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The object of this paper is to develop a method for obtaining information about the
discontinuity function along the cuts (which is related to the positions and widths of reso-
nances), from data —either experimental or theoretical —given at some points inside the
holomorphy domain. This will be achieved by means of an analytic continuation which is
required to be optimal under some specific boundary conditions. Once errors are present
or the number of data points is finite, analytic continuation is no longer unique but highly
unstable. To give a well defined continuation prescription, a stabilizing condition is
essential, and the latter has to be chosen to suit the physical problem under consideration.
It is shown how such a continuation procedure may be used (a) to ascertain whether the
data can be said to require a particular type of structure on the boundary such as that
which would arise from a nearby pole on the second Riemann sheet, as would be associat-
ed with a resonance, and (b) if so, to determine the parameters of such a resonance.
Among the many applications of the method derived in this paper, one which is of some
topical interest, is to use as input the result of perturbative calculations in some region of
the complex plane where such expansions may be meaningful (e.g., asymptotic or negative
energy in QCD) and to attempt to compute quantities of physical interest in a region
where direct perturbative calculations are not valid.

I. INTRODUCTION

Analytic continuation is an extremely important
and widely used technique in physics. Many func-
tions of physical interest are known (or supposed)
to have analytic properties. When expressed in
terms of suitably chosen variables these functions
will be holomorphic in some domain and possess
certain singularities, typically poles and branch
points. Some range of values in the variables will
form the physical region for a particular process;
within this region the values of the function may
be determined experimentally. Elsewhere within
the domain of holomorphy, but outside the physi-
cal region for the process initially considered, the
values of the function may also be of considerable
interest. They might, for example, be related to
empirical data for a different process, or they
might cast light on some theoretical features of the
mechanism involved. The obvious question is:
Given information about the function within some
data region what can we deduce about its values

elsewhere? Can we perform an analytic continua-
tion from the data region to some other part of the
holomorphy domain which is of interest?

This problem is a particularly familiar one in
particle physics. Since 1954, when the first disper-
sion relations for scattering amplitudes were de-

rived, the analyticity properties of amplitudes,
some proven and others conjectured, have been

widely exploited and have played a central role
both in the development of theory and also in the
phenomenological analysis of experimental data.
Two-particle scattering amplitudes may, for exam-

ple, be analytic functions of the energy. The phys-
ical region will be along part of the positive real
axis and there the amplitudes (or their moduli)

may be determined experimentally. It is of interest
to relate the values thus obtained to those of the
amplitude elsewhere on the real axis. The values
for negative real energy will be associated with
another scattering process where independent data
may be available. If poles can be located their po-
sitions and residues will be the masses of inter-
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mediate single-particle states and associated cou-
pling constants.

The role of analytic continuation in particle
physics is not limited to phenomenological applica-
tions. It has long been known, for example, that
the calculation of individual graphs within a per-
turbation expansion can be simplifiei by using
analyticity. In recent years there has been a
renewed interest in analytic continuation as an ad-
junct to theoretical computations. However, the
emphasis has shifted from problems where infor-
mation about the singularities (in particular, the
imaginary part of the amplitude along a cut} was
used as input, to those in which this information
cannot be computed directly and instead of featur-
ing as input it becomes the target of the continua-
tion procedure. Indeed, various theoretical
methods, for example, perturbation computations
for asymptotically free field theories such as QCD,
are valid only wittun a limited region of the com-
plex plane, and hence one turns naturally to analyt-
ic continuation to extend these results to the cuts,
as is necessary if one is to determine important
parameters such as those defining resonances.

There has been considerable interest in the tech-
niques introduced by Shifman, Vainshtein, and Za-
kharov and others to extend the applicability of
perturbation theory in QCD. Shifman et al. con-
sider the process of e+e annihilation into had-
rons. Perturbative results from QCD are believed

to be reliable for large Q- (Q = —s where s is the
invariant e+e mass squared} but information
about resonances comes from small negative Q .

A standard approach to problems of this kind is
to use Borel summation or to follow an analogous
procedure using some suitable analytic weight fac-
tor. Provided some specific conditions are met it
is possible to use the information contained in the
numerical values of the expansion coefficients to
reconstruct the function of interest not in the form
of the original series, which diverges, but in that of
a suitable integral representation. However it is
not clear that these necessary conditions are satis-
fied in the case of QCD. If they are satisfied then,
at least in principle, one could compute the result
with arbitrary accuracy, but if these conditions are
not met then one has to set a more limited objec-
tive and adopt a modified procedure.

A practical way of proceeding, particularly when

looking for information about resonances which
one believes may exist and therefore contribute, is
to take moments and appropriate ratios of mo-
ments in the dispersion relations for the function

of interest —for example, the vacuum-polarization
tensor in QCD. Bell and Bertlmann have refined
this procedure and have shown (they repeated the
computations in the context of a simple potential
model where the final result may be checked) how
this may be done to determine the positions of the
first resonances. Basically the procedure is one of
analytic continuation; it must be clear, however,
that since a truncated perturbation expansion is it-
self an analytic function an exact continuation to
the resonance will yield just the perturbation result
itself which is known to be inaccurate there. How-
ever in the input region (large Q, in QCD) the
perturbation result is close to the actual values. So
the problem is to start with functions which are
quite close to the approximate input in the large-

Q region and find an adequate continuation pro-
cedure which will (i) filter out any functions hav-

ing unsuitable properties (such as wrong threshold
behavior) which the truncated perturbation expan-
sion might have, and (ii) ensure the appropriate
physics (resonance structure) on the cuts.

In this paper we shall address problems of just
the type described —making an analytic continua-
tion from a set of approximate data with associat-
ed errors, and selecting, out of the range of solu-
tions to that problem, the function which best
meets certain speci6ed conditions such as resonant

type behavior within some region. Functional
analysis provides powerful techniques for solving
such problems. The key results are obtained in a
compact and elegant closed form.

II. OUTLINE OF THE METHOD

One way of performing the analytic continuation

between two regions of interest is to construct a

representation of the amplitude, such as a disper-

sion relation, to which the data may be fitted.

Such a representation or model will incorporate the

analytic properties which the amplitude is believed

to possess, but it will also include various other as-

sumptions such as asymptotic behavior and some

form of parametrization over parts of the axis

where data may not be available. An alternative

procedure is to take a function as it is defined by
the empirical or theoretical values (with associated

errors) at a set of discrete data points within the

physical region, and to perform an analytic con-

tinuation which will attribute values to the func-

tion at other points within the domain of holomor-

phy. These values will be determined directly by
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FIG. 1. Domain of holomorphy of the function X(s):
the cuts I ~ extend from the branch points s] and s2
along the real axes to —00 and + 00, respectively; s3,
s4,. . . are further branch points on the real axis; I ~ is
the data region.

the input data, but this procedure will also require
some further conditions if it is to be well defined,
since there is certainly not a unique analytic con-
tinuation from a discrete set of points. Even if the
data set could be regarded as a continuum, so that
a unique analytic continuation would appear to be
given, one must consider the question of stability;
whenever there are nonzero errors (experimental or
theoretical) associated with the initial values, the
mode of propagation of these errors must be taken
into account. Indeed, one finds that without some
further assumptions (for example, boundedness or
smoothness) the continuation is not at all stable
with respect to the initial input as the errors may
be enhanced by arbitrarily large factors.

This problem of stabilization of analytic con-
tinuation has been studied in some detail by Cutko-
sky et al. and by one of the present authors (S.C.)
and his collaborators. '

In practice, of course, data is obtained for a fi-
nite number of discrete values of the relevant vari-

ables, so that the data set is a finite set of discrete
points. Consequently we focus our attention on
the problem of performing an analytic continuation
directly from a discrete set of points. As we have
already pointed out, the more familiar procedure is
to first fit the data within the data region to some
interpolating function (for example, a polynomial
or similar expansion) and to use this as the starting
point for the analytic continuation. ' The choice
of this interpolating function may already incor-
porate some assumptions about the function which
we seek to construct. We prefer to proceed direct-

ly from the data —this allows us to separate and
make explicit the further conditions to be imposed
in order to discriminate between the possible func-
tions which could be obtained by analytic con-
tinuation alone. It also turns out that the con-
tinuation problem from a discrete set of n points,
subject to stabilizing conditions of a certain type,
may be expressed as an n-dimensional problem
which can be solved explicitly; this is a major sim-
plification and allows the results to be expressed in
a very convenient closed form.

Imz

(s0 (S2)
' Wez

The problem, then, which we wish to solve is to
find that analytic function which both adequately
fits the data, given on the discrete set of data
points, and also satisfies a specified stabilizing con-
dition. The adequacy of the fit to the data is mea-
sured in terms of a X fit in the standard way.
The stabilizing conditions which we consider relate
to the smoothness or boundedness of the function
defined in some particular way over a region of the
complex plane. In practice we specify a value of
X and for any such value construct that analytic
function whose fit to the data has that value of X
and which is optimal in the sense of best meeting
the stabilizing conditions. In this paper we shall
consider two particular types of stabilizing condi-
tions; both are defined on the cuts which form the
boundary to the domain of holomorphy.

In order to give a standard specification of these
conditions it is convenient to first perform a map-
ping of the complex plane to the unit disk. The
procedure is as follows.

The holomorphy domain typically has the form
shown in Fig. 1. The complex plane has cuts I ~
extending from branch points s&, s2 to + 00 as
shown. For the problem which we wish to consid-

FIG. 2. Result of the conformal mapping which
takes the cut s plane of Fig. 1 into the interior of the
unit disk, s =so onto z =0, the cuts I q mapping, as
shown, onto the circle

~

z
~

= l. If

u =[(s—sp)(s i+$2 —2$p) —2(s ~
—sp)($2 —sp)]

X[(s2—s&)(s —sp)]

then

z(s)=u —(u —1)' (u+1)'

where the square roots are defined to have right-hand
cuts and non-negative imaginary parts.
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and

Type B:
2

2e

J ImX(e'~) 0(P )dP & bound,

(2)

where o(P) is a real weight function which has to
be strictly positive ( & e,e & 0), and even [o( —P )—=o(2m —P)=o'(P)]. Only real analytic functions,
which satisfy the condition X(z)=X(z), are con-
sidered. A consequence of this is that X(z) is real
on the real axis between s i and s2 (but not on the
cuts I'R). Thus the data, which are given on the
real axis within the holomorphy domain, must be
real. " The function a(P ), once the above condi-
tions are satisfied, may be chosen freely. So it
might be constructed in such a way as to filter out
the unwanted truncated perturbative solution [see
point (i) in the Introduction]. This might be
achieved simply by choosing it so that the integrals
occurring on the left-hand sides of the inequalities
(1) or (2) should diverge for the perturbative func-
tion, thus automatically ensuring that the latter
will stay outside the set of functions defined by the
stabilization conditions A or B.

In an earlier paper' we have shown how to
solve the optimization problem of constructing the
functions, holomorphic inside the unit circle,
which assume specified precise values at the points
of the data set I i and which solved the extremum
problems A or B below:

Extremum problem A:

I ~

ReX(e'&}
~

cr(p)dp —Pleast=—502' 0

er the data are given in a region I ~ lying on the
real axis between the two branch points, where the
function of interest X(s) is holomorphic. We shall
be particularly interested here in analytic continua-
tion from I'i to the cuts I'R which form the boun-

dary of the holomorphy domain and on which the
stabilizing conditions are defined.

The cut complex plane of Fig. 1 then is mapped
onto the z unit disk as shown in Fig. 2. The.data
region I ~ remains on the real axis, the cuts 1"q

now form the unit circle. Two types of stabilizing
conditions will be considered, namely,

Type A:
2m

J ~

ReX(e'~)
~

0($)dg &bound

Extremum problem 8:
2

2IT
op g2ImX(e' ) cr(P)dg~least=5O

2m'

(4)

where the extremum is sought (see below) among
all functions X(z)=X"'(z)+M(z). Here X'"(z) is
some given real analytic function which assumes

the values a; at the points z =z;, while the M(z)
are (any) real analytic functions which vanish at all
data points z;,

M(z;)=0, i=1 to n,
so that all X(z}will assume the same specified
values a; as X'"(z) at the points z =z;. As will be
seen below, these extremum problems are of great
importance for continuation procedures. The ex-
plicit results for the constants 50 as well as the ex-
tremum function X' '(z}, will be presented in Sec.
III.

Experimental data (or in some cases theoretical
input such as the QCD input discussed above) do
not, of course, come as precise values: each num-
ber will have an associated error and to fit the data
we must allow a variation about the median values

subject to a measure, such as the standard X2 mea-

sure, of the quality of fit. In Sec. IV we show how
the results of Ref. 12, based on a precise fit to cer-
tain data, may be extended to provide a solution to
the problem of finding the holomorphic function
which fits the data within a certain X limit and,
subject to this, optimszes the above conditions.

The type of stabilizing condition which can be
treated by our functional methods is restricted by
the requirement that it should define some kind of
norm on the function space under consideration.
Conditions A and B, in particular, satisfy these re-
quirements. In fact these two types of conditions
are quite powerful: they have the flexibility of al-
lowing one to choose a weight function o(P ) which
will emphasize particular parts of the region I R to
which we wish to make the continuation. The
choice of norm will depend on the judgment by the
user of which of the following, the magnitude of
the amplitude or its variation, is more relevant to
the underlying physics. Condition A is a bounded-
ness constraint, whereas B puts a strong premium
on smoothness. In particular, the integral in B
mould be very sensitive to resonance-type behavior,
as would arise from a nearby pole on the second
Riemann sheet. Indeed, in the discrepancy method
described below, the structure to be detected mani-
fests itself particularly through the variation of the
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imaginary part of the amplitude so that condition
8 is appropriate for the determination of resonance
parameters.

These nearby second-sheet poles do, of course,
frequently occur and, indeed, the interest in per-
forming the analytic continuation from the data re-

gion is typically to ascertain whether such poles
are required by the data. [Note that the higher
Riemann sheets of the function in the original s
variable (Fig. 1}are mapped to the exterior of the
unit z disk of Fig. 2.] Clearly there is little point
in applying condition 8 [Eq. (2)] directly to the
function under consideration when this function is
likely to have a pole close to the circle, since the
existence of such a pole will give rise to large
values of [d(lmX)/dtIt] . But we can proceed as
follows: we take a trial function T„(z},normally
defined by a conjugate pair of second-sheet poles,
and we subtract from the data the value of the tri-
al function appropriate to each data point z;. The
data thus modified define a new function which
corresponds to the original function with a pole
term subtracted from it. We call this new function
the discrepancy function' and note that it depends
parametrically on the position and residue of the
trial pole. Now, unless the parameters ~ of this
trial function accurately represent the pole which
the original data require, the imaginary part of the
discrepancy function will necessarily have signifi-
cant structure on the circle and the minimum
value 50 of the integral (2) for the discrepancy
function D„(z),

2

5O
——inf f [ImD„(e'~)] o(P)dg .

1/2

(6)

will be larger than the value of 50 for the function
defined by the unmodified data, as the effect of
subtracting the trial pole will be to introduce more
structure. However, if the parameters a. of the tri-
al pole do coincide with those (ao) of the pole
sought by the data, then the discrepancy function
will be relatively smooth on the circle=certainly in
the neighborhood of the pole, which can be em-

phasized within the norm integral by choosing a
suitable cr(P )—and hence also 50—=inf (norms) will

be small. Assuming that the original data do re-
quire a pole, this value of 50 for the discrepancy
function with the right pole parameters will be
much less than the value of 50 computed from the
unmodified data: the true values of the pole's
parameters may hence be found by watching the
minima of 50[D„].'

III. SOLUTION OF
THE EXTREMUM PROBLEMS

In this section we review briefly the solution of
the extremum problems A and 8 defined by Eqs.
(3) and (4}. We first establish the notation to be
used, then outline the method of solution (which is
described in detail in Ref. 12) and finally we
presented the detailed results since these form the
basis for the subsequent calculations. Problems A
and 8 will be treated separately as there are some
major differences even though the general method
used is the same. The key to the method is the du-

ality theorem'5 of functional analysis, a direct
consequence of the well-known Hahn-Banach lem-

ma.

Notation

We shall use capitals, e.g., X(z), Y(z), M (z). . .,
to represent analytic functions, and corresponding-

ly subscripted symbols XR,(z), X,m(z), . . . , to
denote their real and imaginary parts. z' will be
used to denote points on the unit circle z'=e'&, and
we shall frequently write

X„,(z'):—XR,(e'~) =—x(P )

using the lower-case letter to denote real functions
of P obtained as shown. The functions x (P ) will

always be periodic so that x(2m —P) =x( —P);
since X(z) =X(z ), x (P ) is even, x (P ) =x ( —P ).
Further Iz; I = IRez; I is the set of given points on
the real axis and Ia; J the real values specified.

The boundary value functions x (P ) are of cen-
tral importance for defining both linear functionals
and also norms for X(z},each constructed in such
a way as to suit the extremum problem under con-
sideration. For instance, one may define a norm
for F(z) related to the I. norm off(P):

'1 2/

2 f, [f(0}]'~(0}d0

where, following the above notation (Eq. 7)

f(P ) =Fa, (e'&)=ReF(e'&),

and where cr(P ) is a real, positive weight function,
satisfying the condition

o(P)=o( —P) .

Vfe shall also have to deal with linear function-
als F" acting on the analytic functions X(z). Since
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{X,F") —= (x,y" )

I y (P )x(P)o(P )dP, (10)

where we have introduced the following notation
for the functional F":

F"={,F"
& .

the functions X{z)may be expressed linearly in

terms of their boundary values x ((t ), the function-
als F" may be seen as functionals y' acting on
these boundary value functions. 'z The Riesz
theorem allows each such linear functional y' to be
associated with a real function y(P ) (which is even

in P) as follows:

Formulation of the problem

The objective is to construct a function X(z)
with the following properties:

(i) X(z;)=a; where the points z; are real and the
values a; are also real: —1(z;(+1.

(ii) X(z) is holomorphic in the unit disk, and

X(z)=X(z).
(iii) Subject to (i) and (ii) above, X(z) should

satisfy the condition that
~
~X(z)

~ (
should have the

least possible value. Here the norm
~
iX[

~

is de-

fined according to which of the conditions A or B
we wish to implement.

The procedure we adopt is the following. A par-
ticular function X"'(z) is constructed to possess

properties (i) and (ii}; this is an easy task, specifi-

cally we make the choice

X'"(z)= g ~,
(z —zi)(z —zz) . (z —z. )~ (z —z )

(z; —zi)(z; —zz) ' ' (z; z)~i— (z; —z„)

with the convention that the factors with a sub-

script d are to be deleted. Now if M(z) is any

function which has value 0 at each of the points z;
and is holomorphic in the unit disk with

M(z) =M(z), then the function X"'(z)—M(z} also

possesses properties (i) and (ii), and conversely, any

function with those two properties may be

represented in this form. So the function X' '(z)

possessing properties (i), (ii), and (iii} (which gives

the solution to our problem) is

M(z) holomorphic for ~z i
(1,

M (z)=M(z),

M(z;)=0, i =I, . . n. .

The duality theorem, ' when applied to this
minimization problem, yields

50——inf/ fX"'—M [f

(14)

X' '(z)=X"'(z)—M' '(z}, (12)

where M' '(z) is the solution to the minimization

problem to be defined below.

At this stage it becomes necessary to be specific

about the particular extremum problem to be
solved. We shall first solve problem A and return

later to problem B. Problem A is in fact a variant

of a rather classical problem and can be ap-

proached in a variety of ways, see Refs. 16 and 17.
So, for the present we adopt the norm defined in

Eq. (8) which is appropriate to the Dirichlet boun-

dary condition of problem A. In terms of that
norm the minimization problem for M(z) is

50 ——inf[[X'"(z)—M(z)
~ [,

M

sup (X"',Y ),
r~:(M, r*&=o,((r'J(=1

(15)

f, [y(p)]'o(p)dp= 1, (16a)

(M, F") =0, for all M(z) satisfying

condition (14), (16b)

where the functional {., F") is as defined in Eq.
(10}and the extremum problem is now with

respect to the class of functionals (,F") which

satisfy the conditions

the minimization being with respect to the class of
functions M(z) which satisfy y(P)=y( —P) . (16c)
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An explicit representation for
the functionals (,F }

We need to identify the class of functionals
satisfying conditions (16) but before doing this it is
necessary to look more closely at the class of func-
tions M(z). Associated with each holomorphic
function M(z} there is a real function m (P ),
which, following the notation we have established,
1s

(17)

(,y*), constructed by means of the functions y(P )

defined in Eq. (20), automatically satisfies the re-

quirements (16b). In Ref. 12 it is demonstrated
that any linear functional (,y'} satisfying Eq.
(16b) can be expressed in terms of a function y (P )

having the form (20). So the set of functions

specified by Eq. (20) defines the class of function-

als required for the extremum problem of Eq. (15),
provided the normalization condition (16a) is satis-
fied. This condition becomes, in terms of the coef-
ficients y; of Eq. (20),

Conversely, once m (P) is specified (a real, even

[i.e., m (P }=m(—P }],square-integrable function
on [0,2ir]) the analytic function M(z) is complete-
ly' determined and may be expressed as

(18)

gatgy'tyj=l ~

where the constants a,J are

a,J= W z, ,e'& W zJ,e'& 0-
2m

(22)

(23)

Equation (18}is the Schwarz-Villat formula, which
is simply the complex extension of the well-known
Poisson integral by means of which harmonic
functions M„,(z) are constructed from their boun-

dary values:

This integral may in fact be evaluated explicitly if
we introduce a holomorphic function S(z) whose

real part has the value [o(P)] ' when z'=e'&.
This may be done immediately using the Schwarz-
Villat formula

2n'

M„,(z) = I 9'(z,z')m (P )dP .
2m'

2~ e'&+z
2nOe'&'—z o'(P )

(24)

Here P(z,z') is the Poisson kernel

ip
+(z,e'&)—:Re

e'& —z

1—r 2

I+& —2& cos(e —P )
(19b)

The weight function o(P ) was restricted to be a
strictly positive function so that [0(P )] ' is
bounded. It is also required to satisfy the condi-
tion 0(P ) =0(—P ) [Eq. (9}]from which it follows
that

S(z)=S(z),
Now consider the set of functionals (.,y' }de-

fined by the following even special functions:

y(P )=g y; +(z;,e'&)[a(P )]-', (20)

where the y; are arbitrary real constants. One sees
at once that'

(M, F"}=(m,y'}

=gy; I ~(z;,e'&)[a(P )]
1

a,j——1/2
S(z;)—S(zj )

(z;+zj )

+[S(z;)+$(zj )]

and in particular that the values S(z;) are real since
the points z; are real.

The detailed evaluation of the integral in Eq.
(23) is explained in Ref. 12. The results obtained
are, for i',

Xm(P)a($)dg (25a)

=gy;M(z;)

(21)

and for i =j,

a;; =z;S'(z;)+$(z;)
1+z;

2 7

1 —zl

(25b)

since M (z; ) =ReM (z; ) =0. Hence any functional where S'—=dS/dz. Note that if the weight func-
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In this case, all the coefficients a,J are clearly posi-

tive; in fact, since ga,JV;VJ is a norm and hence

cannot vanish unless all y; are identically zero, the
matrix a,J is always positive definite and

ga,JV,VJ =1 represents an ellipsoid.

The extremum problem

We wish to determine So, where

(27)

tion o(P ) were a constant, which we could take to
be 1 so that S(z; ) =S(zJ ) =1, then the result for all

i and j would be

1 +ZlZ
alJ

1 —Z.Z-l J
(26)

FIG. 3. The elhpsoid ga,JV;VJ
——1, and the optimal

vector y
' whose projection on the data vector a; is larg-

est.
5o ——sup (X"',P'),

yg
(28)

where the supremum is taken with respect to the

set of functionals satisfying Eqs. (16a)—(16c).
This set of functionals can be represented by the

set of functions y (gIt },defined in Eq. (20). When

we substitute for (,Y" ) in Eq. (28} we see that
[cf. Eqs. (10) and (20}]

and we also want to know the function M' ' giving

the minimum, so that we will have obtained the
function X' '—=X"'—M' '. We saw froin Eq. (15}
that the extremum problem (27) could be replaced

by

5o = sup gy; f 9'(z;,e'&)[o(gtg )] 'x'"(gtg )o(gtg )dgtg = sup ~;a;,
y, ,

'
2m'

(29)

since the integrals appearing here yield by defini-
tion the values of X"'(z) at z =z;, i.e., the con-
stants a;. The coefficients y; must also satisfy the
condition (22) It follows that

(31)

(22}

4 =+Vga; —A, gagJVIVJ —1 (30)

where the constants a;J are given by Eqs. (25a) and
(25b).

In geometric terms the problem is illustrated in
Fig. 3. Since a,J is positive-definite, Eq. (22)
represents an n-dimensional ellipsoid and we look
for that vector y; on the ellipsoid whose coin-
ponent in the direction a; is a maximum.

We can solve the problem analytically using
Lagrange multipliers. We set

Q 1

J
(32)

So the required vector y; is

g(a '); a.
1 /2

a ljal.aJ
(34}

A, is determined from Eq. (22) by substituting from
Eq. (32) for y ', the result is

1/2

(33)

and differentiate, to get the following equations for
the optimal vector y' ':

and so the corresponding optimal functional

(,Y' ") is defined by the function
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y' )(P)=gy '+(z;,e'&)[o(P)] (35)

Substitution from Eq. (34) into Eq. (29) gives the
value of 50.

1/2
5() ——y(a '}~ja;aj (36)

5,= Ilx'" —m"'ll = (x ' I o *)
(X(i) M(0) y(0)e ) (37)

The fact that we already have an explicit form
[Eqs. (34) and (35)] for y' '(P ) allows us to deter-
mine also the optimal function X' '(z): indeed, if
the extremum is realized with M' ' and y' ' we
have

(x',y') (
I
lx'I

I
x

I
ly'I

I

=
I
lx'l

l

(since Ily I
I—:1) unless x' '(qS)=ky' '(@), when

equality occurs. Hence Eq. (37) tells us that the
vectors x' )(P) andy' )(P) should be "aligned";
further, since [again Eq. (37)]

I
lx' 'I

I
=50 and

I
ly' 'I

I
=1, the constant k equals 50 and hence

(38)

x(()(y) ~(0)(p) x(0)(p) 5 y(0)(p)

(39)

x' '(P)= g(a ') jajH(z;, e'&)[o((t))]

So the optimal function x' )((() ) can be written en-
tirely in terms of known entities:

where the last step follows from Eq. (16b). But
[setting x (P):—x '(P ) —m (P )], from Schwarz's
inequality we have the result

Finally, the corresponding complex function
X"'(z) is

X' '(z)= g(a ')~jaj f,~
9'(z;,e'&)[o(P)] 'dP .

l,J
(41)

We can immediately verify from Eq. (41) using Eq.
(23), that, as must be the case, X' '(z;) does indeed
have the value a;.

The Neumann boundary condition —Problem B

of the real part (3XR, /dr is specified on the unit
circle. This Neumann-type problem may be solved
in terms of a Green's function analogous to the
Poisson kernel of Eq. (19b}. The Neumann kernel
is derived in Appendix 8 of Ref. 12.' If we intro-
duce the following notation,

In problem B we want to minimize the following
integral:

aI'R, (re'&)
=f,„(P),

2
2n'f ImX(e'( ) o(P)dP .

Now the Cauchy-Riemann relations imply that

(42)
using f „(P) to denote the radial derivative of the
function FR,(z) at the point z =e'&, the required re-
sult takes the form [cf. Eqs. (88)—(810) of Ref.
12]:

1 ()Xim 5XRe dX ()z 1=Re =——Re[X'(z)z)
r BP ()r dz ()r r

(43)
where

(45)

2m

zR, (z) =I'R, (zo)+ f f „(y)m(zo ,z,e'&)d(t, .

so that the minimization problem may be written
as

2
()XR~( re '~)

o(P)diP )„(~least .
2m' O Br

l

M(zo, z, e'~) = —21n
e'& —z,

e'& —z= —2Re ln
e'& —z,

(46)

In order to proceed we need to be able to con-
struct a complex function X(z) which is halo-
morphic in the unit disk when the radial derivative Ii(z) is given by
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ip
F(z)=F(zo) ——I f „(P)ln,.

&
dP .

0 e'& —zo

(47)

As would be expected because of the nature of the
Neumann condition a subtraction (arbitrary con-
stant) is required.

If we are to proceed in analogy with the Dirich-
let case, the next step should be to try to define a
norm for F(z}by means of the boundary function

f,,(P ):

X'0'(z)=X' '(z) —M' '(z) . (52)

As before we use the duality theorem to replace
the infimum problem by a supremum one:

5—:inf
~

[X'z' —M
~ ~

=sup (X' ', F"),
M yg

(53}

where the norm is defined as in Eq. (48). The in-
fimum is with respect to the set of functions M(z)
defined in Eq. (14). The function M(z} which
gives the least value of 50 will be denoted by
M' '(z} and the corresponding X(z) by X' '(z):

I, [f,.(4»)]'«4»~0
1/2

(48)

where the supremum is with respect to the set of
functionals (,F") defined by Eqs. (16a) to (16c).
In this case the set of functionals satisfying Eqs.
(16a) to (16c) turns out to be (see Ref. 12) the set
defined by

The difficulty which immediately faces us is that
because of the subtraction in Eq. (47}, the right-
hand side of Eq. (48) does not define a valid norm
for F(z) since the latter might be nonzero even if
the right-hand side of Eq. (48} is zero.

This difficulty can be circumvented by restrict-
ing ourselves to the space' {F(z)J of F(z) vanish-

ing at z=zo. For convenience we choose one of
the points z; at which the values a; of F(z}are
prescribed as the subtraction point zo', to be specif-
ic we take zo=zi. The optimization condition, Eq.
(44), is not altered if we replace the initial function
X(z) by X(z)—a i, that is, if we replace the set of
values a ~, . . . , a„by 0, a2 —a ~. . . ,a„—a ~.
Proceeding otherwise as before, the functions M(z)
will be required, as usual, to be zero at all the
points z~, . . .z„. This restriction on the space
{F(z)J allows us to define a unique function F(z)
associated with each real radial derivative function

f,„(P):

y(0)= gy;~(zi;z;, e'~)[«4)1 ',
1 =2

(54)

M(zi, zi, e'~) =0 .

The extremum problem expressed by Eq. (53)
may now be written as

50 ——sup g y; I M(zi ,z;,&'~)&'' ', ,(P)~P
2m

=sup $y;(a; —ai) . (56)

where the constants y; are real and take all possible
values subject to the normalization condition (16a).
The summation is from 2 to n since

EP

F(z)= ——I f „(P)ln, dP
e'& —z, (49)

The coefficients y; must satisfy the norinalization
condition

and the integral from the right-hand side of Eq.
(48) is now indeed a norm for F(z).

As before, we start, now with a function X' '(z)
defined to be holomorphic and to take the values 0,
ai —a i, . . .a„—a i at the points z;. Specifically, we

choose

N

g a;,yy, =l,
lj=2

where

(57)

X"'(z)=—X'"(z)-~ (50)
a~ = M(zi, z„e'&)~(zi,z~, e'&)[cr(P )] 'dP .

2~

S,=conf ~~X&'& M~~, (51)

where X"'(z) is defined in Eq. (11). We then have

to solve the infimum problem

(58)

This integral is evaluated in Appendix C of Ref.
12 where it is shown that [for the definition of
$(z) see Eq. (24)]:
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Zi ZJ 2aj —— ln —ln ——m 8( —zi)8(z;)8(zJ) S(0)+AJ+AJ, ,
Z1 Zl

(59)

with A,J defined by where the coefficients y
' have the values

Z. 1 —zzI J z —z.
A" =—P ln +ln J

1 —Z'Z1 Z Z1

S(z') d,dZ
Z'

(60)

This extremum problem is completely analogous
to that described by Eqs. (29) and (22} except that
it is now n —1 dimensional. In Fig. 3 the ellipsoid
is now in an (n —1)-diinensional space and the n-

vector c; is replaced by the (n —1)-dimensional

vector (a; —a(), i =2 to n Th.e extremum calcula-

tion, using a I.agrange multiplier to take account
of Eq. (57), yields the value of 50 and the function-
al (., Y( ') which gives the supremum

(0)
A

a "a —a1
—1

j=2

u "a.—a1 aJ —a1
—1

1/2

(64)

5 =iiX' ' —M' 'ii=(X' ' Y' ")

The required function X' '(z) =X' '(z) —M' '(z)

may now be determined. As in the Dirichlet boun-

dary condition case we observe that

5 =sup(X' ', F")=(,X' ', Y' ' ) .

The results obtained are

50 —— g (a ')J(a; —ai)(aJ —a()
1/2

(61) (X(0) Y(0)+ )

where the last step follows from Eq. (16b}. Now
the equality between norm and functional

l,j=2
~

(X(0)
~ ~

(X(0) Y(0)e ) (66)

and (,Y(0") is defined by

y' '((}})=gy 'M(z(,'z;, e'~)[o'((t()]
g=2

(62}

(63)

&(0) (y) 5 y(0)(y)

So we have the following result:

(67)

together with the fact that the functional (,Y(+')
has unit norm, implies, by the Schwarz inequality,
that

x (+,(P ) = g (a ')J (aj —a ( )~(z(,'z;, e'~) [o(P )]
ij =2

The corresponding complex function X(0'(z) is

lg 2~
X' '(z)= g (a ')J(aj —ai) —21n, M(z„z;e'~)[o(P)] ' dP .

2a e'& —Z,

(68)

(69)

IV. INCORPORATION OP ERRORS
IN THE DATA

In this section we extend the results already ob-
tained so as to take account of the errors which
wi11 normally be associated with the data. The nu-

merical data input will usually be imprecise wheth-

er it is experimental or theoretical in origin. The
data set Ia;] is now replaced by I a;,e;]. If an at-

I

tempted fit to the data gives values a; at the data
points, then the goodness of fit is measured by the
usual X function, defined in this case by'

nx'= g
a —a. 2

(70)

We have shown how to construct that function
which, while constrained to assume values a; at the
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5o, is that which touches the ellipsoid X2=1 exter-
nally. The vector a; to the point of contact is the
value of the data vector a; which fits the data with
X =1 and which, subject to this, gives the least
value of 5o.

To solve this problem analytically and to obtain
the vector a; we use Lagrange multipliers. We

-(0)

write

F= g (a )IjaIaj +A

r

a —a
2

FIG. 4. The larger ellipsoids, with center at the ori-
gin, are the surfaces of constant 5o =g(a '),~a;a~
{these ellipsoids are dual to those of Fig. 3). The small-
er ellipsoid, with center at a; is the surface of constant
P = 1; clearly, a; gives the least possible value of 5p for

1 B

Then

5F H (a. a. )=2 g (a ') Jaj+2IW =0 .IJ J
E'i

(72)

data points z;, gives a minimum value 5o for the
norm [/X//—://X"' —M/[. In the case of the
Dirichlet-type boundary condition [problem A,
with the norm defined by Eq. (8}],5o is given by
Eq. (36) and for the Neumann problem [problem
B, norm defined by Eq. (48)], 5o is given by Eq.
(62)

We shall first describe the procedure for the Dir-
ichlet problem —the extension to the Neumarin case
is relatively straightforward. Equation (36}may be
written as

(73)

We may solve Eq. (73) for a; and the result, which
is the vector a; giving the smallest value of 5c sub-
ject toX =1, is

5p

5o ——g (a )Jaaj, (71)

where the values a; are ascribed to the function
X(z) at the data points. By varying Ia; ) we
change 5o and also X . One could at this stage
simply apply a relative weighting to X and 5cz,
and carry out a simultaneous optimization. How-
ever we prefer to proceed as follows. We specify a
value of X, e.g., X2=1, and then look for that vec-
tor a; which gives 7 the value 1 and subject to
that leads to a minimum value of 5o.

The geometrical description of this procedure is
very simple. We see at once that, since both X
and 5o are positive definite, Eq. (70} for a con-
stant value of X and Eq. (71) for a constant value
of 5& each represent an ellipsoid in the n

dimensional space Ia;]. This is illustrated in Fig.
4. The ellipsoids centered at the origin are the sur-
faces of constant 5c. Through any point a lying
on the surface X =1 there passes an ellipsoid of
constant 50. It is clear that the smallest such ellip-
soid, and hence the one giving the smallest value of

5p'+yX' (b)

FIG. 5. (a) 5p plotted as a function of g. (b)

5p +yP plotted as a function of P~. Combining 5p
with P in this way is in the spirit of Cutkosky's modi-
fied g2 test.
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n —1a;= g(W );;a;,
j=i

where

2
—1~J5J+ {a ) J

(74)

(75)

I =2

'2
(ai —a, ) —(a; —ai)

=const—
Qi —81

(78)

We substitute this into the equation g =1 to ob-
tain the following equation for A, :

8 1 Pt

g —g (~-' —I),,a,
1 =1 I J=1

(76)

The Neumann problem with errors

where the value of M ', which is a function of A,,
is inserted from Eq. (75). Equation (76) has to be
solved numerically for A, . Given A,, Eqs. (75) and
(76) yield the vector a; which may then be substi-
tuted in place of a; in Eq. (71) to give 50. Of the
real values of A, one clearly chooses that which
gives the least value of 50.

Having thus determined the optimal X = 1 vec-
tor a; we may use Eqs. (40) and (41), with a; in
place of a;, to obtain the corresponding optimal
functions x' '(P ) and X' '{z). It is clear that g
can be given any value we choose, not necessarily
1, in the above calculation. So we can calculate
50z as a function of X [Fig. 5(a)]. If we wish to
give a relative weighting to 50 and X we can de-

fine an overall optimum coming from that value of
gz for which 5oz+yXz has a minimum, where y is
a positive real constant determining the relative
weighting and where 50 is a function of X [Fig.
5(b}]. One would normally want to check that the
minimum occurred for a sufficiently small value of
X that the fit to the data could be regarded as ac-
ceptable. If this is not the case one would take the
value of 50 obtained for the largest value of X
which is acceptable.

I'= g (a '},z(a; —ai}(aj ai)—
s,j=2

—const

Then

BF

Bai

(ai —a, )= —2 g (a ');;(a; a, ) 2A, — =0
2

l~j=2 E1

(80)

and, for i+1
5p ~, (a; —a )=2 g (a ');,(a, —ai) 2~
Bai Ei

then for each value of a i which we may choose,
the surfaces of constant 5O and those of constant

are (n —1)-dimensional ellipsoids in the space of
the vectors Ia; —a i I and hence we have an
(n —1)-dimensional problem completely analogous
to that already described for the Dirichlet case. So
for each value of a, we find an optimal (n —1)-
dimensional vector Iaz, ai, . . . , a„I giving, for
that particular value of a i and for g =const, the
minimum value of 50 . The next step is to select
that value of ai for which the 50 thus obtained is
an overall minimum. Combining this value of a i
with the corresponding {n —1)-vector ta2, . . . , a„]
yields the optimum n-vector Ia i, . . . , a„ I.

Lagrange multipliers can be used as before. We
write, in this case,

Predictably, the Neumann problem is somewhat
more involved, the complication arising from the
need to subtract away one of the data points.
Equation (62) gives

50' —g (a ');,(a; —ai)(a, —a, ) .
g,j=2

If we write the condition g =const in the form

The solution to Eq. (81) is

(a; —ai')= $(& ');,(a,.—ai'),
g =, 2

where the matrix W is defined as

2

W,J. =5;1+ -(a ');J (i,j =2 to n) .

(81)

(82)

(83}



27 SEARCH FOR PHYSICAL STRUCTURES ON THE BOUNDARY BY. . . 1593

a&

2

(84)

where the (n —1)X (n —1) matrix 8' is defined as

Note that although this equation has the same
form as Eq. (75), in this case the matrix M,J is

(n —1)X(n —1), with ij running from 2 to n, and

the matrix a,z is the Neumann a matrix. The
value a( is obtained by substituting Eq. (82) into
Eq. (80), giving the result

would expect and for which the data is to be test-
ed, is expressed through the discontinuity function
along the cuts and typically is related to the posi-
tions and widths of resonances. Resonances are
described by nearby poles on the second Riemann
sheet: we have to ask whether the data do or do
not support the existence of such resonances and if
they do, what are the preferred values of the reso-
nance parameters (the pole positions and residues).

The procedure is as follows. We construct a tri-
al function T„(z) which will usually be given by a
pair of conjugate second-sheet poles. We may
take, for example,

2

A;J. =a;J+ 5;J, (i,j=2 to n) (85)
K)+lK2 K& —lK2

T„(E)= ~E (K3 + lK4 ) ~E ( K3 +iK4 }

or equivalently by

A'=Ma . (86)

(Ki, . . . , K4 real, K4 ——negative),

(87)

Equation (84) may now be used to substitute for

a) in Eq. (82) which will then give a; in terms of
a i, . . .a„, and A,. Finally, these results for the vec-

tor Ia; I are substituted into the equation

X =const to obtain an equation which may be
solved numerically for A, . One can then proceed
precisely as in the Dirichlet case. '

V. THE DISCREPANCY METHOD

In the preceding sections we have shown how to
construct a holomorphic function which fits the
data, with errors, to within a required value of X
and which is optimal in terms of the boundedness

or smoothness condition, defined by Eqs. (1) or (2),
which we choose to impose with a suitably chosen
weight function cr, on the boundary of the holo-

morphy domain. In this section we show how we
can use these results to test whether the data sup-

port a hypothesis of a certain type of structure on
the boundary for the physical amplitude (Green's
function, etc.},A (z). The structure which one

where the square root is defined to have a non-
negative imaginary part in the complex plane cut
along the positive real semiaxis. The data a; for
A (z) are now replaced by new values obtained by
subtracting from the values a; the values of this
trial function when evaluated at the appropriate
data points z;. The modified data a ' obtained in
this way are now submitted to the analyses of Secs.
III and IV. A function D„(z) is obtained via Eq.
(41) or Eq. (69) which fits the adjusted data values
a ' and which is optimal in terms of the stabiliz-
ing condition imposed on the boundary.
D„(z)=A (z) —T„(z) is called the discrepancy func-
tion. ' If we combine the trial function T„(z) with
the optimal discrepancy D„(z), then the function
A„(z)=T„(z)+D„(z—) represents the fit to the origi-
nal data a; which has the resonance structure of
the trial function T„(z) but otherwise possesses the
minimum possible structure due to the requirement
that the norm 5 of D„(z) should be minimal. The
Neumann condition [Eq. (2)] is the more appropri-
ate one for imposing this minimum structure re-
quirement on D„(z):

2m 2
inf 5(K)=—inf ~ f ImD„(e'~) o(p)dct) .
(D~) (D~) 2'lr p . d

=5p(K) . (6')

Expressing a; ' in terms of the modified a '=a; T„(z; ) and the erro—rs e; by means of Eqs. (82) —(86), we

obtain for the optimal function A„(z)
'T

n 2~
A„(z)=T„(z) g(a ')~J(a~ ——a i

')—f ln .
&

M(z),z;,e'&)o(P ) 'dP,
~ ~ e'& —z,

(88a}
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while the norm of the corresponding optimal discrepancy D„(z) is
1/2

( ) y (
)
) (

~(D) ~(D)
)(

~(D) ~(D)
)

/, J =2
(88b)

Since D„(z) is constructed from the modified data
it depends on the choice of the trial function T„(z),
so that 5O will be a function of the parameters

«), a&, )~3, and «q of T„(z), If for some specific
K =K. the function T,(z) adequately represents

the structure which the data require, then D p(z)

can be relatively free of structure and the corre-
sponding 5p should be small. However if the trial
pole is substantially different from the pole sought

by the original data, then the effect of subtracting
T„(z) will be to increase rather than decrease the
structure demanded by the data: in this case D„(z)
will necessarily possess significant structure on the
boundary —more structure in fact than would have
been required by the original data —so that 5()()r)
will be large, larger than the value obtained from
the unmodified data.

So it is possible to test the hypothesis that a par-
ticular type of trial function, for specific values of
its parameters which are to be determined, should
provide a structure which meets the demands of
the data, as follows: 5o is constructed as a function
of the parameters «of the trial function T„(z). If
within this parameter space 5p(«) has a significant
minimum (at which it would be expected to have a
value much less than the value of 5() for the unmo-

dified data a;) then we can say that for the values

of the parameters ~; giving the minimum of 5O,
the structure described by T p(z) is favored by the

data. If, on the other hand, 5p does not have a
significant minimum then the data cannot be said,
on the basis of this analysis, to support the reso-
nance hypothesis. This negative result should not
automatically be regarded as a reason to reject the
hypothesis, as it will often be the case that the data
are not sufficiently accurate to support a resonance
hypothesis. However, even in this case, the present
method should provide the strongest possible state-
ment which the data can support, in the sense that
there is no other mathematical procedure which
can give a better result. This is so since, if it hap-
pens that for a whole range of values of the «'s the
functional 5()(«) does not differ significantly from
its minimum value, then all the corresponding
functions T„(z)+D„(z)will be analytic, will have
little structure outside the resonance region, and
will all have acceptable values at z =z; (i.e., fitting
the data a; within the given value of X ) although

I

the shape and position of the resonance T„(z) may
vary considerably.

A standard minimization program can be used
to determine the minimum of 5() if one (or more)
exists. In practice it will often be useful to evalu-
ate 5O at various points over a lattice so that one
can visualize its dependence on the parameters x.

An important element in this discrepancy
analysis is the choice of the weight o. First, o
may serve as a sieve to reject functions of an
unwanted type. For example, cr can be chosen so
that an undesirable threshold behavior would give
a large (divergent) contribution to 5p and so be re-
jected. Asymptotic behavior can be controlled in
the same way. A second particularly useful facili-
ty provided by o is to emphasize particular limited
segments of the resonance region. One would
often expect many resonances to contribute but,
provided that there is a reasonable separation be-
tween these resonances, cr may be defined to single
out a limited energy range within which a single
resonance may be identified.

VI. CONCLUSION

In this paper we were concerned with the con-
struction of analytic-continuation procedures which
would be optimal with respect to some functional
boundary conditions. As was pointed out in the
Introduction it is essential to introduce stabilizing
conditions since, due to the imprecise nature of the
input data and the finite number of data points,
the analytic continuation is not only no longer
unique but (in the absence of such a stabilizing
condition) is also widely unstable, in the sense that
the outputs may differ by arbitrarily large amounts
even if the imprecision of the initial data is small
or tends to zero.

Analytic continuation can be an important ad-
junct to a theoretical calculation when it is neces-
sary to extend the results obtained by some
procedure —such as a perturbation expansion —into
a region where this procedure is not directly appli-
cable. It has been a long-standing challenge to at-
tempt to use calculated results for unphysical
values of the energies to predict properties, such as
resonances, at values of physical interest. This is
not simply a matter of analytic continuation from
one region to another: given that the perturbation
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approximation is itself an analytic function, a
straightforward continuation will just yield the re-
sult which would be obtained if the perturbation
calculation were applied directly within the reso-
nance region where it is known not to be valid.

In order to get the correct physical answer from
the (false) perturbative input, we have first to relax
the uniqueness of the continuation procedure. This
is possible, since our method allows errors to be in-
corporated. It is in fact necessary to do this, since
the truncated perturbation input, even where that
expansion is valid, is only an approximation to the
actual function. But the incorporation of errors
(even though these are small) also relaxes the
uniqueness of the analytic continuation and allows
the real function to enter the set of possible con-
tinuations.

Instead of basing our method on the require-
ments that mathematical properties of a somewhat
remote kind should be satisfied (such as the special
shape of the holomorphy domain of the amplitude
in the complex plane of the coupling constant,
which is required for Borel summability —and
which is difficult if not impossible to prove), we
have designed our continuation procedure to use
only properties which might be easily verified by
experiment, such as the separability of resonance
peaks, where this does occur. Moreover, the stabil-
ization conditions [Eqs. (1) and (2)] have been
chosen to suit these particular physical require-
ments. In defining these conditions we retain con-
siderable flexibility of application. First, there is
the freedom of choosing a discrepancy function D„
constructed specifically to test a hypothesis such as
the likelihood of any set of resonance parameters;
Sp gives a direct measure of this likelihood.

Second, the weight o may be constructed to per-
form various functions: It may be chosen so as to
sieve out some unwanted functions; for example,
the truncated perturbation expansion might have

an unsuitable threshold behavior and functions
with this property could be rejected if o causes the

integral in Eqs. (1) or (2) to diverge for them.
Also the function 0 may be chosen to single out
different segments of the resonance region: this

means that one can ask questions separately about
individual resonances.

Summary of the main results

In Sec. III we show how to find that particular
analytic function which assumes specified values at
the data points and which best satisfies the con-
straint conditions. Our method for approaching

this problem uses some of the functional analysis
techniques described in Ref. 12; the results may
then be expressed in a remarkably elegant and con-
venient closed form [see Eq. (88)]. A key feature
of our approach is to recognize that the input data
is given on a finite set of n points. By working
directly from this data set we obtain results for the
optimum function which can be set in an n

dimensional Euclidean space, where they have a
simple geometric description.

%e then proceed in Sec. IV to extend these re-
sults to take account of the errors associated with
the data values, so that at this stage we can solve
the following problem: We can find that function
which fits the data, with errors, to a required X
value and which is optimal in terms of the smooth-
ness or boundedness conditions which we choose to
impose on the boundary of the domain of holo-
morphy. The next step is to adapt these results to
enable us to test whether the data support a hy-
pothesis of a certain type of structure on the boun-

dary. Typically this structure is associated with a
pole on a second Riemann sheet which can mani-
fest itself as a physical resonance. To solve this
problem we introduce in Sec. V a so-called
discrepancy function in the following way: From
the original data we subtract the values of a trial
function, defined in terms of some parameters,
which is selected to represent the structure (such as
that due to a second-sheet pole) which we are look-
ing for. We then ask if, for some values of these
parameters, the discrepancy function, in which the
structure represented by the trial function has been
subtracted away from the original function, satis-
fies particularly well the smoothness constraints on
the boundary. A positive result would indicate
that the data favor the structure described by the
trial function for the observed values of the param-
eters.

In pursuing the above program a key quantity
(number) is the functional 5p computed for the
discrepancy function D„(z) [Eq. (6)], which is de-
fined to be the least norm, as defined in Eqs. (3) or
(4) which is compatible with the analyticity of the
amplitude, the data, and with a set of resonance
parameters x which enter 50 via the discrepancy
function D„(z). The two alternative norms of Eqs.
(1) and (2) represent two different types of stabiliz-
ing conditions. The first of these (the Dirichlet
case) is based on the I. norm of the real part of
the function, integrated over the cuts, the second
(the Neumann case) is related to the smoothness of
the imaginary part on the cuts.
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The reader who is interested in the mathematical
aspects of the problem is referred to Ref. 12 and in
particular to the Appendices in that paper where

the main results from functional analysis needed to
carry out these calculations are derived.
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