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General static plane-symmetric solutions of the Einstein-Maxwell equations
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A general form of the metric in a space-time with nonvanishing cosmological constant
outside a massive, electrically charged plane of infinite extension is found as a solution of
the Einstein-Maxwell field equations. The general solution is net, but it includes several
well-known solutions corresponding to special physical cases. Also, the general form of our
solution makes it possible easily to identify different metrics corresponding to equivalent
space-times. Physical properties of the solution are discussed. The plane-symmetric
universe analogous to the spherically symmetric de Sitter universe is found separately, since
it is not included in the general solution.

I. INTRODUCTION

The study of plane-symmetric solutions of
Einstein's field equations has a long history. The
static vacuum solution was found by Levi-Civita in
1918,' and describes space-time outside a massive
plane. This solution has been rediscovered in dif-
ferent coordinate systems by several authors, al-
though the identity of these solutions was not point-
ed out. Davis and Ray have shown that the solu-
tion also admits the presence of "ghost neutrinos"
outside the plane.

Further investigations have included the generali-
zation to nonstatic solutions, ' ' static solutions for
a nonvanishing cosmological constant, ' ' solu-
tions inside a collapsing dust cloud, ' ' in space-
times filled with self-gravitating fluids, ' in col-
liding plane gravitational waves, inside static,
massive plates, with radiation in thermodynam-
ical equilibrium, with zero-rest-mass scalar
fields, with "ghost-free" neutrinos, ' ' and
with a Yang-Mills plane wave. The embedding
class behavior of the plane-symmetric line element
has been investigated by Pandey and Sharma.

The solution of the Einstein-Maxwell equations
outside a charged massive plane was found by
Kar. Shortly thereafter McVittie found a solution
corresponding to a definite ratio of charge density to
mass density of the plane. Kar's solution was later
rederived by use of Rainich's equations and gen-
eralized to the nonstatic case. In subsequent
works on this problem we have found -no reference
to Kar's solution, and the calculations have mostly
been made in Taub-type coordinates. As
shown in Sec. IV below these coordinates are espe-
cially unfortunate when the Einstein-Maxwell equa-

tions are to be solved. Static perfect-fluid distribu-
tions with an electromagnetic field have been inves-

tigated by Bronnikov and Kovalchuk.
Also plane-symmetric solutions of the Brans-

Dicke theory have been deduced.
Kinematical aspects (properties that do not de-

pend upon the field equations) of the most general
(time dependent) plane-symmetric space-times have
been discussed by Carlson and Safko. '

Although plane-symmetric solutions of Einstein
and Einstein-Maxwell equations are thus well stud-
ied, the results in the literature appear rather isolat-
ed, with little or no discussions of the relation be-
tween the solutions or their physical interpretations.
In this paper we find a general form of the solution
in a space-time with a nonvanishing cosmological
constant outside a massive, electrically charged
plane. The general form of. the solution also allows
coordinate transformations between different
metrics describing the same physical situation to be
found in a simple way. Such general solutions can
be useful both for discussing physical (coordinate-
independent) features of space-time, and because it
may simplify the problems of joining internal and
external solutions for space-time in the presence of
localized matter fields. Similar results for the spher-
ically symmetric case were recently reported by
Abrams.

The organization of our paper is as follows. In
the next section, restricting ourselves to traceless
energy-momentum tensors, we write down the
Einstein-Maxwell equations, including the cosmo-
logical term, for the assumed form of the metric. In
Sec. III we give the general solution of these equa-
tions. The integration constants are interpreted
physically. In Sec. IV we specialize to vacuum solu-
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tions with a vanishing cosmological constant. We
find two classes of solutions. The first class is sim-

ply Minkowski space-time, as seen from a rigidly
moving reference frame with hyperbolic accelera-
tion. It was found by Rohrlich (see also Horsky,
Landsberg and Bishop, Greenberger and
Overhauser, and arisen ). The second class of
solutions describe space-time outside a massive
plane. The above-mentioned solutions of Levi-
Civita, Kasner, Taub, and Das emerge as special
cases, corresponding to certain choices of coordi-
nates. Furthermore, we find that within each class
of solutions the coordinate transformation connect-
ing two arbitrary metrics can be found immediately
by solving an (in general transcendental) equation.

In Sec. V we specialize to the vacuum solution
with nonvanishing cosmological constant, obtaining
the general form of Horsky and Novotny's solu-
tion. ' ' This solution does not represent a plane-
symmetric de Sitter universe, since it exists only in
the presence of a massive plane. After a suitable
change of the field equations, the plane-symmetric
de Sitter solution is found.

In Sec. VI we specialize to space-time with a van-
ishing cosmological constant outside a massive elec-
trically charged plane. The solutions of Kar' and
Patnaik represent special cases corresponding to
certain choices of coordinates, while McVittie's35
solution, and a solution given by Banerjee and
Chakrabarty, represent a special physical case.

Our results are summarized in Sec. VII.

II. GENERAL EQUATIONS

We shall solve the Einstein-Maxwell equations
with purely electromagnetic sources. In this case
T= T"& 0, ——and the field equations can be written
(we use units with c =4my= 1, where y is the gravi-
tational constant)

Rpv
= 2Tpv +A,gpv

T„~=F„F~~+ —,g„„F~pFaP

FP& —Q

(2)

ds =Edt 6(dx +d—y ) Fdz—
where E, F, and 6 are functions of z and t

We will consider only static situations, where all
quantities are independent of t. Then the field equa-
tions give only two independent equations, so
without loss of generality we may assume, for exam-
ple, a spatial isotropic form of the line element.
However, it will be convenient to retain all three
functions E, F, and G. Inspection of the field equa-
tions will then reveal the most suitable coordinate
condition in different situations.

With the metric (5), and in the static case, the
gravitational field equations (1) take the form

F~~; ) =0

where all symbols have the usual meanings. The
orthogonal plane-symmetric line element has the
orm

E" E' /2E E'F—'/2F +E—'G'/G =4FT(g 2AEF, —
G"+E'G'l2E F'6'l2F = —4FT i i 2kFG- —
E" E'3/2E E'F—'/2F +(2E—/6)( 6" 6' l2G F'6—'/2F) = ——4ET33 2A EF, —

(6)

(8)

where a prime denotes differentiation with respect to
x3 z. Equation (6}can be written as

[(EF)'i /G][GE'/(EF)'i ]'=4FT(g 2AEF . (9)—
Equation (7) can be transformed to

(F/EG')(EG'3/F)'= —8FTii 4AFG . (10)—

Subtracting (6) from (8} gives an equation that can
be written as

III. THE GENERAL SOLUTION WITH
AN ELECTROSTATIC FIELD

1 0 0 0
0 2 0 —1 0 0

"v—
862 Q Q —1 Q

0 0 0 1

(12)

The energy-momentum density tensor of a paral-
lel electrostatic field in a metric of the form (5) has
been calculated by McVittie as

(EFG) ' [G'l(EFG) 'i ]'

=—26[T33+(F/E)TOO] . (11)

where the charge per unit area of the plane, cr~, is
assumed to be positive for definiteness.

In this case the field equations (9), (10), and (11)
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(1/EGG )(G E/F) o'q 6 4A

(EFG) ' [6'/(EFG) in] i ()

Integration of Eq. (15) gives

(EF)'"=—(2o)-'6-'/26', 6'~0 .

(14)

(15)

(16)

The constant cr is later identified with the mass den-
sity of the plane by going to the Newtonian limit.
Substituting Eq. (16) into Eq. (13) and integrating
twice gives

E=(o 2/4gz)g i (g/3o2)g+bg —i/&+k

(17)
Demanding consistency with Eq. (14} gives k =0.
E(z =0)=l gives b =1—o~ /4o +A, /3o2. Thus

E =aG '+bG '/+cG, a =cr~2/4o
(18)

c = A /3o,—b = 1 —a —c

The solution may now be written

ds2=(aG '+bG '/ +cG)dt G(dx +dy—)

—(6' /4o )(a+bG' +cG ) 'dz . (19)

We note that under a coordinate transformation
z —+zi ——z i (z). 6 transforms according to
6 (z}~G i (z i } where

Gi(zi }=G[z(zi)] (20}

Thus we have a simple way of finding the coordi-
nate tranformation which connects two different
metrics.

In general we will normalize the coordinates so
that the metric has Minkowski form at the plane.
Thus we impose the boundary condition
E =I' =G = 1 at z =0.

Particular solutions corresponding to certain
choices of coordinates are easily generated by as-
suming functional relationships between E, F, and
G. Equation (16) is immediately integrated with, for
example, EF= 1, which gives 6 =(1—oz) .

The general form of the solution makes it possible
to deduce coordinate-independent properties of the
metric. Equation (16) shows that G is a positive
monotonic function of z wherever it is continuous.

If we disregard the boundary conditions associat-
ed with the massive plane, Eqs. (5), (16), and (18)
represent a solution for all z such that z &z (z+,
where G(z )=oo and G(z+)=0. Taking into ac-
count the boundary of the plane, the z singularity
may be neglected.

take the forms

[2/G (EF)' ][GE'/(EF)' ]'=o 6 —4A,

(13)

The Ricci curvature invariant is given by

S =R"„R"„=oq/4G +4k, , (21)

In this case the field equations permit two classes
of solutions.

(I): G=1. Equation (13), with o~=A, =O, now
gives

F=(1/4g2)E' /E, E'&0, (23)

where —g is the acceleration of a free particle in-
stantaneously at rest at the plane, z =0. This is the
solution of Rohrlich, which describes flat space-
time. In particular, if one chooses F= 1, the line
element becomes that of a uniformly accelerated rig-
id reference frame in Minkowski space-time as ex-
pressed in M@ller coordinates

ds =(1+gz) dt dx dy dz— — —(24)

(II}:6'&0. The general solution now reduces to

ds 2 6—1/2dt 2 6 (dx 2+dy 2)

(gt2/4 2g1/2)d 2 ($5)

The physical character of the space-time
described by this line element can be investigated by
considering the motion of test particles. This can be
done by finding the Killing vectors. The present sit-
uation is so simple, however, that the equations of
motion can be integrated. For a null geodesic in the

showing that z+represents a space-time singularity.
Equation (21) also shows that the other singularities
appearing in the metric (E~O) and (E~00) are
only coordinate singularities.

The proper distance (as measured by standard
ineasuring rods) from the massive plane to the
space-time singularity at z+ is

Z

1

J (a+bg' +cg )
' dG . (22)

20' 0

Thus the space-time singularity is at a finite proper
distance from the plane. Note that Eq. (22) gives z+
without introduction of specific coordinates.

The nonvanishing charge and cosmological con-
stant changes the distance to this plane, but intro-
duce no qualitative modifications of space-time. A
further discussion of the physical properties of this
space-time, considering geodesics, is therefore treat-
ed in the case of vanishing charge and cosmological
constant (next section) where the equations are in-
tegrated analytically in terms of elementary func-
tions.

IV. VACUUM SOLUTIONS WITH
VANISHING COSMOLOGICAL CONSTANT
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Fz'+ , F'z'+—y'E'/2E'=0, (27)

where the overdots denote differentiation of the
proper time of the particle, and

z direction one finds

z 1
t —t, =+ f G'dz=+ [G(z)—G(zp)]20' ~0 20

(26)

Due to the monotonicity of G this equation is al-
ways invertible.

For a massive particle the geodesic equation can
be written

of y. A massive particle cannot reach the space-
time singularity at z+ ——(3g)

Integrating Eq. (33) we find that the proper time,
as measured on a clock following the particle, taken
to reach z~ is

r(zM ) = (2y'g) '(y'up+ arccoshy)

y=(1 —p') '

where up is the velocity of the particle at z =0, giv-
ing limr „r(zM) =0. This may be understood by
comparing the coordinate velocity of a massive par-
ticle, u, with that of a photon u~. The metric (31)
with ds =dx =dy =0 immediately gives

y=Et =6-'"t (28)
u~ =(1—3gz) (36)

is the constant total energy of the particle. The lo-
cal acceleration of a free particle instantaneously at
rest at the plane becomes

Thus

u =z/t =uz(1 —y u~)' (37)

z(0) = —g = —o/2 (29)

Calculation of this acceleration, using Gauss's
theorem, as in Newtonian dynamics, shows that cr is
indeed the mass density of the plane.

That the space-time described by the present spe-
cial case is curved can be seen by calculating the
Kretschmann curvature invariant

S=R """R2„„„=12o[G(z)] (30)

In this case the finite invariant distance to the
space-time singularity z+, given by Eq. (22), is
z+ ——(3g) '. This singularity must be given a physi-
cal interpretation. Now the use of coordinates with
standard measuring rods in the z direction is partic-
ularly advantageous, both for reasons of interpreta-
tion and because the geodesic equation (27) is easily
integrated when F=1. In this case Eq. (25) gives
the metric

showing that lim& „v=vz. A massive particle shot
up from the plane with a velocity arbitrarily near
that of light, follows a photon right up to the
space-time singularity, without being measurably
slowed down.

The geodesics for photons moving in the z direc-
tion are given by

t =+[1—(1—3gz) / ](4g) (38)

Since the metric is static, t may be found by measur-
ing on a standard clock at the plane, the time 2t that
a photon takes in traveling to z, where it is reflected,
and back again. Equation (38) shows that photons
are able to reach the space-time singularity in a fi-
nite time tM (4g), as m——easured with standard
clocks at z =0.

Using the equation for the gravitational Doppler
effect, the frequency of light measured locally at a
position z, is

ds =(1 3gz) d—t cd=E cup=(1 —3gz) Np (39)
—(1—3gz) / (dx2+dy ) —dz (31)

where g =o/2 is the acceleration scalar of a fixed
coordinate point at the position of the plane. The
geodesic equation (27) now takes the form

i +gy (1—3gz) '/'=0,
which gives

z[y2(13gz)2/31]1/2

(32)

z~ ——(1—y )/3g (34)

showing that z~ &z+ for all finite (positive) values

It follows that the maximum height a massive parti-
cle can reach is

where coo is the frequency of the light as measured
locally at the plane. The frequency becomes zero as
the light reaches the singularity of space-time.

The question is now what is happening to light
that reaches z+. There seem to be two possibilities.
One is that it is possible to continue the metric to
z&z+. From Eq. (26) is seen that when z is in-
creased so that z gz+, one must change the sign in
front of (20) ' in order to make the t coordinate
one-valued. Thus the acceleration of gravity is
directed away from the wall on both sides of it.
This motivated Liang to associate the singular wall
with the position of a plane with negative mass. A
similar interpretation had been given earlier by Gau-
treau and Hoffman. In order to produce the
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singularity, the negative mass density of the plane
would have to be infinite.

Another, and in our view more acceptable solu-
tion, is that even light when it reaches z=z+, and
has lost all its intrinsic energy [Eq. (39)], will fall
back. This interpretation is still consistent with Eq.
(38) as now the negative sign gives the null geodesic
curve for t &tM.

According to this interpretation there is no mas-
sive plane at the singularity, but a plane with posi-
tive mass at z=0. This produces a gravitational
field. Space-time is curved outside the plane. The
energy of the gravitational field contributes to the
gravitational acceleration of test particles. This in-
terpretation ensures that the accessible universe is
closed not only for massive particles (even in the
case of nongeodetic motion, due to the divergence of
z+), but also for radiation. The physical universe
outside the plane has a finite extension, reaching
only out to z+ ——(3g) '= —,a. (A similar interpreta-
tion is hinted at by Avakyan and Horsky. )

One can also consider the acceleration of a parti-
cle at rest at any positive z. Equations (32) and (34)
give

(z}sr—=g(1 3gzss—) '

Since this quantity is measured by standard clocks
and standard measuring rods, it is invariant against
a time-independent coordinate transformation.
Thus we can impose the boundary condition of a
massive plane at any z simply by adjusting the mass
density of the plane so that a=2g(1 —3gzo}
where zc is the position of the plane. As a limiting
case, if the massive plane is removed, we have a
solution with a "universe" consisting solely of a
homogeneous gravitational field for all z;
z &z &z+. This universe is asymptotically flat for
z~z —~

Some previous solutions that have been an-
nounced in the literature can be identified with par-
ticular cases of Eq. (25). The harmonic coordinate
condition g ~I I'

~
——0 gives E=EG2. In these coor-

dinates the line element takes the form s

ds =e s'dt e—s'(dx +dy ) e—s'dz (41)

This metric is singularity free for all finite z. How-
ever the space-time singularity is only hidden be-
cause of the coordinates used. The transformation
(20) between the metrices (31) and (41}is

1 —3gz =e ' (42)

—(1—gz) (dx +dy +dz } (43)

This form of the solution was given by Das, ~ but in
corresponding Rindler-type coordinates, 6=z, it
was found by Kasner already in 1925.

Taub's form of the solution has E =Fwhich gives

ds =(1—4gz) 1/z(dt —dz )

—(1—4gz)(dx'+dy ) . (44)

This metric has also been found in corresponding
Rindler-type coordinates by Liang.

Finally the metric with EF =1 was found by No-
votny, ' and has G = (1—2gz) .

V. VACUUM SOLUTIONS WITH NONVANISHING
COSMOLOGICAL CONSTANT

Putting ae ——0 in Eq. (19) gives

ds'=(bG '/'+cG)dt' G(dx'+—dy')

(G' /4a )(bG—' +cG ) 'dz (45)

with b =1+A,/3a .
In this case Eq. (22) gives for the invariant dis-

tance to the space-time singularity at z+,

Approaching z+ the length of the coordinate
measuring rods approaches zero, and the coordinate
region 0&z & Oo only covers the physical domain
0&z&(3g) '.

It is also possible to choose coordinates so that the
metric is spatially isotropic, F=G. This shows that
the spatial component of space-time is conformally
flat. In such coordinates Eq. (25) gives

ds =(1 gz) 2d—t2

2(3A, )
'/2 arcsin(1+ 3a /A)'/, A, ,&0,

z+ ——2( —3A, )
'/ arcsinh( —1 —3a /A, ) '/, —3a &A, &0,

QQ q A, = —3'2

(46a)

(46b)

(46c)

which for A, «0. gives

z~ =-(3g) '(1—A/6cr ) (47)

This equation shows that, interpreted as a gravita-

tional source, the k term gives a positive contribu-
tion to the gravitational mass for A, g 0; and a nega-
tive one for A, & 0.

Particular cases of the solution (45) have been
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considered by Horsky and Novotny. ' ' The
metric (45) with EF=1, giving G=(1 —oz) has
been identified as a generalized "Taub solution. "
Permitting A, &0, the special physical case A, = —30
gives b =O,c = 1, so that in coordinates with EF= 1,

ds =(1 oz) —(dt dx —dy )—

—(1—oz) dz (48)

Rq„——A, (goo5 q5 „+g335„5„) (49)

Equations (9) and (11) are still valid, while Eq. (10)
is changed to

(EG'/F)'=0, (50)

Horsky and Novotny' '" have interpreted this
metric, expressed in Rindler-type coordinates, with
G =As /3, as describing a plane-symmetric de Sitter
universe. With this interpretation the integration
constant introduced in Eq. (16) cannot be interpreted
any longer as the mass density of a massive plane,
since there is no massive plane in a de Sitter
universe. Thus the massive plane is "interpreted
away. "

If the massive plane is still considered as being
present, the line element (48} describes an infinitely
extended singularity-free universe in front of a mas-
sive plane, with an isotropic cosmological repulsion.

The spherically symmetric line element corre-
sponding to (45) is the generalized Schwarzschild
solution with goo

——1 2m lr A,r—~, where —m is the
mass of the particle. One obtains the static form of
de Sitter's solution by putting m =0, not m =m (A, ).

Correspondingly we would like to find a plane-
symmetric solution of Einstein's equations with
A,&O,o =0, and interpret this as the plane-
symmetric analog of the de Sitter universe. Such a
solution is not included as a special case of our gen-
eral metric equation (19).

In order to describe a plane-symmetric de Sitter
universe, we introduce a cosmological repulsion
(A, & 0) in the z direction only. The field equations
for this case are

E(z=O)=1, giving ki ——2(A, +g ), and the metric
becomes

ds =Edt dx— dy—

[E'—/4E(g +A, AE)—jdz2 (53)

Equation (53) describes a plane symmetric de Sitter
universe.

In coordinates with EF= 1 the metric becomes

ds =(1+2gz Az )dt —dx d—y-
—(1+2gz —Az } 'dz2 (54)

which reduces to the Kottler-Whittaker line ele-
ment describing Minkowski space-time from a
uniformly accelerated reference frame, for A, =O.
Equations (53) and (54) describe the plane-
symmetric de Sitter universe from an accelerated
reference frame.

This space-time has no singularities. The ones ap-
pearing in the metric are coordinate singularities.

VI. SPACE- TIME WITH VANISHING
COSMOLOGICAL CONSTANT OUTSIDE

A MASSIVE CHARGED PLANE

In this case the general solution (19) takes the
form

ds =(aG '+bG ' )dt G(dx +dy—)

(G' /4cr —)(a +bG' )dz (55)

z+ ——(3g) '(1++,/o)(1+o, /2o)-' (56)

Thus the presence of the electrostatic field makes
the singularity approach the plane.

Two special forms of Eq. (55) were found by
Kar'~ The first form has EF =1,which here gives

with b = 1 —oq /4o .
Equation (22) for the invariant distant to the

space-time singularity at z+ now gives

giving

G =k(F/E)'", (51)
+ dt

1 —oz (1—oz)2

where k is a constant. One may easily verify that
the field equations permit no solution with k&0.
Thus G = l. Equation (13) with o~ =0 now gives

F=E' /2E(ki 2AE)—(52)

where kq is an integration constant. The geodesic
equation (27) then gives, for a particle instantane-
ously at rest at the origin E'(z =0)=—2g. The can-
stant kr is now determined by the normalization

—(1—oz) (dx +dy )

b a

(1 oz}—
—1

dz2 (57)

Kar did not interpret his integration constant corre-
sponding to our b. His metric was written as
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2

ds = —+ dt z—(dx +dt2)
Z Z2

m e 2
—1

2+ 6'
Z Z2

(58)

Patnaik attacked the present problem, using
Taub-type coordinates, with E=F. Unfortunately
the field equations cannot be integrated explicitly in
these coordinates, except for McVittie's special case.
From Eq. (62) with E =Fone immediately finds 6i

—(1—oz) (dx +dy )

—(1+oz) '(1+ aoz) 'dz (59)

In these coordinates the electrical field outside the
plane is uniform.

In coordinates with EF=G the line element (55)
takes the form

ds2 (ae2ez+beoz)dt2 e
—2'(dx2+dy2)

—e ~'(a +be ') 'dz2 (60)

The line element (55) permits a solution with
I' =G, showing that the spatial geometry outside the
charged plane is conformally flat. In this case
G =[I—oz+(1/4)bo z ] .

In the special case that b =0, which means that
cr~=2o, or in SI units o~=2X10 (C/kg)cr, this
line element reduces to

ds =e ' dt e~ (dx —+dy ) e~ dz—

(61)

which was found by McVittie. The general form
of the line element for McVittie's special case is

dsz=G 'dtz G(dx2+dy —) (G' /oq )dz' (62).

in a recent survey of exact solutions of Einstein's
field equations, indicating that m is the mass of
the plane. However we do not consider the charge
and the mass of a plane of infinite extension as
well-defined quantities.

The second form of this solution found by Kar
has EI' =G giving

ds =(1+oz)(1+aoz)dt

ds =(1 3o—z) ~ (dt dz—)

—(1—3oz) (dx +dy ) (63)

VII. CONCLUSION

We have found two new solutions of Einstein's
field equations and studied their physical signifi-
cance. The first one describes space-time with a
nonvanishing cosmological constant outside an in-
finitely large, massive, electrically charged plane.
The second solution describes space-time in a plane-
symmetric empty universe with a nonvanishing
cosmological repulsion in the direction normal to
the symmetry plane.

The solutions are given in general forms permit-
ting analytic integration in terms of elementary
functions by suitable choices of coordinates. Previ-
ously known solutions emerge as a special case, and
by means of our general solution we have identified
their physical meaning.

The space-time of the plane-symmetric de Sitter
universe is singularity free, while the space-tiine of
the general solution contains a singularity at a finite
invariant distance from the massive plane. This
singularity acts as a horizon both for massive parti-
cles and for photons. The presence of an electrical
field and of a cosmological repulsion both reduce
the distance to this horizon.
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