ® are first class. Because they enter into
the total Hamiltonian with arbitrary coefficients it is
possible to show that they produce changes in the
dynamical variables which do not change the physi-
cal state when they act as the generators of infini-
tesimal canonical transformations.?

In addition to the <I>£,") there may be other linear
combinations of the constraints, some involving just
the secondary constraints and some involving both
secondary and primary constraints, which are also
first class. Dirac has conjectured’ that these may
also act as symmetry generators.'* This would mean
that the extended Hamiltonian,

HE=HT+wab ’ (2.18)

where the w, are arbitrary and the summation is
over all first-class constraints X,, would always gen-
erate the same physical time development as H.

The examples considered here seemed to deny the
validity of this conjecture. Before going on to study
these counterexamples, it is useful, both to see how
this method actually works and to compare it with
the one more commonly used, to study the following
simple system:

L=5x4+5x% . (2.19)

The momenta are p, —x, Dy 10 and the Euler-
Lagrange equations are X =xy, 7x 2=0. The system
described by this Lagrangian has an x coordinate
which is fixed to be zero and a y coordinate which is
arbitrary. The Hamiltonian is H =—;— xz_ 2x2 Vs
and the total Hamiltonian is HT=;px2——-x y
+ap,. The consistency conditions are
1

py=7x>=0, (2.20a)
Dy =XX=xp, =0, (2.20b)
Py =3Py +XPx=py’+x%y

~0=p,2~0, (2.20c)
by~ -;itpx2=2p,xy ~0. (2.20d)

From the viewpoint of ensuring consistency we
are finished, since (2.20d) is satisfied as a conse-



27 MODIFICATION OF DIRAC’S METHOD OF HAMILTONIAN.. .. 1757

quence of (2.20b) and it is obvious that all further
time derivatives will involve at most linear combina-
tions of the constraints x2, xp,, and p,2. Thus by
setting these three dynamical functions (weakly) to
zero, we guarantee that d"p, /dt"~0 for all n. The
full set of constraints is { py,xz, Xpy,Px2}. Each of
its elements is first class, and each is a symmetry
generator. To see this, consider the action of the
generator ap,>+Bx>+yxp, +0p,,

X—>X+20pc+yx ,
DPx—>Dx —2Bx —ypy
(2.21)
y—y+o,
Dy—Dy .

Since none of these transformations changes the
physical state, each is a symmetry transformation,
and the extended Hamiltonian,

Hpg =HT+an2+Bx2+7’xpx +opy ,

should (and does) generate equations of motion
which have the same physical content as those gen-
erated by Hr, as long as a is not — . (The concept
of content invariance will be discussed in Sec. III.)

It is possible to follow another path®’ which
diverges from the one sketched above during the
derivation of the secondary constraints

Py=7x*~0=x~0. (2.22a)

The secondary constraint x2~0 would be linearized.
This leads to

% =py ~0 (2.22b)

and

Dx=xy=0. (2.22¢)

Equation (2.22¢) is satisfied by virtue of (2.22a); the
consistency procedure is complete. The full set of
constraints is {p,,x,p,}. The secondary constraints
x and p, are second class and, from the point of
view of Dirac’s conjecture, this is just as well since
neither generates symmetry transformations.

The two treatments lead to the same physics. The
difference between them lies in the form of the
secondary constraints and so naturally also in the
form of the transformations generated by the secon-
dary constraints. This example has helped to illus-
trate that even though each secondary constraint X
has an explicit, well-defined form, it may be possible
to obtain correct dynamical results by using another
function ¥(X) in its place to ensure consistency. In
particular, if Y(X)=X =0 and (d/dt)W¥(X)~dX /dt,
then imposition of (d/dt)¥(X)~0 will ensure the
necessary condition dX /dt ~0. However, for an ar-

bitrary function f(q,p), the PB [f(q,p),¥(X)] may
not be even weakly equal to [f(g,p),X]. This means
that in general ¥(X) and X generate completely dif-
ferent transformations of the dynamical variables.
Hence if X is a symmetry generator, ¥(X) may very
well not be and vice versa.

III. THE SYMMETRIES:

THE RELATIONSHIP BETWEEN SYMMETRIES
OF THE LAGRANGIAN FORMULATION
AND THOSE OF
THE HAMILTONIAN FORMULATION

It is reasonable to expect that the symmetries of
the Hamiltonian formulation will be closely related
to those of the Lagrangian formulation. We should
therefore be able to learn about one by studying the
other. We will start with the Lagrangian descrip-
tion, study its symmetries, and use them to predict
the symmetries of the Hamiltonian description. In
order to make as close a contact with the Hamiltoni-
an formulation as possible, we will allow ¢ and ¢ to
transform independently. All transformations will
be viewed as active transformations.

In this work consideration has been restricted to
those symmetry transformations for which the
transformation parameter can be chosen arbitrarily
(except perhaps for isolated values). For example,
transformations which, by the following definitions,
are symmetry transformations only for constant
values of the transformation parameter have been
omitted.

A. Symmetry transformations of the physical state

In order to describe how the symmetries of the
Hamiltonian description will be derived from those
of the Lagrangian description, it will be useful to
discuss symmetries of the equations of motion and
symmetries of the Lagrangian and of the Hamiltoni-
an as well as symmetries of the physical state. Of
course, from a physicist’s point of view, it is the
symmetries of the physical state which are the most
fundamental, and that is what is meant by the word
“symmetry” as it is used, unmodified, in this paper.

In using the symmetries of the Lagrangian
description to predict those of the Hamiltonian
description, we begin by examining the symmetry
transformations

9—q+3849(q,q),
3.1)
g—q+54(q,9)

[where in general 8¢+(d /dt)8q], which do not alter
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the physical state. Each of these will be translated
into Hamiltonian language by replacing the veloci-
ties by their expression in terms of the coordinates
and momenta,

q9—q+389(q,9(q,p)) ,
q(q,p)—4(q,p)+84(q,9(q,p)) .

Now each of these transformations can be thought
of as having been generated by some generator!® G
with 8g=¢€[q,G] and O&p=€[p,G]. For each
transformation we will construct the associated G.
Of course, in general G will also effect transforma-
tions other than the one being considered. For ex-
ample, the generator G=p,p, which generates
x—x+ap, also necessarily generates the transfor-
mation y —yp +ap,. All other such transformations
associated with G are found and are translated into
Lagrangian language, which is to say that p is re-
placed by p(q,q) wherever it appears,

(3.2)

—q+8q(q,p(q,9)),
9—>410919,p\q,9 (3.3)

r(q,q)—plq,9)+8p(q,p(q,q9)) .

The full set of transformations of the coordinates
and velocities which are associated with G consists
of the original transformation and all of those others
which are necessitated by the form G must take if it
is to generate the original transformation. We ask
whether or not each of the transformations in this
set is a symmetry transformation. If the answer to
this question is yes, then G should be a generator of
symmetries within the Hamiltonian description.
Consider the system introduced in the preceding
section. The transformation x —x'=x+4ax is a
symmetry transformation. This transformation is
generated by G=xp,, a generator which also gen-
erates the transformation p,—p,—ap,. In La-
grangian language, this additional transformation
translates to x —x —ax, which is also a symmetry
transformation. xp, is a symmetry generator.

B. Symmetry transformations
of the equations of motion

If a transformation transforms the equations of
motion into equations which have the same solu-
tions as the original equations, then we will say that
the equations of motion are content invariant under
the transformation and the transformation will be
called a symmetry transformation of the equations
of motion.

Certainly if the equations of motion are form in-
variant under a particular transformation, then they
are also content invariant under it and that transfor-
mation is a symmetry transformation of the equa-

tions of motion. The concept of content invariance
is more general than that of form invariance though,
because it is possible for a transformation to
preserve the content of the equations of motion and
yet to change their form.

Simple examples in which equations of the form

F=0,

(3.4)
G=0,
are transformed into equations
F=0, (3.5

G +aF+BF=0,

which describe the same physical system are exam-
ined in Sec. IV. There are other theories (with more
physical content) for which the equivalence between
the set of transformed equations and the original set
is not as easily established. One such, which is still
relatively easy, is the Maxwell theory.

Expressed in Hamiltonian form,? with the metric

(4,—,—,—), the equations of motion are
=0, dp7*=0,
dpdo=arbitrary , dpdy =7 +0;4, , (3.6

do*=0;(8;Ax —xA;) .

If Ay —A; +0xA, where A is arbitrary, then all of
the equations but one are unaffected. The equation

oAy +300x A=7F+3, 4, 3.7

is not of the same form as the original. But another
of the equations which is preserved indicates that
0pdo, and hence 4, is arbitrary. Thus, since (3.7)
may be rewritten as

QoA =T +3r(Ag—0pA) , (3.8)

it is clear that A;—A;+0;A is a symmetry
transformation when taken by itself, even though it
does not manifestly preserve the form of the equa-
tions of motion.

These examples provide illustrations of transfor-
mations which leave the physical content of the
equations of motion unchanged even though they
alter their form. The examples to be studied in the
next section also have symmetries of this type. Thus
even though they are obvious and easily recognizable
symmetries, they are missed by an algorithm to find
symmetry generators which requires form invari-
ance'® of the equations of motion.

Starting with a symmetry transformation of the
equations of motion expressed in the language of the
Lagrangian (i.e., in terms of the ¢’s and ¢’s), we may
translate it into Hamiltonian language and proceed
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exactly as for symmetry transformation of the phys-
ical state to obtain symmetry generators G;.

C. Symmetry transformations
of the Lagrangian and Hamiltonian

Let us apply a transformation T'(q,q,a) to the La-
grangian L(q,q), where ¢ is not assumed to satisfy
the equations of motion. The transformed Lagrang-
ian, L'(g,q,a), is a function of the coordinates, the
velocities, and the transformation parameters a.
The variational principle can now be applied to L’,
treating the a as numerical rather than dynamical
variables. If and only if the equations of motion ob-
tained in this way are content equivalent to those
obtained directly from L, then T(q,§,a) will be
called a symmetry transformation of the Lagrang-
ian.

Similarly, if

H(q,p) — H"(q,p,a),
T(q,p,a)
and if H" leads to equations of motion which are
content equivalent to those generated by H, then
T(q,p,a) will be called a symmetry transformation
of the Hamiltonian.

The next step in learning about symmetries of the
Hamiltonian description through studying the La-
grangian is taken by applying a symmetry transfor-
mation to the Lagrangian itself,

L(q,g) — L'(g,g,a),
T(q,4,a)

where the equations of motion associated with L’
are content equivalent to those associated with L.
We can now go one step further by obtaining from
L', via the Dirac formalism, the total Hamiltonian
Hy. Hp will generate equations of motion
equivalent to those generated by Hr, the total Ham-
iltonian derived from L, because L and L’ yield
equivalent equations of motion.

Hf and Hy can now be compared. If their differ-
ence contains a sum of terms B3;G; where the f3; are
arbitrary, then an argument of Dirac’s indicates that
each of the G;’s is a symmetry generator.

Consider, for example, the transformation
y—y + B, where B is completely arbitrary, applied to
the Lagrangian of the preceding section,

L =%)22+%yx2 ——:_ L'=%J€2+%yx2+%ﬂx2
y—y

—H'= %pxz-— %yxz——;-Bx2 . (3.9

It is easily verified that L' and H' generate equa-
tions of motion which are equivalent to the original
equations. Since x? appears in H' multiplied by an

arbitrary coefficient, it must be a symmetry genera-
tor.

We can also apply transformations directly to the
Hamiltonian itself. For example,

1 1
Hr=5p*—syx*+ap,

—Hr=Hr+8Hr , (3.10a)
where
8Hy=[Hr,0p, +Bx*+yxp;],
Hi=3p—5yx>+ap,— yox* (3.10b)

—2Bxpx —ypx*—1px? .

Hy generates a dynamical development which is
physically equivalent to that generated by Hy; there-
fore x2, xp,, p,%, and Py are symmetry generators.

We note that the set of symmetry transformations
of the Hamiltonian (or Lagrangian) is not necessari-
ly the same as the set of symmetry transformations
of the physical state.

IV. THE EXAMPLES

A. Cawley’s first counterexample

The first Lagrangian to be considered here is one
which was introduced by Cawley,

L=xz++yz°. @4.1)
This Lagrangian leads to the momenta

Px=Z,p;=X,p,=0, (4.2)
and to the equations of motion

2?=0,z=0, Xx=yz . 4.3)

Their solution sets z to be zero, x to be constant, and
leaves y arbitrary. Note the presence of the primary
constraint p,.

The following transformations leave the content
of Egs. (4.3) unchanged:

y—y+B,

z—z+Az (A£—-1),

x—>x+3z+nz, (4.4)
z—z+¢z+yz,

x—x+oz+Ez .

Here Greek letters have been used to denote arbi-
trary functions of the time.

These transformations are listed separately, in the
first column of Table I. Each transformation
T(q,q) is translated into its Hamiltonian equivalent
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TABLE I. This table refers to Cawley’s first Lagrangian (4.1). The symmetry transformations of the Euler-Lagrange
equations, displayed in the first column, are translated into Hamiltonian language (column 2) so that possible symmetry
generators G(g,p) (column 3) can be identified. Any other transformations associated with G(g,p) (column 4) are translat-
ed back to Lagrangian language (column 5) to determine whether or not they, too, leave the Euler-Lagrangian equations

content invariant. This table indicated that p,, z? zp;, and p,2 are good candidates for symmetry generators.

Are all
transformations
G(q,p) T'(q,p) generated by G
Transformation ‘ Generator of Transformations symmetry
T(q,q) T(q,p) T(q,p) generated by G T'(q,q9) transformations?
y—y+B y—y+B Dy None Yes
z—z+Az z—z4Az zp, P:—>D;—Ap; X —>x—Ax No
X —x+3z P:—D.+32 z? None Yes
X —>x4nz Pz—>D:+"MDx Zpy X—X—1z X -—>X—1z Yes
Z—z+¢z DPx—>Dx+Dx XDy X —X—¢x XX —¢x No
zz4yYz Dx—>Dx +¥2 xz D:—>D:+Ux X—x+Px No
x—x+E2 x—>x+Epy Dy’ None Yes
x—x+40z x—x+0z Zpx Dz—>D:—0Dx X —>x—0zZ Yes

T(q,p) in column two. In column three the genera-
tor G(q,p) which generates T'(q,p) appears and it is
followed (in column four) by any other transforma-
tions, T'(q,p), also generated by it. Finally, in
column five, the T"(q,p) are translated into their La-
grangian equivalents and, by asking whether all of
the transformations T"(q,q) are [with T(q,q)] sym-
metry transformations of the Euler-Lagrange equa-
tions, we identify the special set of generators
{Py:2%2px,p,?}. Each of the elements of this set
should, in the Hamiltonian formalism, generate
symmetry transformations.

Dy is the primary constraint while all of the other
elements of the set are set to zero by the equations
of motion. Furthermore, each element of the set has
weakly vanishing PB’s with all of the others. It is
tempting to predict that z%, zp,, and p,? will be
secondary constraints in the Hamiltonian formula-
tion; such a prediction would be accurate.

Before going on to verify this last statement it is
interesting to study the transformations (4.4) from
another point of view. They may be applied directly
to the Lagrangian L to yield L',

L'=(x+3z492)(2+¢z +1z)
+2 [Ty +B)1+A)?] . 4.5)

(Note that we have not assumed that the transfor-
mation parameters are infinitesimal.)

Taken as a new Lagrangian, L’ implies equations
of motion which are equivalent to those derived
from L as long as neither A nor ¢ have the value — 1
(so we exclude these values), and if and only if Y=4¢.

With this substitution, L’ leads to the total Hamil-
tonian Hp:

, p:p :
HT=apy+ 1:_; +2p, TZ_-%_E
M ¢

_1+¢Px _1+¢sz
— (1412 y +B) . (4.6)

The only dynamical functions in H; which multi-
ply coefficients which are arbitrary and independent
(independent in that they are not necessarily related
to any of the other coefficients) are p,, which multi-
plies a; zp,, because of the presence of =; p,?, be-
cause of 7; and z?, because of the presence of B.
Thus, Hy can, without loss of generality, be written
as

Hr=ap, +Bzp, +1px* +0z°+ — 3(14 1) 2>

PzPx ¢
+1+¢ 1+¢2Pz- (4.7)

As expected, Hy generates equations of motion
equivalent to the original Euler-Lagrange equations
if ¢£—1 and A~ —1. The secondary constraints
are the same as before and the equations of motion
describe the same system. Since Dy» ZPx» Px2, and z2
all multiply completely arbitrary coefficients in Hy,
they are all symmetry generators. Nothing is
learned about the symmetry properties of either p,p,
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or zp, since their coefficients are related—once the
coefficient of p,p,, 1/[1+¢(2)], is fixed, so is
—&(2)/[14+6(2)], the coefficient of zp,. However,
by examining the transformations they effect on the
dynamical variables, it becomes clear that each of
these generators generates symmetry transforma-
tions only for constant values of the transformation
parameter. Therefore, neither p,p, nor zp, could ap-
pear multiplied by independent arbitrary coefficients
in a dynamically correct Hamiltonian. Thus, al-
though their value is zero when the equations of
motion are satisfied, if they themselves were to ap-
pear as secondary constraints in the consistency pro-
cedure they would negate Dirac’s conjecture. This
indicates how sensitive the validity of the conjecture
is to the precise form of the constraints.

Now for the Hamiltonian analysis. p, is the only
primary constraint. The total Hamiltonian is

1 2 .

Hr=ap,+p,px—5yz". Using Hp to calculate
Py, We obtain p,=5z% Since py must be weakly
Zero, 722 must also be weakly zero, as must its
time derivative (d /dt)(-;-zz)=sz ~0. Similarly,
(d /dt)(zp,)=p,2~0. But (d/dt)(p,?) is identically
zero since Hrp is independent of x. Thus the com-
plete set of constraints is {p,,z%2p,,p,} as predict-
ed.
The dynamical equations derived from Hj; are
identical in content to the Euler-Lagrange equations,
as is easily seen from the fact that Hy is just a spe-
cial case of Hr. y is arbitrary, thus p, is a symme-
try generator. Each of the secondary constraints
also generates unobservable changes in every dynam-
ical function and is therefore also a symmetry gen-
erator.

The extended Hamiltonian Hp,

1
Hg=ap, +Pzpx +vpy>+02°+p.p, — 522,

also generates the correct dynamical and constraint
equations. In fact, Hy is really just a special case of
Hy. This indicates that the extended Hamiltonian is
not necessarily the most general Hamiltonian associ-
ated with the system. Nevertheless, Hy, is a general-
ization of Hy and may be derived from it as follows:

Hp=Hr+[Hy,—20p,— 5Bz —yzp, +ep,?] .

(4.8)
This treatment differs from that given by Cawley
in that the secondary constraint (z2) which has been
used to ensure consistency is the PB of the primary
constraint p, with the Hamiltonian and not a modi-
fication of it. (Cawley uses z.) Similarly, all further
secondary constraints are taken to be the PB of oth-
er constraints with the Hamiltonian and are not al-
tered before they are used to derive more consistency
conditions.

Of course, if the value of z?2 is zero, then the value
of z is also zero and if, in addition, d"z%/dt" is zero
for all n, then the value of dz/dt is zero as well.
Thus the conditions that Cawley derives are certain
to be consistent with those derived here. In fact, his
set of secondary constraints {z,p,} consists of func-
tions of the dynamical variables which are zero
when the equations of motion are satisfied. But
even though z and p, have zero PB with each other
and each has zero PB with p,, neither is a symmetry
generator. The change induced in x by ap, is a, and
for arbitrary « this leads to an arbitrary change in x
which is inconsistent with the most general solution
of (4.3). Equations (4.3) would also be contradicted
by the arbitrary change in p, (i.e., x) which is gen-
erated by Bz. So the modification of the secondary
constraints has led to a set of first-class secondary
constraints which are not symmetry generators.

In his letter, Cawley indicates that his choice of z
in preference to z* was motivated by two considera-
tions. First of all, he wanted to derive those con-
sistency conditions which were not trivial conse-
quences of constraints which were already known.
We have noted though that the content of these new
consistency conditions would have been obtained in
any case by examining enough successive time
derivatives.

Secondly, he points out that, within the frame-
work of Dirac’s original definitions, the equality
z~0 uniquely presents itself as the weak equality
and thus seems to occupy a special place in the for-
malism.

B. Cawley’s second counterexample

Next we will study another example proposed by
Cawley,’

L=3i++yi*. 4.9)

The momenta are p,=z, p,=0, p,=x+yz. The
Euler-Lagrange equations are z=0, 22 =0, and
X +(d /dt)(pz)=0. The z coordinate is constant as
is the x velocity. y is arbitrary so that the primary
constraint p, generates a symmetry transformation.

The study of the following symmetry transforma-
tions of the Euler-Lagrange equations and of the
physical state (Table II) indicates that p,? is also a
symmetry generator and this is verified by the study
of the symmetries of the Lagrangian,

y—y+a,
z—>z+pPz,
X—x+oz, (4.10)
z—z+Az,

X—X +’}/Z. .
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TABLE II. This table refers to Cawley’s second Lagrangian (4.9).
Are all
T'(q,p) transformations
G(q,p) Other generated by G
Transformation Generator of transformations symmetry
T(q,q) T(q,p) T(q,p) generated by G T'(q,q9) transformations?
y—y+a y—y+a Dy None Yes
z—z+Pz Px—>DPx+BPx Xpyx x—x—Bx x—x—PBx No
P:—>p:+Pypx YZPx py—py+Bpx  py—py+Bzz
but no equivalent for p, No
x—x —fyz x—x—fyz
xX—X+0z Pz—>Dz+0Dx Zpx X—>X—0zZ X—X—0z No
z—z4Az Z—Z+Apy DzDx X —>x+Ap; x—x+Ax +Ayz No
X—X+YZ X —X +Ypx P’ None Yes
Applying (4.10) to L yields Since p, ~0, we must have (d/dt)p, = —;-px 2~0. But
. e 1 .2 2 (d /dt)p,* is identically zero, so the full set of con-
'= 1 > 1 . e ’ el
L'=G+o2)(14+B)+ 7y +a)z’(1+8) straints is just {p, ,pxz} . The extended Hamiltonian,
4.11) Hp, is identical with Hy in (4.13) and may also be

L’ leads to equations of motion which are content
equivalent to the original Euler-Lagrange equations
only if B is a constant which is not (—1). Eliminat-
ing the (not entirely arbitrary) transformation
z—z+f3z, L' becomes

L'=(G+02)i+5:4y+a). 4.12)
This L' leads to the total Hamiltonian Hr,
H;'=apy +A'px2+psz_’;_ypx2 ’ (4.13)

where the arbitrariness of the coefficients has been
used. As expected, p, is multiplied by an arbitrary
coefficient and so is p,*, confirming that it too is a
symmetry generator.

The Hamiltonian analysis starts with the deriva-
tion of the total Hamiltonian Hy from L,

derived by transforming Hr:
Hp=Hr+[Hr,—2Ap, +¢p;*] .

Hpy and Hp generate equivalent equations of motion.

C. Allcock’s counterexample

In 1975, Allcock studied a Lagrangian which
turns out to be an abbreviated version of the preced-
ing one,

L=y, (4.15)

The momenta are p, =0, p, =2yz, and the equations
of motion are z2=0, (d /dt)(yz)=0. Here too z is a
constant, y is arbitrary, p, is a symmetry generator.
The symmetry transformations of the Euler-
Lagrange equations and of the state (Table III) show
that p,%/2y is also a symmetry generator. Further-

Hr=ap, +p.py—39P<" -

(4.14)

TABLE III. This table refers to Allcock’s Lagrangian (4.15).

more, when the symmetry transformations shown in

Are all
T'(q,p) transformations
G(q,p) Other generated by
Transformation Generator of transformations symmetry

T(q,q) T(q,p) T(q,p) generated by G T'(q,q9) transformations?
y—y+a y—y+a Dy None Yes
z—z+Bz P:—>p:+Bp: zp, z—>z—Bz z—>z—Bz No

z—z+4o0z z—z+op, /2y p:2/2y p“,—>p",—cr.z7,2/2y2 py—>py—2022

(no equivalent for p,) Yes
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the first column of Table III are applied to the La-
grangian (4.15), the result is a new Lagrangian L’,

L'=zy+a)(14+B8)*, (4.16)

which, for B —1 leads to equations of motion
equivalent to the original equation and to a total
Hamiltonian
2
1 P
Hp=hp,+————
T T4 (y+a)14B)
which again suggests a symmetry generator propor-
tional to p,>/y. The Hamiltonian analysis agrees,

(4.17)

P

Hp=M\

T Py+ 4y ’

2

. P:

=— =0, (4.18)
Py 4y2

d |p’| —ap’
b |22 P .

dt y2 y y2

The set of constraints {p,,p,2/y*} is first class.
Both of its elements are symmetry generators (as
long as y5£0), as may be seen from Hamilton’s equa-

tions. The extended Hamiltonian is
2 2
p
He=hp,+ 2 o2 (4.19)
y

4y
Under the transformations induced by the con-
straints, Hy becomes Hp,

2
Hf=Hr+ HT,pr+a—‘;’2
2
P: 2Ao B
=X = _E .
Dy + 4 |y 4|’ (4.20)

Hr, Hg, and Hr all generate equivalent equations of
motion.

In his analysis, Allcock notes that the bracket of
py with H is a symmetry generator, but indicates
that it is not this bracket (which is proportional to
p,2) which is the constraint, but rather p, itself.
Presumably, this latter choice is made in order to
use that equality which is a weak equality of the
first kind. In any case he raises an interesting point
for the comments that, in this theory, a generator
proportional to p,’> generates trivial symmetry
transformations. Of course this is true of its action
on dynamical quantities when the equations of
motion are satisfied. However, Eq. (4.20) shows
that p,? generates a transformation of the Hamil-
tonian which is a symmetry transformation of sorts
(since the new Hamiltonian generates equations of
motion which are equivalent to the original equa-
tions) even when the equations of motion are not as-
sumed.

V. CONCLUSIONS AND IMPLICATIONS

The validity of Dirac’s conjecture that all first-
class secondary constraints generate transformations
which do not change the physical state is crucially
dependent upon the form chosen for those con-
straints. What we have proposed here is a prescrip-
tion for the form of the secondary constraints. This
prescription supplements the method of Hamiltoni-
an analysis which was originally suggested by Dirac
and which has been described and expanded upon
elsewhere. It is consistent with the main features of
the formalism outlined in Dirac’s book,? but (in its
definitions of weak and strong equalities) not with
his original exposition." In that work, quantitative
features of an equality (whether it was broken by an
amount of order € or €2, for example, under a varia-
tion of the dynamical valuables of order €) served to
define it as either weak or strong. The constraints
were always written in such a way that their varia-
tions were of order €; the constraint equations were
modified if necessary so that they could satisfy the
requirement of being weakly valid. We have noted,
however, that it is possible to distinguish between
weak and strong equalities on the basis of qualitative
features and have chosen to do so. Within the
framework set by these new definitions, there is no
reason to modify the constraints which are derived
directly from the consistency conditions. In the ab-
sence of qualitative guidelines, we have chosen this
unmodified form to be the form of the secondary
constraints.

The advantage of this approach is that the secon-
dary constraints can be expressed in a way which is
more theory independent than is otherwise possible.
We have

Y g, 40

~a;; )
J] dt

With such an expression in hand we can systemati-
cally explore the properties of the secondary con-
straints and the transformations they generate. In
particular, we can explore the general question of
the validity of Dirac’s conjecture.

Although it is useful to have a neat general form
for the secondary constraints, we must ask whether
the form we have chosen has any particular merit.
In an attempt to answer this question we have exam-
ined some of the simplest symmetry transformations
which are apparent in the Lagrangian description of
the systems we have studied and have shown that
they correspond to or imply symmetry transforma-
tions which are generated by the first-class con-
straints of the Hamiltonian description. Along the
way to this result we have seen that the extended
Hamiltonian is not always the most general Hamil-
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tonian to generate the correct dynamical equations.

The method introduced here is, in a sense, the
minimal method. Consistency demands that
d"¢ /dt" vanish for all n, so we simply impose these
conditions directly (allowing for addition of equa-
tions and multiplication by nonsingular functions).
However, although it is neat in concept it is not al-
ways so in practice. For it is clear that in general
this method requires more than the minimal number
of steps necessary to ensure consistency. In fact, by
working with a form of the secondary constraints
(the form suggested by Dirac) different from the one
which is a direct result of the consistency condi-
tions, it is sometimes possible to streamline the pro-
cedure considerably and still obtain all of the correct
dynamical results. Of course this can be an advan-
tage. But it seems to be an advantage which is
bought at the price of knowing the natural form of
the secondary constraints and the transformations
which they generate. In many cases this informa-
tion is not needed and for them the usual stream-
lined approach is preferable. However, when the
symmetry properties associated with the secondary
constraints are important, then use of the method
introduced here seems appropriate.

In order to show that our results are not in con-
tradiction with previously derived results,'> but in-
stead apply to the more general situation, it has been
necessary to distinguish between form and content
invariance. It has also been useful to distinguish be-
tween symmetries of the Hamiltonian (or Lagrang-
ian) and symmetries of the physical state.

This last distinction is necessary in the following
case. Let X’ be a constraint which leads to a fur-
ther constraint via the relation [X'),HY]=X k’“)
For j <n (where n is the number of applications of
the consistency procedure necessary to ensure con-

51stency) X¢+V is not necessarily first class even if
x¢ is, since HY is guaranteed to be first class only
for n=j. Now let X{’ be a first-class constraint
which generates transformations which do not
change the physical state. X¥’ induces a change in
the total Hamiltonian which is weakly equal to
aX¢*V, with a arbitrary. Clearly, if X g+ s
second class, then Hy= HT+a[HT,X,;’] generates
equations of motion which are different in content
from the equations generated by Hy alone. In this
case, X g’ is a generator which generates symmetry
transformations of the state but not of the Hamil-
tonian. .

On the other hand, let X be a first-class con-
straint which generates symmetry transformations
of the Hamiltonian. If XY*+"=[x% HY], then
xy+y generates transformations which are sym-
metries of  the  physical state  since
Hr=Hr+aX;] U+D generates equations of motion

which are content equivalent to those generated by
Hy. In this case, X +! can be placed on the same
footing as the primary constraints right from the be-
ginning, even before the variational principle is ap-
plied.
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APPENDIX

We have proposed a form for the secondary con-
straints which can be determined (up to linear com-
binations) in any particular case once one is given
the form of the primary constraints. In the cases
considered so far, the first-class secondary con-
straints, so determined, generate symmetry transfor-
mations. It is tempting to conjecture that this is al-
ways the case. However, the validity of this conjec-
ture cannot be tested until another point is resolved.
This is because the form of the secondary con-
straints is, given the method for finding them sug-
gested here, sensitive to the form of the primary
constraints; so we must address the question of how
to choose the primary constraints.

Consider the most general Lagrangian quadratic
in the velocities

L=74¢,a;4;+bidi+c (A1)

where a;;, b;, and ¢ may be functions of the 7 in-
dependent coordinates. The momentum definitions
give

Pi=a;gj+b;, (A2)
where we have utilized the symmetry of a;; with

respect to the interchange of its indices. There are
nonsingular n X n matrices S and 7T such that

1
) (A3)

mn

Smi@ijTin=| ¢

where the dimension of the unit matrix is equal to 7,
the rank of the matrix a. Thus, (A2) can be written
as

Smi(pi—bi)=|
mi
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Define m,, to be S,;(p;—b;) and A, to be T~ 1,,;q;.
Then (A4) is

1
Ty =

A (A5)

mi

The last n —r equations given in (A5) may be taken
to be the primary constraints. With the first 7 in-
dices denoted by upper case latin letters and the
remaining n —r indices denoted by greek letters, we
have
Ty =My » (A6)
Te=0.

In this case, it is possible to find what seems to be
a reasonable form for the primary constraints by
taking linear combinations of the momentum defini-
tions. This approach is analogous to the one applied

earlier to discover the secondary constraints.

Although the quadratic Lagrangian (A1) is obvi-
ously not the most general one possible, it does cover
many cases of physical interest. Furthermore, even
if the Lagrangian is not quadratic, it may happen
that that part of the Lagrangian which leads to con-
straints is. Even so, if one is to use the method
presented here as a general method to find the
secondary constraints, then one must also have a
general method to find the primary constraints.
This question will not be considered further here. It
seems more appropriate to first consider the ques-
tion of whether or not the approach suggested here
for quadratic Lagrangians generally leads to first-
class secondary constraints which are symmetry
generators. Depending on what the answer is, it
may be interesting to try to generalize the approach
used here for quadratic Lagrangians, or perhaps to
try some other approach.
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1]t js possible to refine the definitions given here in a way
that may be useful for certain applications. If f~gisa
weak equality, then there is some set (or sets each of)
which contains the minimum number of elements
necessary to force the inequality (2.10). Let W be this
minimum number; we say that the equality f and g is a
weak equality of the Wth kind.

12The results concerning systems of linear equations
which are cited in this section are derived in standard
texts on linear algebra.

BBHW is H+a;¢; with the #’s completely determined.
Thus X » is actually strongly equal to
X H]+m[x0 ¢ ]  +oxy, @], and not to

[Xs,H "'i]-4|~v,5"j [Xﬁ,i),d><a‘5]. However, in our case, it is
legitimate to use this latter expression for X, for two
reasons. First of all, the extra terms it entails
([x{,@;1¢;) are all weakly zero. Second, in this work
we are only interested in the time derivatives of dynam-
ical variables—that is, in the action of only the Hamil-
tonian as the generator of canonical transformations. It
is easily verified that d"g /dt" as computed by succes-
sive applications of [g,H ]+([g,um¢m] is always weakly
equal to the actual expression for d"g /dt". However, if
we were interested in the action of a generator other
than the Hamiltonian on some time derivative
d™g /dt™, we would have to take care to use the correct
expression, unless the generator of interest happened to
be one which preserved the constraints.

14Although in Ref. 2 Dirac mentions explicitly only the
first-class secondary constraints (along with the first-
class primary constraints) as potential symmetry gen-
erators, it is a natural extension to assume that all
first-class linear combinations of constraints should
play the same role.

15It may be the case that ¢; cannot be expressed in terms
of the coordinates and momenta. In this case, the
translation procedure outlined here cannot be applied;
there is no generator G which can be directly associated
with the -transformation of ¢;. Similarly, not all mo-
menta can be expressed as functions of the coordinates
and velocities.
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