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Upper limits to fermion masses in the Glashow-Weinberg-Salam model
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Upper limits on the mass m~ of a fermion in the Glashow-steinberg-Salam model were previ-

ously found by requiring that our vacuum be an absolute minimum of the one-loop Higgs po-

tential; for a Higgs-boson mass mH & 150 GeV, it was found that m~ & 100 GeV. We note that

including the effect of running couplings in the one-loop term enlarges the range of allowed

masses based on this constraint. Requiring only that the universe arrive in our vacuum and stay

there for over 10 yr further increases this bound to m~ & 200 GeV.

In the 61ashow-Weinberg-Salam model' the fer-
mion masses are arbitrary and could be quite heavy.
Some phenomenological upper limits to fermion
masses, based on the p parameter or on the EL-E~
mass difference, exist but these limits are either very
weak or very sensitive to unknown matrix elements.
In this paper we consider theoretical upper bounds to
fermion masses. For simplicity, we assume (for the
moment) that the top quark is the only undiscovered
heavy fermion.

Three years ago, it was noted4 6 that there is a
theoretica1 upper bound to the top-quark mass m&,

obtained by considering one-loop corrections to the
Higgs potential. The one-loop potential is well
known4 ', writing it in terms of its minimum o (we
choose units so that o = I) and the Higgs-boson
mass mH = d V/dQ (at @= a ), yields

V = —,
' mH'[2gy~ Iny' —(3g —I )&4+ (4g —2)@']

where Q'= $ $, "—= (6Ms + 3Mz +MH 12m,")/—
16mtmH Here, MH q.h

=—p, +3k.$, where —
2 p,

(4X) is the quadratic (quartic) coefficient in V. This

potential is plotted for various values of in Fig.
1(a). It is easy to see that if m, is sufficiently large,
then & 0 and the potential is unbounded.

Iri Ref. 4, it was argued that the minimum at cz

must be an absolute minimum, thus must be posi-
tive. This leads to an upper limit on m, given by the
F.-0 line of Fig. 1(b). For large values of Q, the po-
tential becomes negative at a value of @= qht

=exp( —
~ ); it was noted in Ref. 5 that if this value

is outside the region of validity of perturbation
theory, then one cannot say the potential is unbound-
ed. About a year later, the two-loop potential was
calculated' (without heavy fermions) and it can be
shown that perturbation theory is accurate up to the
Planck scale; @t & Mp& corresponds to & —0.006.
In Ref. 6, it was pointed out that the SU2 x U~ poten-
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FIG. 1. (a) The one-loop effective potential V (in units in

which 0-=1) for various values of . (b) The value of
for given values of mH and m, . Here, V = VmH /8.

tial is only valid up to the unification scale; $t & 10"
GeV gives )—0.008. As can be seen from Fig.
1(b), all of these limits give similar upper bounds to
N

In this paper, we note two effects which significant-

ly weaken these limits. First, for large values of g,
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FIG. 3. Upper bound on M, . The lower (upper) dashed
curve is the previous limit of Ref. 4 (5). Below the lower
full curve, the present vacuum is absolutely stable (region
A). In region B our vacuum is unstable, but with a lifetime
v &10' yr. In region C, r &10' yr; thus region C is disal-
lowed.

sider (a): From Fig. 2(b) one can see that at tem-
peratures well above the electroweak scale, there will

be a large barrier separating the SU3 & SU2 & Ui vacu-
um from the unbounded region (generally larger than
T4). The size of the barrier separating the SU5, say,
and the SU3 x SU2 & Ui vacua depends on unmeasur-
able parameters of the combined 24-piet and 5-piet
potential. It is certainly plausible that one can choose
these parameters such that this barrier vanishes at a
temperature sufficiently high that the barrier separat-
ing the "unbounded" region is still large; the uni-
verse will then go into the correct vacuum. A de-
tailed analysis was done for a hierarchy of the form
03 02 nothing, including one-loop corrections at
finite temperature for the combined potential; one
can show that a wide range of parameters (which
preserve the hierarchy) exists for which the universe
goes into the correct vacuum. Since a typical grand
unified theory has many more parameters (many un-
measurable), no significant bound on m, can be
found from (a). It is easy to show that for masses
which satisfy (d), requirement (b) is satisfied (since
the barrier is much larger and the time scale much
shorter).

If the barrier is small at the time of the electroweak
transition, one might worry about the Higgs field
"rolling down the hill" and over the barrier. Since
the field loses energy at a rate comparable to its life-
time, and the oscillations about a are at a rate com-
parable to its mass, it will not lose much energy "rol-
ling down the hill. " However, as seen from Fig.
2(b), the barrier has a maximum above the SU3 &( SU2
x Ui vacuum for virtually all values' of the Higgs-
boson and fermion masses; thus energy conservation

precludes this possibility, and (c) is satisfied.
The strongest bound comes from requirement (d).

As shown in Ref. 11, the nucleation rate per unit
volume, f, is (in units where o = I) —exp( —A ),
where A is the least-action bubble solution (see Ref.
12 for details). The fraction of space filled with new
phase at time t is" 1 —exp( —f t ). Since, in our
units, the age of the universe is e' ', the fraction of
space filled with "unbounded" region today is
1 —exp[ —exp(404 —A ) ]. Since A itself is extremely
sensitive to the top-quark mass, ' the uncertainties
associated with the precise expansion rate, bubble
overlap, the prefactor in the nucleation rate, etc. , are
utterly negligible in determining our upper bound.
Requiring that the fraction of new phase be negligible
is the same as requiring that A ~ 404. For a given
potential, the action can be calculated using standard
techniques' and this requirement becomes an upper
bound on m&. Our results are plotted in Fig. 3—the
upper solid curve corresponds to the A = 404 line and
is an upper bound to m, . Our upper bound varies
from 188 to 215 GeV as mH varies from 5 to 200
GeV. Note that for very small IH, the barrier (for
m, —190 GeV) is extremely small ( ——60) but
quantum fluctuations are small as well. Note also
that for large mH, the limits both approach the
Pendleton-Ross" fixed point (the point at which the

P function for g, vanishes).
There are two principal sources of uncertainty in

these results; the scheme dependence of the "run-
ning" of the MH term and the uncalculated two-loop
effects. Strictly speaking, the Higgs-boson-loop con-
tribution to V is (—p, '+3k.Q')'ln( —p, '+3XQ'). For
small values of h. (we always have P & I), this may
become complex, indicating a breakdown of the
renormalization-group approach. Fortunately, this
term is small for small values of mH. Since it is gen-
erally positive (since P » p, in the relevant region)
it will only lower our limits (positive terms stabilize
our vacuum), and thus the results in Fig. 3 were ob-
tained by multiplying the term by 8(—p, 2+3K/2). If,
instead, we take the real part of this term, we find
that our limits are changed by & 5% for ma & 175
GeV. Since we cannot prove that the Higgs-boson
one-loop contribution is positive, our limits may not
be reliable for larger Higgs-boson masses. One might
expect that the limit regarding absolute stability in

Fig. 3 would be very sensitive to uncalculated two-

loop effects, since the leading two-loop terms have
such a large effect. This is, in fact, the case; chang-
ing o., by changing Agco from 100 to 300 MeV will

change the limits by 10 GeV for 50 & mH & 200
GeV, for example. Thus the lower solid curve in Fig.
3 is uncertain by 10—20 GeV. This is not our upper
bound, however, and the upper bound bordering re-
gion C turns out to be very insensitive to two-loop
effects; dropping the running of the couplings entire-
ly changes the limit by & 5%. Thus, for mH & 175
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GeV, we expect our upper bound to be uncertain by
at most 10 GeV.

Extending our results to more complicated models
is simple. If there are additional quarks, one replaces
m, 4 by X~ m, 4; the limits on fourth-generation
masses are snore severe. If there are additional Higgs
scalars, the abscissa in Fig. 3 refers to one of the
neutral scalars and the ordinate is replaced by

(m~ ——,2 Xm,~~«, ) '~ . In supersytnmetric theories,

the gauge fermions and Higgs fermions must be in-
cluded as well as the partners to the top quark; the

proliferation of parameters makes any attempt to find
limits meaningless.
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