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Static plane-symmetric scalar fields
with a traceless energy-momentum tensor in general relativity
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The problem of zero-mass scalar fields coupled to the gravitational field in the static
plane-symmetric case is completely solved for a traceless energy-momentum tensor.

I. INTRODUCTION

Scalar fields are the simplest classical fields, and
there exists an extensive literature containing
numerous solutions of the Einstein equations where
the scalar field is minimally coupled to the gravita-
tional field and its Lagrangian has the form

+ ig PpPv

In a recent paper Freyland' studied the problem of a
conformally invariant scalar field with its energy-
momentum tensor trace-free in the static spherically
symmetric case. Space-times with spherical symme-
try admit three-parameter groups of transformations
with minimum varieties having two-dimensional
surfaces of constant positive curvature. Plane-
symmetric space-times also admit three-parameter
groups with minimum varieties having two-
dimensional surfaces of zero curvature. It is there-
fore interesting to consider the conformally invari-
ant scalar field with a trace-free energy-momentum

I

tensor in the static plane-symmetric case. The pla-
nar symmetry has the additional advantage of con-
structing homogeneous anisotropic cosmological
solutions by suitable complex transformations of the
static solution.

In this paper we discuss the static plane-
symmetric solutions of the Einstein equations corre-
sponding to a conformally invariant scalar field with
its energy-momentum tensor trace-free.

The action integral for the system of a scalar field
coupled to gravitation is taken to be

2
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where It is the curvature scalar and P is the scalar
field.

The variation of this action gives the gravitational
field equations

(&„,g„ It )f(Q) =——+&( 4,i.4, + i gi.v—4,a0' )+gi vf ';a ft— (1.3)

where a comma denotes partial derivative and a
semicolon denotes covariant derivative and

(1.4)

The matter field equations are

u =V'a/6P
we rewrite the field equations in the form

It p~f ( u ) =gp~u ~u ' —4u ~ u ~+2uu. ~y,

u'".
q
——0 .

(1.7}

(1.9}

=0.RP (1.5) II. FIELD EQUATIONS

Taking the trace of Eq. (1.3) and using Eq. (1.5)
we get

Defining

In the static, plane-symmetric case, the line ele-
. ment is given by

ds =A(dt dx ) C(dy—+dz —),
where A and C are functions of x only.

From (1.9) one gets (u i ——u i )
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Kiu&=-
C

(2.2) 1 —u

1+u
Ki
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(2.12)

The field equations (1.8) for the metric (2.1) can
be written explicitly as

-f' '=
2AC
f AiC

(2.3)
ui 2

+ 2uu)
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fR 2=—fR i=—f = +.
2AC A2 AC

(2.5)

The set of equations (2.3)—(2.5) are not independent
due to the relation R =0.

We shall consider Eqs. (2.3), (2.5), and (2.2) to
determine the three unknown functions A, C, and u

uniquely.
Equation (2.5) can be integrated, using (2.2), to

give

where K4 is another integration constant.
Unlike the static spherically symmetric case, u

can be expressed explicitly in terms of a simple
function of x. From (2.12}one can write

1 —P(Ax +K4)'/'

1+P(A++K )' " (2.13)

From (2.13) it is evident that as v—vao, P—vl and
tt —v0, and as v~O, P—vO and u-+1. Thus one
finds that the constant of integration v determines
the strength of the scalar field.

From (2.6) and (2.8), using (2.13), one can reex-
press the metric elements as

and

K p3/2v —1/2

(u+K, )3/2~-'/2,
1 —u

K3P"C=
2 (Ax+K4) .

1 —u2

(2.14)

(2.15)

As u —+0, we recover the static plane-symmetric
solutions given by Taub:

1 —uC= f 1+u

where K3 and v are integration constants.
From (2.2) and (2.3) one obtains

AiC AiCf=—2Kiui fi—
A A

(2.6)

(2.7)

(u+K, )

C~(Ax+K4) .
(2.16}

The case v& v 3 is quite interesting. The disklike
singularity of Taub's solutions disappears. The
metric elements are monotonically increasing func-
tions of x in all directions.

Equation (2.7), on integration, yields

A= 1 —u

f 1+u
(2.8)

III. PLANE-SYMMETRIC
COSMOLOGICAL SOLUTION

where K2 and p are constants of integration. How-
ever, the constants p and v are not quite arbitrary
due to the relation R =0. From R =0 one obtains

From the static solutions (2.13)—(2.15), one can
construct the homogeneous anisotropic cosmological
solutions by the following complex transformations:

A) 2C) 3 Ci
A

+ C,+2 2
——0. (2.9)

t —+ix, x~it, and A,~—iA, .

The line eleinent (2.1) then takes the form

(3.1)

Substituting (2.6} and (2.8) in (2.9), after some
simple manipulation, one finds

p3/2v —1/2

ds2 (gt+K )3/2v —i/2dt2 d 2

1 —u

v(v+2@)=3 .

With (2.6) and (2.2) one obtains

K)
u i

——— (1+it)'+'(1—u)'
K3

Equation (2.11}can be integrated to give

(2.10)

(2.11)
with

K313)"

, (At+K4)(dy +dz )
2 2
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(3.2)

(3.3)
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In the absence of the scalar field, the line element
(3.2) reduces to the plane-symmetric Kasner
universe

ds =Kq(At+K4) 'i (dt dx—)

K,—(At+K4)(dy'+ dz') . (3.4)

It is evident from (3.2) that one has two types of
universe depending on the parameter which deter-
mines the strength of the scalar field. If v & v 3, the
universe is a Kasner type with contraction along the

x axis and expansion along the y and z axes. In the
case of v & W3 there is either collapse or explosion in
all three spatial directions.
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