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%e investigate, from a group-theoretical point of view, the possibility of implementing

the so-called extended principle of relativity. This consists in postulating that the set of all

equivalent reference frames contains frames whose relative velocities are larger than c, in

addition to those whose coordinates are related by proper orthochronous Lorentz transfor-

mations. %e show that implementing the extended principle of relativity by means of either

real or complex linear transformations results in strong conflicts with experiment and/or in-

tractable problems of interpretation. %'e then briefly analyze alternative approaches to
four-dimensional superluminal transformations, in which the extended principle of relativity

is either weakened or completely abandoned.

I. INTRODUCTION

The concept of equivalent reference frames relat-
ed to each other by well-defined coordinate transfor-
mations probably ranks among the most useful ones
in theoretical physics. It should come as no surprise
then that people have tried to apply it to the largest
possible class of frames In th.e absence of sizable
gravitational fields (or in a sufficiently restricted re-
gion of space-time), an experimentally well-
established set of coordinate transformations be-
tween equivalent reference frames is the restricted
Poincare group, i.e., the group generated by proper
orthochronous l,orentz transformations and space-
time translations. But could the set be larger? A
fascinating extension of the Poincare group is the
conformal group SO(4,2) obtained from the former
by adding dilatations and the so-called uniform ac-
celerations. The fact that exact conformal symme-
try meets with experimental problems is no barrier
to its extensive study, since a broken symmetry often
provides as fruitful a framework as an exact one.

A far more speculative extension of the Poincare
or Lorentz group consists in introducing superlumi-
nal coordinate transformations. ' These are
transformations between reference frames moving
with respect to each other with a velocity larger
than the speed of light in vacuum. The hypothesis
that there exist equivalent reference frames related
by superluminal transformations, in addition to
those related by I.orentz transformations, has been

called the extended principle of relativity. The main
purpose of this paper is to investigate the tenability
of this principle. It is then very important to be par-
ticularly clear in specifying the notion of equivalent
reference frames.

A reference frame associates quadruplets of (real)
numbers to events in space-time in such a way that,
locally, a subset of space-time is one-to-one mapped
onto a subset of R4. The correspondence between
events in space-time and points in R can in princi-
ple be realized by suitably constructed arrays of
clocks and meter sticks. Relative to a given refer-
ence frame, one can parametrize the space-time evo-
lution of physical systems by means of physical
laws. We shall say that two reference frames are
equivalent if the empirically allowed systems are the
same in both, and they evolve according to the same
laws. '

A specific example may help in clarifying the
concept. Assume there are, in a reference frame E,
particles of mass m only, described by the Klein-
Gordon equation

In any frame E" related to E by a Poincare
transformation, the particles will be described by the
same equation, and therefore E" and E will be
equivalent if this is the only type of physical system
allowed. On the other hand, consider a frame j"re-
lated to E by a dilatation (x')"=M&. In terms of
the coordinates of E', Eq. (1.1) now reads
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8„'(8')~'P+)(, m /=0, (1.2)

and therefore K' and K are not equivalent since
similar physical systems evolve according to dif-
ferent laws. Note that it does not help to rewrite the
Klein-Gordon equation as

g&"B&BQ+m /=0 (1.3)

and say that (g'}i'"=A, g"". Indeed a specific matrix
gi'" is then inescapably linked with a specific frame
K, the elements of g""and those of (g'}""being dif-
ferent.

There are very few a priori restrictions on the pos-
sible coordinate transformations between equivalent
frames. In particular, they could well be nonlinear.
It follows from the definition of equivalent frames,
however, that the transformations must form a
group. In fact, it is not difficult to see that the law
of associativity holds, and the law of closure follows
from the observation that if K is equivalent to X'
and E' is equivalent to E", then K is equivalent to
E". The symmetry and reflexivity properties of
equivalence relations likewise entail the existence of
an inverse to each transformation and of the identi-
ty.

Going back to the extended principle of relativity,
we now see more clearly what it means to postulate
the existence of equivalent reference frames related
by superluminal coordinate transformations. This
clearly implies that tachyons must be allowed, and
that their physical laws are the same in their rest
frames as the laws of bradyons are in theirs. More-
over, and most importantly, each transformation in
the group generated by the Lorentz group and the
superluminal transformations relates the coordinates
of equivalent frames. This, we shall see, is a most
stringent requirement, which is often overlooked in
the literature dealing with the extended principle of
relativity. In fact, it is so stringent that it casts seri-
ous doubts on the tenability of this principle.

As our main task is to investigate the conse-
quences of the extended principle of relativity, we
shall restrict ourselves to frames whose space-time
origins coincide. Especially important, among these,
are the ones related by linear transformations. Lo-
cally, these transformations have the property of
preserving inertial motion, or motion in a straight
line. Our experimental knowledge of equivalent
reference frames is such that given an inertial frame,
the only other reference frames known to be
equivalent to it are also inertial frames. So,
throughout this paper, we shall adopt the restriction
to linear coordinate transformations, keeping in
mind that it may conceivably be dropped in the fu-
ture.

The organization of the paper is as follows: In

Sec. II, we consider the implementation of the ex-
tended principle of relativity by real linear transfor-
mations. Recalling earlier results obtained in two
dimensions, we show that the simplest four-
dimensional generalization implies the equivalence
of all frames whose coordinates are related by any
linear transformation of determinant +1. This has
devastating experimental consequences. Under the
assumption that the full group of coordinate
transformations has a Lie structure, the result is
generalized to any real enlargement of the Lorentz
group. Realizing that the extended principle of rela-
tivity cannot be implemented by real linear transfor-
mations, we investigate in Sec. III the popular alter-
native that consists in dropping the requirement of
reality. First we show that enlarging the Lorentz
group by a single complex transformation that
changes the sign of the world interval implies the
equivalence of all frames whose coordinates are re-
lated by any element of SO'(3, 1;C). Here SO'(3, 1;C)

stands for the group of all complex linear transfor-
mations that either preserve the world interval or
change its sign. In particular, it includes all three-
dimensional complex rotations. We then examine
the problems of interpretation raised by complex
transformations. Section IV is devoted to a brief
analysis of proposals for superluminal transforma-
tions which do not postulate, or are best construed
as not postulating, the extended principle of relativi-
ty. The consequences of our results on the tenability
of the extended principle of relativity are summa-
rized in the Conclusion.

II. REAL TRANSFORMATIONS
BETWEEN EQUIVALENT FRAMES

In a previous paper, we analyzed in detail the
problem of defining superluminal coordinate
transformations between equivalent frames in a
universe with one space and one time dimension.
The main result of Ref. 7 was the following: Let a
reference frame K' move with respect to an
equivalent frame K with a velocity u, and let the
coordinate transformations between frames satisfy
the following requirements:

(i) They are real.
(ii) They are linear.
(iii) They leave the speed of light invariant (c= 1).
(iv) They form a group.
(v) The group contains the proper orthochronous

two-dimensional Lorentz group.

Then the coordinate transformations (both sublumi-
nal and superluminal} between K and E' are essen-
tially uniquely determined, and are given by
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&1. (2.2)

x=t', z=z' (2.3)

So it seems that, kinematically at least, the ex-
tended principle of relativity can be implemented
rather nicely in two dimensions. It is widely be-
lieved that, in four dimensions, this is no longer the
case. For instance, it is seen at once that the five re-
quirements satisfied by the two-dimensional
transformations cannot, when restated in four di-
mensions, accommodate superluminal transforma-
tions. Indeed the Lorentz group (together with pari-
ty and time reversal} is the largest real linear group
that preserves the (1,—1, —1, —1) metric, and there
are no real linear transformations that just change
the overall sign of the metric. Dilatations leave the
speed of light invariant, but they represent transfor-
mations between frames relatively at rest. So any
real linear four-dimensional superluminal transfor-
mation is bound to violate requirement (iii). It is
important, however, to realize that this consequence
is ruled out neither by the extended principle of rela-
tivity, nor by experiment. The former simply means
that if there are lightlike particles in one frame,
there must be in any other equivalent frame, but the
ones do not have to be the transforms of the others.
And empirically, we have no easy handle on how
light behaves as seen from the point of view of a su-
perluminal frame.

To investigate the consequences of the extended
principle of relativity, we shall look for a set of
four-dimensional transformations satisfying require-
ments (i), (ii), (iv), and (v') [where (v') refers to the
proper orthochronous four-dimensional Lorentz
group, hereafter denoted by I. i+] and containing at
least one superluminal transformation. But what
does a four-dimensional superluminal transforma-
tion look like? The simplest thing to do at this
point is to take Eqs. (2.1) and (2.2) with

~

u
~

& 1, to-
gether with y =y' and z =z'. (We drop the b, 's,
since space-time origins coincide. ) We new intro-
duce some additional notation. Let R (n;8) denote a
(passive) right-handed rotation by an angle 8 around
a spatial axis n, and let S„- denote the superluminal
transformation given by

(A p)„„=5„5p„5+p„— (2 4)

and satisfying the relations (A p
= —A~p)

[A p,Ars]=5 sApr+5pg s 5P~—5psA~r —.

(2.5)

An arbitrary element 0 in SO(4) can be written as
O=R)ER2, where R) and R2 are spatial rotations
and E is a rotation in a plane including the t axis,
say the (02) plane. (This is analogous to the decom-
position of the Lorentz group in terms of spatial ro-
tations and boosts along a given axis. ) Since spatial
rotations belong to G, G will include SO(4) if it con-
tains all rotations in the (02) plane. Now consider
the product R (z; —m/2)S„-S-. Clearly, it belongs to
6, and one easily checks that

It is easy to show that by applying rotations on S„-,
one can generate any S„- with S„- denoting the super-

luminal transformation, whereby t goes to the
primed coordinate along n, the coordinate along n

goes to t', and the coordinates perpendicular to n

remain unchanged. Finally, let SL(4;R) denote the
group of all real linear four-dimensional transforma-
tions with determinant equal to +1. %e are now
ready to prove the following theorem.

Theorem 1. The smallest group that contains L+
and S„- is SL(4;R).

Proof. Let G denote the group in question. We
have seen that rotations and S- generate S„- for any

n, and therefore S„- belongs to G. It is easy to check
that S„-R(z; —m. /2)S„-S-= T, the time-reversal

transformation. But any element of SL(4;R) either
belongs to SL(4;R) (i.e., has determinant + 1), or is
the product of T times an element of SL(4;R).
Hence it is enough to show that G contains SL(4;R).

Any matrix M in SL(4;R) can be written as the
product of an orthogonal times a symmetric matrix,
both of unit determinant. (Explicitly, M
=[M(M M) ' ](M M)'~ . ) Furthermore, any
symmetric matrix can be diagonalized by a unimo-
dular orthogonal transformation. Thus we can write
M =Oib Oz, where Oi and Oi belong to SO(4) and
5 is diagonal. VA'thout loss of generality we can
take b positive definite; it simply amounts to a
redefinition of Oi. So it is enough to show that G
contains SO(4) and the set of all diagonal positive-
definite matrices with unit determinant.

To show that G contains SO(4), we first observe
that a basis for the Lie algebra of SO(4) is provided

by the six antisymmetric matrices
(0 &a & P & 3), with components (A p)z„given by'
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0 100
—1000

R(z, n—/2)S-S„-= 0 0 1 (}

0 001

=exp —Apl
2

On the other hand, we also have, for any 8

(2.6)
(2.10)

mation with determinant equal to +1. Clearly, such
a strong result clashes violently with experiment and
the laws of physics as we presently know them. To
give a specific example, the following transforma-
tion, which represents a direction-dependent dilata-
tion, is part of SL(4;R):

(A, iAzAp)
' 0 0 0

0 A, i 0 0

0 0 A,z 0

0 0 0 A,i

exp Aoi R (z;8)exp Aoi =exp(8Aoz)

0 100
1000

SPI —
0 0 0 0
0000
1 0 0 0
0 —100

» —0 0 00
0 0 0 0

(2.&)

Recognizing Sp~ as the generator of a boost along
the'x axis, one easily checks that

exp —Api exp(i}iSpi)exp Aoi
4

=exp(gihoi) ~ (2 9}

Thus exp(i}ibpi) belongs to G for any i},. Similarly,
one shows that exp(gzbpz) and exp(g&b, p3), in obvi-
ous notation, also belong to G. But the product of
these three elements represents an arbitrary unimo-
dular diagonal positive-definite matrix. Hence G
contains them all. Q.E.D.

What is the meaning of the theorem we have just
proved'? We have shown that, when implementing
the extended principle of relativity by means of a
group of real linear transformations that includes
L'+ and one superluminal transformation of the
form (2.1},the full group SL(4;R}necessarily results.
That is, there has to be equivalent reference frames
whose coordinates are related by any linear transfor-

(2.7)

which shows that all rotations in the (02) plane
indeed belong to G.

The anly thing left to show is that G contains all
unimodular diagonal positive-definite matrices. De-
fine two matrices Spi alld kpi as

This kind of dilatation is certainly not a symmetry
of the known physical laws. Nor are, in general, the
parity and time-reversal transformations, which also
belong to SL(4;R). The upshot is that a superlumi-
nal transformation of the form (2.1) and the proper
orthochronous Lorentz group L+ are mutually ex-
clusive as coordinate transformations between
equivalent frames.

Theorem 1 can be made stronger in several ways.
We have just made use of a trivial generalization
that consists in replacing S„- by any superluminal
transformation of the form (2.1). [Call it S(v),
v=vx, ~U

~

&1.] S„- is then easily generated by
multiplying S(v} by a Lorentz boost of velocity
—u 'x. More significantly, the theorem can also be
proved if, instead of assuming L+ and S(v), one
just starts with the rotation group in three-space and
S(v), for finite U. Indeed, the product S(v)S(v) is
then a Lorentz boost with velocity (1+U ) '2v&0.
But one can show that the rotation group together
with any Lorentz boost generates the full L~+. So
the hypotheses of theorem 1 are recovered.

In theorem 1, we have assumed a rather specific
form for the superluminal transformation adjained
to L+. The justification for using that particular
form lies in the fact that it is the simplest generali-
zation of the two-dimensional transformations (2.1)
and (2.2), which were obtained in Ref. 7. However,
one can prove a much more general result if one as-
sumes a Lie-group structure, which concept we take
to include both connected and disconnected groups.
Let g denote the Lorentz metric diag(1, —1,
—1,—1). The full Lorentz group, O(3,1), is a sub-

group af SL(4;R). Clearly, an element S in SL(4;R}
will not belong to O(3,1) if and only if S gS+g. We
shall now prove that adjoining any such S to L+
generates the full SL(4;R) [ar SL(4;R)]. More pre-
cisely, we have the following.

Theorem 2. Let S be an arbitrary element of
SL(4;R) that does not preserve the Lorentz metric,
i.e., S gS+g. The smallest Lie group that contains
S and L'+ is either SL(4;R) or SL(4;R), depending on
whether det(S) is + 1 or —1.
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Proof. We first show that there is at least one ele-

ment W in the Lie algebra of L '+ such that SWS
is not in the Lie algebra of L+. To see this, we sup-

pose the contrary, i.e., we assume that
(SWS ') g =—g(SWS '} for every W in the Lie
algebra. This is equivalent to

W (S gS) = —(S gS)W (2.1 1)

for every W. Now it is easy to show that any ma-
trix g' which satisfies W g'= —g'W, for all W in
the Lie algebra of L+, is a multiple of g. Hence
S gS =kg. Taking determinants on both sides and
remembering that S belongs to SL(4;R) yields
A, =+1. On the other hand, it is well known that
there are no real matrices that just change the sign
of the Lorentz metric. Therefore A, = 1, and
S gS=g, which contradicts the hypothesis of the
theorem. Given an S so that S gS&g then, there
must exist an Wo in the Lie algebra of L+ such that
S&OS ' (and therefore aSWOS ' for any real
a&0) is not in the Lie algebra of L +.

Now let G denote the group we are seeking, i.e.,
the smallest Lie group that contains S and I.+.
Clearly, S ' belongs to 6, and so does
Sexp(a&o)S '=exp(aS&OS '). On the other
hand, Sexp(a&o)S ' is in SL(4;R}, and thus there
is an element in the Lie algebra of G, namely
S&oS ', which belongs to the Lie algebra of
SL(4;R), but not to the one of L+.

We now show that the Lie algebra of G [say
W(G)] must include the full Lie algebra of SL(4;R).
The latter is made up of all real traceless 4&&4 ma-
trices. These constitute a fifteen-dimensional vector
space, which we denote by V. It is easy to show that
any matrix N in V can be uniquely written as a sum
N~+N2, where N~ and N2 satisfy

N )g +gN) ——0,T

N2g —F2 ——0 .T

In this way, V is decomposed into the direct sum of
two vector spaces V~ and V2, respectively six- and
nine-dimensional. V& is just the vector space of the
Lie algebra of I.+.

Clearly then, W(G) contains all matrices in V~,
and we have seen that it also contains one matrix of
the form N~+N2 with N2&0 (namely, S PoS ').
Being an algebra, i.e., having the structure of a vec-
tor space, W(G} also contains Nz, and aN2 for any
real a. Thus any element of the form exp(aNq) be-
longs to G, and so does any A exp(aN2)A ' for A in
L+. But this is equal to exp(aAN2A '). On the
other hand, one can show that the representation of

I ~+ defined on the nine-dimensional space V2 by
S2—+AN2A is irreducible. In fact, it is the well-
known representation of the Lorentz group on a
second-rank mixed tensor [the (1,1) representation].
Matrices of the form AN2A ', when A ranges over
the full L'+, then contain a basis for V2. Since
exp(aAN2A ') is in G for any a, AN&A ' is in
W(G). Hence W(G) contains V2, and therefore V
since it already includes V&. That is, W(G) includes
the full Lie algebra of SL(4;R).

If detS= + 1, all elements are unimodular, so G
is SL(4;R). If detS= —1, all linear matrices with
determinant equal to —1 are also generated. In that
case G is SL(4;R). Q.E.D.

Summarizing the meaning of theorem 2: Assum-

ing that the group G of coordinate transformations
between equivalent frames has a (possibly discon-
nected) Lie structure, contains L+, and includes one
transformation S outside the full Lorentz group, im-
plies that G contains the full SL(4;R) [or SL(4;R)].
This, we have seen, has unacceptable experimental
consequences. Therefore, the extended principle of
relativity cannot be implemented by means of a Lie
group of real linear transformations.

In concluding this section, it is interesting to com-
pare our results, namely, theorems 1 and 2, with
those obtained sometime ago by Gorini. " Gorini
considered the following problem: What are the
possible groups of real linear transformations (in
space-time with one time and n space dimensions)
such that in each case the subgroup of transforma-
tions between frames at rest is exactly SO(n), the ro-
tation group in space? He found that for n )3, the
only solutions are the rotation group itself, the
Lorentz group, and the Galilei group. Clearly,
Gorini's results and ours are consistent, for we have
shown that, loosely speaking, any enlargement of the
Lorentz group implies the full linear group, whose
subgroup of transformations between frames at rest
is much larger than SO(3). In 3+ 1 dimensions,
Gorini's theorem tells us what happens if one postu-
lates that the group of transformations between
frames at rest is exactly SO(3). [He also considers
the case when it is SO(3}+ parity (P).] It does not
say, however, what happens if one postulates a
slightly different or enlarged group. For instance,
should one start with SO(3) + PT, a solution for the
full kinematical group would be SO(4), which is very
different from the Lorentz group. Our aims have
been quite different. %e have shown what happens
when one postulates the Lorentz group plus any-
thing else as transformations between equivalent
frames (not necessarily at rest). The result is that in
any such case there is no choice left. The full linear
group results, with unacceptable experimental conse-
quences.
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III. COMPLEX TRANSFORMATIONS
BETWEEN EQUIVALENT FRAMES

The perceived impossibility (which, to our
knowledge, has been rigorously demonstrated here
for the first time) of an experimentally viable group
of real linear transformations, including both L+
and superluminal transformations, has prompted
many people to relax some of these requirements.
One of the most popular choices in this context con-
sists in dropping the requirement of reality, i.e., in
allowing reference frames related by complex coor-
dinate transformations. ' Obviously, this immedi-

ately raises the question of how to interpret complex
coordinates. ' ' For the moment we shall leave it
aside, coming back to it later in this section. What
we want to do first is again to investigate the conse-
quences of the group property, which necessarily
follows if the transformations relate the coordinates
of equivalent reference frames.

The complex coordinate transformations, first in-

troduced by Olkhowsky, Recami and Mignani, "'
are essentially given by Eqs. (2.1) and (2.2} with

~

u j & 1, and by the equations y =iy' and z =iz'
The matrix CS„- of the transformation obtained by

setting v = 00 is given by

0100
1000
00 '0
000 i

(3.1)

Suppose we take CS„- as a coordinate transformation

between equivalent frames, in addition to the group

L+. The question is then, what group is generated

by repeated products of these transformations? Or,
equivalently, what is the smallest group that con-
tains CS„- and I.+?

Let 6 denote the group in question. Furthermore,
let SO'(3, 1;C}denote the group of all complex uni-

modular 4)&4 matrices that either preserve the
Lorentx metric or change its sign. It is clear that 6
is a subgroup of SO'(3, 1;C). Indeed, CS„- as well as

all elements of L+ satisfy the defining condition of
SO'(3, 1;C), and so will arbitrary products of them.
In fact, we will show that G is exactly SO'(3, 1;C).
This forms the content of the next theorem.

Theorem 3. The smallest group that contains CS„-

and L'+ is SO'(3, 1;C).
Instead of proving theorem 3 directly, we shall

first translate it into an equivalent statement, and
then prove the latter. Let h denote the following di-

agonal matrix:

i 000
0100
0010
000 1

(3.2)

I

Note that hgh '=g and Ii gh =hgh =I. We will
use h to perform a similarity transformation on CS„-
and on all matrices of the standard real representa-
tion of L+. In this way we obtain a matrix C„-

given by

0 i 0 0
—i 000

C =hCS h =
p p p

0 00 i

(3.3)

and a new (equivalent} representation of L+ made

up of complex matrices. It is easy to check that a
basis for the generators of the new matrices is pro-
vided by the six matrices Ajk and iAoj (I,k=1,2,3),
defined in Eq. (2.4). In other words, any matrix ob-
tained by exponentiating a real linear combination
of AIk and iAOJ is related to the original L+ matrices
by the similarity transformation.

Let M be an element of SO'(3, 1;C), and let
N =hMh '. One sees immediately that a necessary
and sufficient condition for M gM =+g to hold is
that N N =+Ibe satisfied. That is, M preserves (or
changes the sign of) the Lorentz metric if and only
if N preserves (or changes the sign of) the Euclidean
metric. In fact, this is just an instance of the well-

known isomorphism of the groups SO(p, q;C) and

SO(p+q; C) (which of course does not hold over the
real numbers}. ' The following statement is then
completely equivalent to theorem 3.

Theorem 3'. Let C;=hCS„-h ' and let

IiIL+ Ih
' denote the similarity transforms of all

matrices of the standard real representation of L+.
The smallest group that contains C„- and

Ii IL+ Ih
' is SO'(4;C), made up of all unimodular

matrices that satisfy N N =+I.
Proof. Let G denote the group in question. C„-

satisfies C„-C„-= I, and any mat—rix N' satisfying
(N') (N')= I can be writte—n as N'=C„-N, with

N N =I. Explicitly, N'=C„-(C„N'). Therefore it
is enough to show that G contains SO(4;C}.

The Lie algebra of SO(4; C) is made up of all com-
plex antisymmetric matrices. A maximal compact
subgroup of SO(4;C) is SO(4;R), whose Lie algebra is
made up of all real antisymmetric matrices. This
means that any element N in SO(4; C) can be written
as a product N =%0, where 0 belongs to SO(4;R}
and K is a coset representative in the space
SO(4; C)/SO(4;R). ' Since SO(4;R) is a compact con-
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nected Lie group, all its elements can be obtained by
exPonentiation, namely as exP(c jiA jl ) with c ii real
arbitrary constants. Furthermore, the representative
K can always be chosen as an exponential of the
remaining generators, i.e., as exp(id~jlA~jl), with d~jl
real arbitrary constants. Therefore it is enough to
show that 6 contains SO(4;R) and all coset represen-
tatives K of the form exp(id jlA jl}

We recall that 6 contains aB elements obtained by
exponentiating real linear coinbinations of Ajk and

iApj T. he following equation, which shows that
exp(8Apz) is in 6 for any 8, is a little tedious but
straightforward to check [Rs ——exp(8A iz )]

1

C„-RgC-R g 'C-C„-Rg

cos8 0 sin8 0
0 1 0 0

—sin8 0 cos8 0
0 0 0 1

=exp(8Apz) . (3.4)

Eleinents of the form exp(cjkAjk) span the three-
dimensional rotation group SO(3;R), and elements of
the form exp(8Apz) make up all rotations in the (ty}
plane. Recalling the discussion of a similar case in
the proof of theorem 1, we see that 6 must include
the full SO(4;R).

To show that 6 contains all elements of the form
exp(id jlA jl), we first recall the well-known decom-
position of the Lie algebra of SO(4;R) into two mu-
tually commuting SO(3;R) Lie algebras. Explicitly,
defining Lj and Lj as

1 I

L;= , ( ze,kl—Ak—l+—AP, ),
1 1

Lj =
z ( z ~jklAkl Apj} ~

(3.5)

one easily checks that [Lj,Lk] =ejktLl, similarly for
LJ, and that [Lj,Lk]=0. From this one concludes
that any 0 can be written as exp(c&L&)exp(cj'Lj'),
and any K as exp(id&L& )exp(idj LJ },where cj, cj, dj,
and dj are arbitrary real coefficients.

Since elements of the form exp(8A pz} and
exp(irjApi) are in 6, the following product also be-
longs to 6 for any q:

On the other hand, exp(i8Api ) is in G, and Apz com-
mutes with A iz. Hence G contains exp(i 8A pz

+iz)Aizi), But

exp(i8Aps+irjA iz)

=exp[ —i(8+rj)Lz]exp[i(8 —z))L3] . (3.7)

—m
exp —Apz exp(ii)Api)exp Apz ——exp(irjAiz) .

2 2

(3.6)

Since 8 and g are arbitrary, so are 8+g and 8—q.
It is not difficult to see that acting on the element

exp[ —i(8+z))Lz]exp[i(8 —rj)Lz] from the left by
an arbitrary 0 and from the right by 0 ' generates
all K's, i.e., all elements of the form
exp(idjL&)exp(id/ Lj ). So 6 contains all K's, and
therefore G includes SO(4; C). Q.E.D.

We have shown that the smallest group that in-
cludes C„- and h IL+ ]ji ' is SO'(4;C). Equivalent-

ly, the smallest group that includes CS„- and I.+ is
SO'(3, 1;C). The two groups are isomorphic. In the
representation where matrices belonging to I '+ are
the standard real ones, SO'(3,1;C) is made up of all
unimodular complex matrices that either preserve
the Lorentz metric or change its sign. This result is
in sharp contrast with a claim often made by Re-
cami and others. ' They have argued that the
group generated by L+ and complex transforma-
tions of the form (

~

v
~

& 1)

+(u —1) 'j +(v —1) 'j
u 0 0

+(u —1) ' 'u +(u —1) ' 0 0
0 0 i 0

0 0 i

(3.8)

is SO(3,1;R) plus a set of matrices obtained by multi-
plying unimodular Lorentz transformations by i and
making a formal substitution P~1/P (where P is
the relative speed}. The problem is that such a set of
transformations is not closed under multiplication.
The smallest group that contains L+ and transfor-
mations of the form (3.8) is the full SO'(3, l;C).

On the other hand, our results are consistent with
those obtained sometime ago by Imaeda. Working
in a quaternionic formulation, Imaeda has shown
that the group generated by the Lorentz group and
transformations of the form (3.8) is one-to-two
homomorphic with a group of linear transforma-
tions of complex quaternions. Imaeda's results can
easily be translated from complex quaternions to
complex 2&2 matrices. Let Z be a complex 2&2
matrix, and let E and I. be such matrices with deter-
minants, respectively, equal to + 1 and +1. The
transformation Z +Z'=KZL then —effects a com-
plex linear transformation of the components of Z,
which either leaves the determinant invariant or
changes its sign. Note that if one writes
Z =zoI +z;o;, then detZ =zo —z;z;, the Lorentz(2)

bilinear form. Real Lorentz transformations corre-
spond to the choice K =+I.~, and Imaeda succeeded
in expressing (3.8) in terms of appropriate K and L.
He then showed that repeated products of Lorentz
and (3.8) generate all transformations of the form
EZI.. These form a group, which has two discon-
nected components, corresponding to the +1 values
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of detL. It is not difficult to compute the Lie alge-
bra of the connected part of this group, and one
finds that it coincides with the Lie algebra of
SO(3,1;C)-SO(4;C). Elements of SO'(3, 1;C) and
pairs (K,L) are in a one-to-two correspondence,
since (K,L) and ( —K, L)—transform Z in the same
way. This illustrates the consistency of our results
with Imaeda's.

The fact that the minimal group containing CS„-
and L+ is SO'(3, 1;C) implies a major difficulty, re-
lated to the problem of interpreting the complex
coordinates. This results from the fact that
SO'(3, 1;C} contains complex transformations be-
tween frames relatively at rest. Consider, for exam-
ple, the matrix M (a) for arbitrary real a given by

1 0 0 0
0 1 0 0
0 0 cosha i sinha

0 0 —i sinA. u cosha

(3.9)

This matrix satisfies MrgM =g and thus belongs to
SO'(3, 1;C). Therefore, by theorem 3, it can be ob-
tained from repeated products of CS- and elements

of Li+. Moreover, since M(a) only acts on space
coordinates, if the coordinates in two frames K and
K' are related by M(a}, the two frames are relative-

ly at rest. One is thus faced with the problem of in-

terpreting complex coordinates not only in super-
luminal frames but in subluminal ones. Moreover,
the transformation equations between two frames
are no longer specified, up to questions of the rela-
tive orientation of the axes, by the relative velocity

P of the two frames. For, if T(P) is a matrix giv-

ing a transformation between two frames with rela-
tive velocity P, then so are matrices such as
T(P)M(a), which clearly do not differ from T(P)
by a (real) rotation of the coordinate axes.

The complex matrices (3.1) and (3.8) are intended

by their proponents to represent coordinate transfor-
mations between equivalent frames having a super-
luminal relative velocity directed along the x axis.
In trying to interpret them physically, several au-
thors have suggested that if the transverse coordi-
nates of an event in one frame become imaginary in
a second frame, they are unobservable in the second
frame. Corben, ' for example, has argued that if a
meter stick parallel with the y axis moves with su-
perluminal speed along the x axis, then its length
cannot be measured by means of light signals
transmitted from one end to the other and hence is
unobservable. This argument is not particularly
convincing, since there are other ways in which the
length of the meter stick can be measured in the
second frame, e.g., simply by determining the coor-

0 & —(y') —(z') & r(X Ur) 2 ~2 2

v —1
(3.10)

dinates of the two ends of the stick at a given time. '

There is an even more serious problem, however.
Since the transformation equations are arbitrary up
to one of the complex rotations, such as M(a), con-
tained in SO'(3, 1;C), there is no way of specifying
unambiguously whether coordinates are real or com-
plex, i.e., whether they are or are not observable.

The necessity, when postulating (3.1), of introduc-
ing the notion of a fully complex space-time was
realized by Imaeda. Fully complex coordinates
had previously been used by Yaccarini and by
Cole. To our knowledge, however, no convincing
interpretation of it has ever been proposed. It has
sometimes been suggested that the complex four-
vectors should be associated with twistors. But such
an analogy, resting solely on the four-dimensional
complex character of both, appears rather shallow.
The standard relationship between twistors and
points in space-time is such that twistors correspond
to lines (in fact, complex ones) more than points, a
point being associated with two twistors. 6 The
relevant group in twistor space is SU(2,2}, the cover-
ing group of the conformal group, whereas the
relevant group in complex space-time is SO'(3, 1;C).
So the complex coordinate transformations, if inter-
preted as holding between points in space-time, do
not seem to be related to twistors, in any direct way.
Conversely, an interpretation of them in terms of
twistors, if at all possible, would spoil the direct
space-time interpretation of the four-vectors.

The complex coordinate transformations (3.1) and
(3.8), being elements of SO'(3, 1;C), transform null
intervals into null intervals. This is often interpret-
ed as meaning that they leave the speed of light in-
variant. Such an interpretation, however, overlooks
the fact that the resulting velocities are complex and
thus cannot be equated with genuine velocities.
Several authors, aware of the difficulties raised by
complex coordinates and velocities, have suggested
that transformations like (3.1) and (3.8) should be
taken as formal devices only, coordinates and veloci-
ties being real in all frames. ' ' But then one could
use real transformations from the outset, and this
would lead us right back to the analysis of Sec. II.
A rather unusual interpretation of (3.8) was also
proposed by Recami and Maccarrone. ' They no-
ticed that the portion of three-space occupied by a
bradyon of radius r at rest at the origin of a frame K
satisfies the constraint 0(g +y +z (p . Trans-
forming the coordinates by means of (3.8), they ob-
tained for the corresponding constraint in K' the
inequalities
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If (3.8) is to be taken literally, then y' and z' are pure
imaginary numbers. But Recami and Maccarrone
take (3.8) to apply to real values of the priined coor-
dinates. At a given t' then, the constraint (3.10) de-
fines an infinite portion of three-space limited by an
infinite cone and an infinite hyperboloid. This
means that a finite portion of three-space in E goes
over into an infinite portion in E, and that a point
goes over into a cone. Clearly this is no longer a
one-to-one mapping of the points in E onto those in
E', and thus the interpretation of Recami and Mac-
carrone falls outside the concept of coordinate
transformations between equivalent reference
frames.

The complex coordinate transformations were
proposed in an atteinpt to salvage the invariance of
the speed of light and the extended principle of rela-
tivity applied to Lorentz and superluminal frames.
Our analysis shows that they have failed on both
counts. On the one hand, they do not preserve the
speed of light since they imply a concept of velocity
different from the usual one. On the other hand,
they entail much too large a set of equivalent
frames, some of which are related by complex coor-
dinate transformations even though relatively at
rest. Thus complex transformations fare no better
than real transformations even on the speed of light
and the extended principle of relativity. Since these
two requirements must be dropped in any case when
introducing linear superluminal transformations, it
seems much preferable to avoid the additional prob-
lems of complex coordinates, and stick with real
ones.

IV. TRANS FORMATIONS
BETWEEN NONEQUIVALENT FRAMES

In the preceding two sections, we have shown that
the full extended principle of relativity, namely, the
adjunction of superluminal transformations to the
proper orthochronous Lorentz group as transforma-
tions between equivalent reference frames, cannot be
maintained. The complete group of transformations
generated in each case is much too large, and con-
tains symmetries which are not possessed by known
physical laws. Once one eliminates the extended
principle of relativity, there are surprisingly few
candidates left in the literature for four-dimensional
coordinate transformations. We will mainly devote
this section to a brief look at them, emphasizing the
ways that the extended principle of relativity is
weakened or dropped altogether.

A. The tachyon corridor

In an approach proposed by two of us, ' there is
still complete equivalence between some frames re-

lated by superluminal transformations, but Lorentz
and rotational invariance no 1onger hold exactly.
More precisely, there are a preferred direction in
three-space, called the tachyon corridor, and a pre-
ferred velocity perpendicular to it. The tachyon cor-
ridor can be taken parallel to the x axis, and its per-
pendicular velocity can be set equal to zero. Let K
be a reference frame moving along the tachyon cor-
ridor. Any frame K' obtained from E either by a
Lorentz boost along the x axis or by a superluminal
transformation of the form (2.1) and (2.2) (supple-
mented with y =y' and z=z') is taken to be
equivalent to E. Thus the extended principle of re-
lativity is weakened to hold only among frames that
move along a preferred direction with a preferred
perpendicular velocity.

In addition to these preferred frames, there are
nonpreferred ones related to the former by arbitrary
elements of L'+. The nonpreferred frames are not
equivalent to the preferred ones; either their velocity
perpendicular to the corridor is different from zero,
or their x axis is inclined with respect to the corri-
dor (or both). The set of all frames can be divided
into two disjoint subsets, so that the relative velocity
of E and E' is superluminal if and only if E and E'
belong to different subsets.

Since Lorentz and rotational invariances are bro-
ken, the question arises of the experimental conse-
quences of such an approach. What breaks L i+ is
the presence of the tachyon corridor, and so one ex-
pects tachyon phenomena to show large departures
from L+ symmetry. Since tachyons have never
been observed, however, this much is not experimen-
tally ruled out. On the other hand, strong couplings
between tachyons and bradyons will produce depar-
tures from L'+ symmetry even in phenomena where
only bradyons are observed. Experimentally, there
are very stringent limits on rotational symmetry
breaking. This in turn restricts tachyon-bradyon
couplings to small numerical values. In an approach
like the tachyon corridor, part of the content of the
extended principle of relativity is maintained, but ta-
chyons are particularly difficult to observe.

B. A different interpretation
of the tachyon corridor

An alternative interpretation of the tachyon corri-
dor was proposed elsewhere in the literature. ' It
consists in associating the corridor not with a fixed
direction in space, but with the instantaneous direc-
tion of motion of a tachyon under observation.
Specifically, the coordinates of a tachyon with velo-
city u are taken to transform according to equations
similar to (2.1) and (2.2), except that the x axis in
those equations is replaced by one parallel with u.
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It turns out that such an interpretation is incon-
sistent. To see this, assume that a tachyon, at rest
in a superluminal frame E', is observed from two
subluminal frames E and E". The coordinate
transformations between X and X', and the transfor-
mations between K" and K', carried out according
to the above prescription, imply coordinate transfor-
mations between K and K" other than Lorentz's.
But this cannot be, since by assumption K and K"
move with a subluminal relative velocity. Further-
more, intractable problems will result if one consid-
ers several tachyons with different velocity vectors
meeting at a given space-time point. Indeed, how
will the coordinates of this point transform? Coor-
dinate transformations should depend only on the
two frames they relate, and not on what happens at
a particular point.

D. Goldoni's faster-than-light frames

A rather different approach to superluminal
fraines was proposed by Goldoni, who first wrote
down the following transformation equations
(~u

~

&1):

t'=(u 1) ' (t —ux—),

x'=(u —1) 'i
( ut+x), z—'=z .

(4.1)

These equations look very much like the ones used

C. Breaking proper Lorentz invariance

Abandoning altogether the concept of equivalence
of frames related by superluminal transformations,
one of us has proposed an approach to superluminal
frames that is rather different from the one dis-
cussed in Part IV A. It is characterized by exact ro-
tational invariance, but broken invariance under
proper Lorentz boosts. Explicitly, there is a set of
preferred frames, all at rest and arbitrarily rotated
with respect to each other. The preferred frames are
all equivalent, but there are nonpreferred frames
moving with arbitrary velocities with respect to the
preferred ones and nonequivalent to them. Imple-
menting such an approach by means of explicit
coordinate transformations leaves one with consider-
able freedom, as illustrated in Ref. 33. In general,
the coordinate transformations between preferred
frames and nonpreferred frames will not have a
group structure. And there is nothing wrong with
that, because they relate different kinds of frames.

This approach to tachyon s and superluminal
frames, being less specific than the one based on the
tachyon corridor, has less predictive power. But it
can accommodate tachyon-bradyon couplings of
substantially larger amplitude, and still be consistent
with experiment.

in the tachyon corridor approach, except for a sign
factor [compare with Eqs. (2.1) and (2.2)]. The two
sets of equations were proposed independently, and
in fact have quite a different meaning. Letting M
denote the matrix representing the transformation
(4.1), and taking g„ to stand for the diagonal matrix
diag( —1, 1,—1,—1), Goldoni points out that

M g„M=g, (4.2)

E. Six-dimensional transformations

The difficulty of generalizing the Lorentz
transformations to u & c results essentially from the
mismatch, in the four-dimensional case, between the
number of spatial and time dimensions. Thus it was
suggested that the problem could be solved by for-
mulating physics in a six-dimensional space with
three space and three time dimensions. ' One can
then postulate syinmetry under the group O(3,3). In
order to yield agreement with observation, one can
try to suppose that all observable time displacements
are along one of the three possible time directions,
say the t~ axis, with the Lorentz group being the
subgroup of O(3,3) which leaves t2 and ts invariant.

where g stands for diag(l, —1,—1,—1). Goldoni
then considers the set of all matrices satisfying Eq.
(4.2), thereby defining a class C„of superluminal
reference frames. Two more such classes, denoted
by C„and C„are obtained in a similar way by sub-
stituting g„and g„respectively, for g„ in (4.2). Here

g~ =(—,1 —1,1, —1) and g, =(—1,—1,—1,1).
The resulting structure appears rather complicat-

ed. Goldoni wants to have an extended principle of
relativity holding between all these frames. Clearly,
the results of Sec. II immediately rule out such a
possibility. Some of the frames must be preferred in
some way. A plausible picture is then the following:
The way C», Cz, and C, are defined implies a break-
ing of rotational invariance, since in a rotated frame
the three axes are no longer the same. Proper
Lorentz invariance is also broken, since the commu-
tator of two boost generators is a rotation. So there
is a unique preferred frame to which all superlumi-
nal transformations like (4.2) (and the correspoding
ones with g„and g, ) can be applied. Goldoni also
suggests ways of making tachyons and bradyons in-
teract. It is outside the scope of this paper to dwell
upon that matter, as well as to investigate the viabil-
ity of his scheme on other than kinematical grounds.

Goldoni's idea of introducing three sets of
transformations, respectively, changing g„, g„, and

g, into g was also taken up by Lord and Shankara. 5

Their way of implementing the scheme is doomed
from the beginning, since they postulate the
equivalence of all frames.
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It is beyond the scope of the present paper to discuss
such theories in detail. %e note, however, that they
do appear to possess a serious problem. It is true
that the full group O(3,3) contains transformations
in which the parameter v representing the relative
speed of the two reference frames satisfies U &1.
However, Cole has shown that superluminal
transformations necessarily involve transformations
on the other two components of the time. In partic-
ular, under a superluminal transformation along the
x axis, one has t2 ——y and t3 ——z, and similarly for
y'(z'} and t2(t3}. Hence if superluminal coordinate
systems exist in such a theory on an equivalent foot-
ing with subluminal frames, the freedom to make
spatial displacements in all three directions in a su-
perluminal frame implies the occurrence of displace-
ments in all three temporal directions. Thus the
problem of assigning meaning to the other two time
directions can no longer be avoided.

V. CONCLUSION

To many of those interested in building theories
of faster-than-light particles, the extended principle
of relativity has always exerted a strong appeal. Un-
fortunately, the analysis carried out in this paper
casts serious doubts on the tenability of this princi-

pie. True, we have restricted ourselves throughout
to linear coordinate transformations. Within this
rather natural framework, though, we have proved
three theorems which essentially exclude the possi-
bility of implementing the extended principle of re-
lativity by means of either real or complex transfor-
mations. In both cases it was shown that the slight-
est extension of the proper orthochronous Lorentz
group implies a large number of new symmetries, in
violent conflict with what is observed in nature.
The best avenues left to study hypothetical faster-
than-light particles thus seem to be of two types: (i)
Either retain the notion of superluminal frames
while weakening or abandoning altogether the ex-
tended principle of relativity. This forms the basis
of several approaches as were analyzed in Sec. IV.
(ii) Or do without any notion of superluminal
frames. That was the point of view adopted in some
of the original papers on tachyons. s ' References
42 and 43 are examples of recent work along this
line.
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