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We show that the Nambu-Goldstone structure of the tightly bound qq pion and kaon al-

lows the weak s-d quark tadpole to contribute to the LB=1 nonleptonic weak decay ampli-

tudes. This tadpole, bound to the kaon in a quark loop, accounts for the EI=—rule and
1

the observed magnitude of the BI=— K—+2m amplitude. With a simple vacuum-

saturation model of the A,I=—K~2m amplitude the observed relative sign of the h,I= —,

and LU =—amplitudes is also correctly obtained.

I. INTRODUCTION

Pions and kaons play a special role in hadron
physics because they are the "almost Nambu-
Goldstone bosons" associated with the spontaneous
breakdown of chiral symmetry. We suggest that it
is this special property peculiar to kaons which is to
be exploited in the context of the QCD (quantum
chromodynamics} quark model to understand their
nonleptonic decays. In particular we propose that
the important part of the M = —, weak Hamiltonian
is the s-d quark tadpole generated by a single W+-

exchange, ' and that it is precisely the Nambu-
Goldstone nature of the kaon which prevents this
tadpole from being transformed away by higher-
order QCD or QFD (quantum-flavor-dynamic) in-
teractions. Coupling this tadpole to a QCD quark
loop which binds the sd quark-antiquark pair into
the pseudoscalar K, we find that the experimental

K2 amplitude is approximately repro-
duced.

1

In Sec. II we extract the relevant E2 dd = —, and
amplitudes from experiment and the usual

PCAC (partial conservation of axial-vector current)
analysis. Then in Sec. III we present two quantita-
tive lemmas which suggest that the dd= —, s-d

quark tadpole Hamiltonian cannot be transformed
away by QCD or QFD renormalization procedures.
We evaluate the matrix element (0~ % „a K ) in
Sec. IV, linking the s-d tadpole to the E' bound
state by a quark loop. We find that this matrix ele-
ment is consistent with the magnitude of the mea-
sured LU= —, K2 amplitudes. Then in Sec. V we

compare the relative sign of the M= —, quark tad-
pole amplitude and the id= —, amplitude obtained

by vacuum saturation. Even this sign is consistent
with experiment and confirms the validity of the s-d
quark tadpole.

Finally in Sec. VI we summarize our results and
draw our conclusions. We emphasize that the
dynamical mechanism producing the LU= —, rule is
not unioersal, but that kaon decays and hyperon de-
cays each have their own natural dynamical process-

1

es which generate a AI= —, rule. In the kaon case
this mechanism is the Nambu-Goldstone nature of
the pseudoscalar mesons as relativistic qq tightly
bound states, whereas in the 8~B'm hyperon case
the analogous mechanism is the nonrelativistic qqq
loosely-bound-state nature of the baryons, and the
resulting SU(6) symmetry.

II. PHENOMENOLOGY OF TWO-BODY
KAON DECAYS

t 3
We begin by extracting the dd= —, and —, K2~

amplitudes, which we call a &/2 and a3/2 An isospin
decomposition of the final 2n state and the inclusion
of final-state interaction leads to the usual expres-
sion

p + i50 2 is 2t'M(Ks~ ~ ~ )=ai/2e + i a3/ze (la)

p p p
~ l50 4 l52iM(Xs~ ~ ~ )= a i/2e —

3 as/2e (lb)

iM(E+~ m+n'}=a, /, e' '. . (lc)
The intrinsic weak amplitudes a &/2 and a3/2 are re-
latively real. The data on the partial decay rates al-
lows us to deduce from Eqs. (1) that

a 3/2 /a i /2 0 047 +0——00.2.
(2)

b, =5o —5z ——(57+2) .
Alternatively we may input the value b, =(47+7}'
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to obtain from (la) and (lb)

a3/2/a&/2 0'038+0'005

or from (la) and (lc)

(3a)

which, applied to the E2 amplitude

M j/2 = —
& rr 7T

I
A ]/2 I

E )

gives the current-commutator term

(10)

I a3/2/al/2 I
=0.047+0.002 . (3b)

The agreement between Eqs. (2) and (3) is just out-
side one standard deviation. A weighted average is

I
[Q„~„,] I

rc)f
.~ ~ ~ ~

&0I~„,I
re) .

a 3/2 /a ) /2 0——04.6+0 00.6 (4)

which we will use as the "experimental" value of
this ratio.

We then obtain the individual amplitudes from
the observed Eq„decay rates:

a~/2
——e'~(3.84+0.01)X 10 GeV,

a3/2 —e' ( 1 ~ 83+0.23) X 10 ' GeV

(5a)

(5b)

j& uy&(d co——s8~+s sin8~ )

+cy&(s cos82 —d sin82), (6)

where 8& -=82-8c——13.2'. As we shall see, (6) and
the usual model of weak interactions lead to tadpole
and current X current terms in 4, the effective
weak Hamiltonian density. A I may be written in
terms of tadpole and current X current parts

~e ~tad+~JJ ~

1 3or in terms of AI = —, and AI = —, components,

In Eq. (5) the overall phase p is unknown, but from
(4) a 3/2/a t /2 & 0.

Next we review the current-algebra —PCAC
analysis which will enable us to convert (5) to a
more useful form for comparison with calculations.
We make our computations in a four-quark model,
rather than a six-quark model. The b and t quarks
are so heavy that they can be decoupled from the
calculation in the Appelquist-Carazzone sense,
leaving us with a four-quark theory in which the
fiavor-mixing angles and quark masses are to be re-
garded as effective parameters applicable only to the
four-quark effective theory. ' The weak left-handed
current is then of the standard four-quark
Cabibbo —Glashow-Iliopoulos-Maiani (GIM) form"
(neglecting CP-violating effects):

Here f =93 MeV.
The E~2m process contains a rapidly vary-

ing pole illustrated by Fig. 1,' so the on-shell
EI= —, amplitude is given by

Mon shell "P(on shell} " P(soft}+ " cc (12)

where M~ is the pole term corresponding to Fig. 1.
When evaluating M~( ft) the four-momentum
k =q;+ qj is conserved so that when q; —+ 0,
k =q =mk . Theie'"r" term in (11) is then can-J
celed by the rapidly varying pole term and we final-

ly obtain

m~
M)/2 2

1
2 &01~1/21&&2f ' m~2

(13)

We note that (13) satisfies the Gell-Mann —Cabibbo
SU(3) null theorem' in that M'(/2 vanishes in the
SU(3) limit m /mx ~ 1. Moreover M(/2 given in
(13) is a factor of 2 larger than the amplitude found
in the earlier current-algebra analyses' which aver-
aged the results obtained by taking first one and
then the other pion soft. This averaging procedure
was adopted to eliminate -"by hand" a term analo-
gous to the ie'J"r term in (11) which depends on the
order in which the pions are taken soft. It is no
longer necessary when the rapidly varying pole term
is taken into account.

Pl gy
—A 'j/2+% 3/2 ~ (8)

3/2 receives contributions only from A JJ, but
A 1/2 contains both A JJ and A „d pieces. Notwith-
standing this we have the familiar current-algebra
relation

&oIlQs I:Q3 ~u2]] I&&= ~ &o I~|/2I&&

(9)

FIG. 1. The rapidly varying pole term in EC—+2m de-
cay. The open circle represents the strong E-m scattering
amplitude.
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In Eq. (13) we specialize to the amplitudes for
K -+n+m and K ~ir m. (recall ~2Ke
=KL, Ks—)

Eo I7'
M+ )g2 ™00)g2 —— 1—

2f
Nl

(0~ 4 i') K )

= lQ ]g2 (14)

which gives from (5),

—i (0 (
4 imp ~

K ) = e'~( 5. 10+ 0.02)

g 10 GeV (15)

Current algebra and PCAC then give

(Ol m IK')
I

=WZf

=(4.0+0.3)X 10 GeV

in reasonable agreement with the earlier value (15),
which we will use as it is the more accurate and is

1

pure M= —,.

III. THE NONDISAPPEARING TADPOLE

To leading order in the weak interaction, the one-
loop contribution to the s dquark tadp-ole transition
is illustrated in Fig. 2. The left-handed nature of
the Cabibbo-GIN current (6) ensures that there is no
mass term in the tadpole. All that remains is a left-
handed kinetic term proportional to pL, ——p(1 iy5), —
which may be expressed as'

M„d=b(p )(dpLs sprd), —

=b(p )(S —P'),
(16a)

(16b)

where S'=iqA, 'pq and P'= —qA, 'pysq with

ys ———1. It is the opinion of many workers in this
field that a series of papers by Weinberg" (which in
turn rely on a result of Feinberg, Kabir, and Wein-
berg' ) imply that self-energy tadpoles of the form

As a further check on the magnitude of
(0 ~Pi i~i ~K ) we may use a pion pole model of
EL —+yy, noting that g and g' pole contributions
approximately cancel each other, to obtain

IKL, )
I
=(mx m )IP'x ry~+~I

=-(3.0+0.2) )& 10 GeV

given in Eq. (16) can always be transformed away.
We agree that this is so for transitions involving
quarks loosely bound in baryons or heavy mesons,
but we do not believe that the Weinberg "theorem"
applies to transitions such as (0

~
M„d

~

K ) invoh-
ing quarks tightly bound in light Nambu-Goldstone
pseudoscalar mesons. We base the nondisappear-
ance of the tadpole on two observations relating to
QCD and QFD renormalizations.

Lemma 1: The immunity of the tadpole
(0~4 „d~K ) to QCD renormalizations F.or con-
creteness we consider the quark tadpole graph em-
bedded in the matrix element (0~8 „d~ K ). In
quark-graph language (0

~
A „q ~

K ) is represented
in Fig. 3.

The vertex labeled y5 represents the pseudoscalar
binding of quark-antiquark pairs in the 0 +

mesons. Figure 3 is completely analogous to the
quark-graph representation of the matrix element

(0~3„~n. ) =if q„ illustrated in Fig. 4. In Figs 3.
and 4 the heavy dots on the quark lines indicate that
the quark lines are dressed by gluon self-energy
loops but that gluon exchanges between the quark
lines are not permitted. The reason for this prohibi-
tion is that such gluon exchanges are already includ-
ed in the Bethe-Salpeter graphs which bind the qq
pairs into the Nambu-Goldstone pseudoscalar K and
m mesons as q ~0. This was shown by Nambu and
Jona-Lasinio' in a four-fermion-interaction model,
and their argument identifying the Bethe-Salpeter
binding equation and the self-energy dressing equa-
tion was extended to chirally invariant non-Abelian
gauge theories including QCD by Delbourgo and
Scadron. ' The graph of Fig. 4 has been analyzed to
calculate the slope ' f'(q =0) and magnitudes '2'

f (q =0) of f . Similar graphs involving dressed
quarks with gluon exchanges between quark lines
prohibited give an adequate account of the n. and K
charge radii, and also reproduce the Adler-Bell-
Jackiw n ~ 2y anomaly. In all such cases it suf-
fices to use a constant rrqq coupling of ys type with

g~zq given by the quark-level Goldberger-Treiman
relation assuming f~ & 0,

W"
K

c,u
d

P

FIG. 2. The quark tadpole diagrams. FIG. 3. The quark graph representing (0
~

4 &,d ~

X ) .
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}7~75

FIG. 4. The quark-graph representation of
(o[~„[~).

~con
geqq = =3.6,

where m„„ is the constituent mass of the nonstrange
quarks (of order 340 MeV).

Now we return to Fig. 3, emphasizing the follow-
ing:

(i) Gluon exchanges of the self-energy type are al-
ready included in the dressed quark lines with con-
stituent quark masses.

(ii) Gluon exchanges between the quarks lines are
already included in the Kqq vertex function because
of the Nambu-Goldstone nature of the strongly
bound kaon. Thus these are no further gluon ex-
changes allowed in evaluating Fig. 3, and no QCD
counterterms can enter to renormalize the tadpole
away.

We can reinforce this condition by looking at the
complete X~2m quark tadpole graph of Fig. 5(a).
The absence of gluon exchanges between the quarks
in the tadpole leg prevents us from deforming Fig.
5(a) into Fig. 5(b). However, Fig. 5(b) corresponds
to the process E~p~ 2m.. (The net parity violation
of the E~ 2m process allows only scalar and vector
intermediate particles, but the coupling to scalar
particles is expected to be weak and the scalar pole
is not rapidly varying. ) This amplitude vanishes, so
it is no surprise that our arguments do not grant im-
munity to the s-d tadpole in Fig. 5(b).

Lemma 2: The immunity of (0~4 „d ~E ) to

QFD flavor transformations Now t.hat we know
QCD renormalizations leave the tadpole (16) intact,
we must decide whether it will survive QFD flavor
renormalizations.

We begin by reviewing the argument of Feinberg,
Kabir, and %einberg' on which the general opinion
that tadpoles can be transformed away is based.
One starts with a general quadratic Lagrangian den-
sity of the form

I ~ a

flavor space. The Lagrangian Wo may arise to
one-loop order in the QFD interactions —in fact (16}
represents an off-diagonal term in the matrices Bt
and 82. It is convenient to rewrite (18} in a repre-
sentation in which

and

0 1
'» —

& 0
I

j. 0
» —

0 —i
J

so that

where

5(bj

FIG. 5. Tadpole contributions to E~ 2n.. (a) The rap-

idly varying tadpole graphs. (b) The nonrapidly varying

tadpole contribution to E~p~ mw.

~v=0[~ t+~r52(»++irs&2~Plf (18)

where g are vectors in flavor space and spinors in
Dirac space, and A;, B; are Hermitian matrices in

and

Bi —B2
—B2 B) (20)
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normalization as well as a rotation in flavor space)
and not a unitary transformation. In fact, Ref. 16
provides an explicit example of a Green's function
involving a transition between fermions which does
not vanish in general but does vanish on the fermion
mass shell.

Now we can see why the QFD transformation
(21) applied to Fig. 5(a) or equivalently

(0~M«q ~K ) will not transform the matrix ele-
ment to zero, even though A „d corresponds to off-
diagonal B1 and B2 terms in Eq. (18). The reason
is that the quark lines in Figs 3an. d 5(a) are well

off mass shell, because of the Nambu-Goldstone na-
ture of the kaon. This follows from
m~ ——m, +m —E~-O, ~hence the binding energy
Es is of the order of the constituent quark masses
forcing the quarks far off mass shell. That we can
conjunctively transform (18} into (25) is irrelevant
for the calculation of Fig. 3; (25) and (18) give iden-
tical results only on the quark mass shell. However,
(18) represents the physically relevant theory, and it
is useful to transform it to (25) only for the process
involving quarks on their mass shell. We note that
the quarks in the vector mesons and baryons are
essentially on their (constituent) mass shell, so that
the Feinberg-Kabir-Weinberg theorem does apply in
that case and, e.g., (p

~

P „d ~

K ) and (N (
A „d ~

B )
do vanish. On the other hand in the kaon the
quarks are well off their mass shell and
(0

~
4 „d ~

E ) survives.
We conclude this section emphasizing that, con-

trary to the general opinion, the s-d quark tadpole of
Fig. 2 cannot be transformed away when it is em-

rates a Nambu-
on to compute

are Hermitian matrices. We now make a transfor-
mation of the fields g,

(21)

where W is a nonsingular (but in general nonuni

tary} matrix which can be shown to be of the form
T

SI S2
~1+ y5 2 (22)

2 1

Under this transformation (19) is converted to

Wp=0 [~++ (pp iyso;—p;)lf,
where M'=P'+WW and 4"'=&+A.P'. In the
language of matrix theory M' and 4"' are Hermi-
tian congruent (or conjunct) to M and O'. Now we
rely on standard results in matrix theory which as-
sure us that if S' is positive definite then a matrix
P' can be found such that

1 0
0 1

and W' is diagonal, of the form

W' =diag(m1, mz, . . .,m„, —m»

—mz, . . ., —m„) . (24)

A further calculation is necessary to demonstrate
that P' is of the form (22). Thus (23) can be written
in the diagonal (nontadpole) form

Wp ——g g;(p+ m; )g; (25)

bedded in a quark loop which gene
representing n free fermions of mass m;, . . .,m„.1 Goldstone boson. We therefore go

Th s al' wc have g vc11 a ln omplete st tcmc f, (0
~

~
~

It ) f th 1 f F
of the Feinber-Kabir-Weinberg result, but this is the
form which entered the folklore through Weinberg's
1973 papers. ' Feinberg, Kabir, and Weinberg'
completed their theorem by demonstrating that Wp
(Eq. (18)J and Wp (Eq (23)J give . identical results
for S matrix elemen-ts involving on-shell g; states.
The Green's functions generated by the Lagrangians
Wp and Wp are not in general identical because the
transformation (21) is a general nonsingular
transformation (i.e., it involves a wave-function re-

I

i( —3)(v 2gK„) b(p')T [(pr+ , q+m, )y5—(It , q+md—)It—(i iy5)]-
(0[+'„,iK')=, " d'p

[(p+-, q)' —m, 'l[(p ——,q)' —m. '1

IV. THE QCD QUARK-LOOP CALCULATION OF
(0

i
Pi „d i

E)'
We cannot transform the s-d quark tadpole of

Fig. 2 away, so we calculate the magnitude of
(0

~

A „d ~

K ) from the loop diagram of Fig. 3, to
compare it to the experimental value (15). Using the
form of the tadpole in (16},Fig. 3 gives

(26)

where (m, )„„=510MeV and (md )„„=340MeV are the strange and down constituent quark masses. Just as

The factor ( —3) in Fq. (26) is the color factor of 3 for the loop, with a factor ( —1) from the Feyman rules for
fermion loops. In (26) the pseudoscalar quark-boson coupling constant gKqq is given its Goldberger-Treiman
value with fK-1.2f„&0,

gKqq =
2 (m +md } o ~fK— (27}
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where d =12(33—2nI) '=0.48, A =150 MeV is the QCD renormalization invariant for four quark flavors,
and M is the fixed renormalization point which we take as M -=2 GeV for processes involving s and d quarks.
Equation (26) then becomes

d

4ir & ' '=» [p —m (p )][p —m (p )]

(29)

The lower limit on this integral is chosen to be 1 GeV, where the QCD coupling and m,„are expected to
freeze out.

In the chiral limit the right-hand side of (29) goes to zero as the current quark masses go to zero. This is
consistent with the vanishing of the left-hand side as E becomes soft (q ~ 0) because the tadpole algebra

[Q5 ~'j =&f"'P" [Qs P'j =&f""~' (30)

forces (0
~
P7

~

E (0)}to zero. Thus we see that (0
~
8 „» ~

K (0)) is a chiral-symmetry-breaking quantity and
as such can be M dependent, just like m,„(M). Unfortunately the integral in (29) is sensitively dependent on
M.

To proceed further we must evaluate the tadpole strength parameter b(p ) in (16). To calculate Fig. 3 we
work in the 't Hooft —Feynman gauge, in which the 8'-boson propagator is ( —g&„)(k —m~ ) ', and the
Higgs contributions to the s-d tadpole vanish if we regard the current quark masses as generated by the Higgs
vacuum expectation values. (Since in this case diagonalization of the quark mass matrix by a flavor-space ro-
tation also diagonalizes the Higgs-boson —quark couplings in flavor space and the Higgs loop cannot then gen-
erate an s-d transition. } Then the four-quark current (6) gives

«w~w . [m, (k ) —mg (k )](p—k)q
p„b(p ) = — sine& cos8& f d k (31)V24~' (k2 —mwi)[(p —k) —m, ][(p—k) —m„]

Note that, as in the many examples of 8'-loop integrals considered by Gaillard and I.ee, the GIM mechanism
ensures that the divergence in the individual contributions from the intermediate quarks is canceled when the
terms are added up. When (31) is inserted into the quark loop integral (29) the ultraviolet cutoff ensures that

p &&mw in (31), so that we may replace b(p ) by the constant
2d

Gw singe cosmic z
M'2b:—b(0) -=0 m, ,„~ (M') In

2 Ii(mw), (32)

in the calculation associated with Fig. 4, relating f to the nonstrange-quark mass, ' ' we take (27) as a con-
stant, remove it from the integral and note in passing the near equality of gxq~ [Eq. (27)] and g q~ [Eq. (17)].
We lose no generality in setting q=0 in Eq. (26). In that case the quark trace is proportional to
m, —m» ——[m, (p }—m»(p )j,„~, as the dynamically generated part of the quark mass is flavor independent,
but the current quark masses are not. In the asymptotically free deep-Euclidean limit of QCD we may write

[m, (p ) —m»(p )],„=[m,(M) —m»(M)],„„ (28)
ln(p /A )

where

I, (mw)= f,
Pp

xdx
2 2d'

mw x
(x+ 1) ln

A

(33)

The integrand in (33) vanishes as x —+ 0, so that Ii(mw) depends only very weakly on the lower cutoff po,
which is chosen as 1 GeV as before. The integral is also convergent at the upper limit and depends weakly on
mw. Explicitly, for d = —, we evaluate (33) numerically and find

Ii(mw ——80 GeV) =0.038,

Ii(mw ——250 GeV) =0.031 .

Using (33), the tadpole matrix element (29) becomes

(34a)

(34b)
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2d

i—(0
~
4 «s ~

K &
—= V 2gxzq sin8c cos8c m, ,„(M') ln [m, (M) —md(M)], „„II(ma )Iz(M}

M'

A

with a new integral which must be evaluated numer-
ically:

1 (M'/A')
ln(y/A )

4)( 10 GeV, SPCAC,
7 X 10 GeV, NPCAC .

(35)

(38)

—=3.2 QeV2 at M =2 GeV . (36)

[Note that Iz(M)-M for M in this region. ] The
renormalization point M' should be chosen as being
suitable for processes involving c quarks. We choose
M' =3 GeV, near the 4 mass, where

m, (M'=2m, ) =m, „„-=m,,„„=1.5 GeV .

(37)

The sensitivity of our final result to the choice of M
precludes using (38) and the experimental value (15)
to distinguish the two schemes of chiral-symmetry

breaking. However, the fact that the two values in

(38) span the experimental value of
I&o I ~I/z IK'&

I
is a strong Indication «us that

the tadpole Hamiltonian 4 „d of Fig. 2 is indeed the
dominant contribution to the b,I=—, weak Hamil-

1

tonian, and provides the explanation of the M= —,

rule in I( ~ 2~ decays.

To complete the evaluation of (35) we need

[m, (M) —md(M)], „~. In the strong PCAC scheme
of perturbative chiral-symmetry breaking ' one usu-

ally takes (m, —md )«g =140 MeV, while in
the neutral PCAC scheme ' one has
(m, —mq), „=-240 MeV. Thus we have for the
tadpole matrix element

V. THE SIGN OF a~~2/a3/2

As a further indication that the s-d tadpole dom-

inates the Kz decays we calculate ai/z/a. 3/z using

(35} for ai/z and a simple vacuum saturation argu-
ment for a3/z First of all we note from Eqs. (14)
and (35) that the tadpole amplitude gives

2 2
2d

3 mw ( 4+ md )con Glv M'
a I/z

——
z

1 —
~ sin8C cos8c m, ,„,„ ln

z (m, md ),„„,I,Iz-
2f mx 2 g (2~) A

which for 8c, 6II. cc gII. /m II, and fx taken positive is clearly positive:

a]/2)0 o

We evaluate a3/z by vacuum saturation of the K+~ m +~ amplitude, using Eqs. (5c) and (14):

a 3/2 = —I & Ir 'Ir'
I ~J~

l

K'
&

. Ga
sin8, cos8, (~'~~„' "~K+&(~+ ~ZI+" ~ ~0&

(39)

(40)

Gw 2 2sin8c cos8cf~(mx —m~ )
2 2

(41)

=1.9&(10 GeV) 0 . (42)

ai/z/a3/z )0

which is in agreement with experiments (2)—(5).

(43)

In this evaluation we have ignored QCD correc-
tions and perhaps should not take the remarkable
agreement of (42} with the observed magnitude of
a3/z in Eq. (Sb} too seriously. But we feel confident
of the calculated sign of a3/2 and with the predic-
tion

VI. CONCLUSION

We have shown that the Nambu-Goldstone strong

binding nature of the kaon plays a critical role in

determining its weak decays, in that the s-d quark
tadpole cannot be transformed away by QCD or

QFD renormalization. The tadpole matrix element

(0
~
A „d ~

K & depends on the QCD renormaliza-

tion point M used in its evaluation, and on the
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current-quark-mass difference m, —md. However,
for I-2 GeV the strong PCAC and neutral PCAC
values of m, m—d lead to values of (0~4 „d~E )
which span the experimental value of
(0

~
M~zz

~

K ), suggesting that the s-d tadpole pro-
vides a natural explanation of the b,I= —, rule
in Ez~ decays. Even the relative sign of a&qz as
found from the quark tadpole and a3/2 obtained
from the A zJ vacuum saturation supports this con-
clusion. Since K~ 3m. decays are quantitatively re-
lated to E~ 2m decays in the current-
algebra —PCAC program, the s-d tadpole provides
an explanation of these decays as well. This in-

I 3
eludes the positive AI=

z
/KI= —, enhancement of

(21) as both magnitude and relative sign can also be
extracted from E3 decays. '

We do not claim that the same diagrams explain
1

the AI= —, rule in E and hyperon decays. In our
opinion the AI= —, rule has its origin in the QCD
dynamics of the decaying particle. In the case of K
mesons the dynamics is the strong binding of qq into
a Nambu-Goldstone boson, and we have argued that
this leads, via the s-d tadpole, to a quantitative

1

understanding of the AI = —, rule.
In the hyperon decays the QCD dynamics are

those of loosely bound constituent quarks which
give rise to the observed SU(6) symmetry. A satis-

1

factory explanation of the AI= —, rule for hyperon

decays already exists. In particular the current-
algebra —PCAC program reduces the 14 hyperon
amplitudes to only three fitted parameters: the large
value of the (EI= , )l(b,I= —,—) ratio, the scale

of (B'
~
4 JJ(M = , ) —~8),and the weak octet dlf

ratio. '

The nonrelativistic SU(6) constituent quark model
then explains these last three parameters:

(i) Fierz reshuffling and the hyperon product
SU(6) wave functions manifests the dd = —,

'
rule.

(ii) The scale (8'
~
P Jz(EI= , )

~

—8) is set by W-+

scattering graphs. '
(iii) The ratio of d jf= —1 also follows from the

8'—scattering graphs.
1

Thus the understanding of the M= —, rule for
strange-particle decays does not follow from a
universal mechanism, but from a careful apprecia-
tion of the QCD dynamics which is qualitatively
different for kaons and hyperons, but nonetheless in

1

each case leads to the observed dJ =—, enhancement.

ACKNOWLEDGMENTS

M . D. Scadron is grateful for the hospitality of S.
Pokorski at the University of Warsaw and of the
members of the T-8 Group of Los Alamos National
Laboratory where part of the work on this
manuscript was carried out. He also acknowledges
support from the U.S. Department of Energy under
Contract No. DE-AC02-80ER10663. B. H. J.
McKellar wished to thank the Physics Department
of the University of Arizona, and the T-5 Group of
the Los Almos National Laboratory for their hospi-
tality, and the Australian American Educational
Foundation for the Award of a Fulbright Senior
Scholar Travel Grant.

'Permanent address.
M. A. Ahmed and G. C. Ross, Phys. Lett. 618, 287

(1976).
M. D. Scadron, Phys. Lett. 95B, 123 (1980).
For a recent review of the current-algebra —PCAC pro-

gram, see M. D. Scadron, Rep. Prog. Phys. 44, 213
(1981).

4J. C. Pati and C. H. Woo, Phys. Rev. D 3, 2920 (1971).
5C. Schmid, Phys. Lett, 668, 353 {1977).
Riazuddin and Fayyazuddin, Phys. Rev. D 18, 1578

(1978); 19, 1630 (E) (1978).
7Particle Data Group, Rev. Mod. Phys. 52, S1 (1980).
M. R. Pennington and S. D. Protopopescu, Phys. Rev. D

7, 1429 (1973).
T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856

{1975).
' See, e.g., B. A. Ovrut and H. J. Schnitzer, Nucl. Phys.

B179, 381 (1981); S. Weinberg, Phys. Lett. 91B, 51
(1980); R. D. C. Miller and B. H. J. McKellar, Phys.
Rev. D 26, 878 {1982), for a discussion of effective
non-Abelian gauge theories.

' N. Cabibbo, Phys. Rev. Lett. 10, 531 {1963); S. J.
Glashow, J. Illiopoulos, and L. Maiani (GIM), Phys.
Rev. D 2, 1285 (1970).

' P. C. McNamee, Maryland Report No. 867, 1968 (un-

published); B. R. Holstein, Phys. Rev. 183, 1228
(1969).
M. Gell-Mann, Phys. Rev. Lett. 12, 155 (1964); N. Ca-
bibbo, ibid. 12, 62 (1964).
See, e.g., R. E. Marshak, Riazuddin, and C. P. Ryan,
Theory of 8'eak Interactions in Particie Physics (Wiley,
New York, 1969); and D. Bailin, 8'eak Interactions
(Sussex University Press, Brighton, United Kingdom,
1977).

~5S. Weinberg, Phys. Rev. D 8, 605 (1973);8, 4482 (1973).
G. Feinberg, P. Kabir, and S. Weinberg, Phys. Rev.
Lett. 3, 527 (1959).
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).

8R. Delbourgo and M. D. Scadron, J. Phys. G 5, 1621
(1979).
S. A. Coon and M. D. Scadron, Phys. Rev. C 23, 1150



QUARK-TADPOLE TRANSITIONS AND THE M= —RULE IN. . . 165

(1981).
H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979);
J. M. Cornwall, ibid. 22, 1452 (1980).

'N. H. Fuchs and M. D. Scadron, Purdue University re-

port, 1981 (unpublished).
R. Tarrach, Z. Phys. C 2, 221 (1979).

~3S. L. Adler, Phys. Rev. 177, 2426 (1969);J. S. Bell and

R. Jackiw, Nuovo Cimento 60, 47 (1969).
24See, e.g., F. R. Gantmacher, Theory of Matrices, Vol. I

(Chelsea, New York), p. 314.
25That M' has this particular form does not follow from

the general theorem, but from the observation that for
M and A given by (20), if det(M —A,A)=0 then
det(&+A, A)=0, so that both +A, are characteristic
values of the matrix pencil &+A,A.
We remark in passing that if we regard (18) as produced

by perturbation from a theory with a bare Lagrangian
of the form (25) then we can write

+ ~~ 0=dhag(p»p2). ~ .,ps) —p &)
—p?). . .) —pry )

++(a~, . . .,aq) where 4(a~, . . .,ap) is a continuous
matrix function of the coupling constants a~, . . .,ak
which vanishes as (a~, . . .,ak)~ (0, . . .,0). It then fol-
lows from Ref. 24 (p. 309) that if 4 is nonsingular for
all values of (a~, . . .,ak) on a continuous curve joining
the origin in coupling-constant space (0, . . .,0) to the
physical point (a'~ ', . . .,ak ') then the set m&, . . .,m„
contains the same number of zeros as p~, . . .,p„; the
perturbation cannot introduce additional zero-mass
particles under these circumstances. The relevant
theorem is "if under a continuous change of the ele-

ments the rank of an Hermitian matrix is unchanged
then its signature is unchanged" —the discussion of p.

309 applying to quadratic forms (symmetric matrices)

applies mutatis mutandis to the Hermitian case.
~7H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829

(1976).
S. J. Eidelman, L. M. Kurdadze, and A. I. Vainshtein,
Phys. Lett. 82B, 278 (1979);P. G. McKenzie and G. P.
Lepage, Phys. Rev. Lett. 47, 1244 (1981);A. J. Buras,
in Proceedings of the 1981 International Bonn Symposi
um on Lepton and Photon Interactions at High Ener-
gies, Bonn, edited by W. Pfeil (Universitat Bonn, Bonn,
1981);A. Ali, Phys. Lett. 1108, 67 (1982).

2 M. Creutz, Phys. Rev. Lett. 21, 2308 (1980).
M. K. Gaillard and B. W. Lee, Phys. Rev. D 10, 897
(1974).

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968); S. Glashow and S. Weinberg, Phys.
Rev. Lett. 20, 224 (1968); S. Weinberg, in Festschrift
for I. I. Rabt', edited by L. Motz (N.Y. Academy of Sci-
ences, New York, 1977), p. 185.
H. Sazdjian and J. Stern, Nucl. Phys. B94, 163 (1975);
J. F. Gunion, P. C. McNamee, and M. D. Scadron,
Phys. Lett. 63B, 81 (1976); Nucl. Phys. B123, 445
(1977); N. H. Fuchs and M. D. Scadron, Phys. Rev. D
20, 2421 (1979); M. D. Scadron, J. Phys. G 7, 1325
(1981).

3 A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman,
Zh. Eksp. Teor. Fiz. 72, 127S (1977) [Sov. Phys. —
JETP 45, 670 (1977)];J. Ellis, M. K. Gaillard, and D.
V. Nanopoulos, Nucl. Phys. B100, 313 (1975).
M. D. Scadron and L. R. Thebaud, Phys. Rev. D 8,
2190 (1973).


