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We present a consistent and unified study of the spectrum of low-lying mesons, baryons,
and glueballs using the MIT bag model, incorporating several improvements in the model.

We correct for the center-of-mass motion, use a running coupling a, (R), include self-energy

terms for quarks and gluons confined in a cavity, and get the bag constant from a model of
the QCD vacuum. Our fit to the meson and baryon spectrum, including the pion, is good
and predictions for the glueball spectrum are given.

I. INTRODUCTION

The aim of this paper is to give a description of
the low-lying meson, baryon, and glueball spectrum
in the framework of the MIT bag model. ' We
differ from earlier works on this subject in that
we use the same type of approximations and the
same parameters for the glueballs as for the mesons
and baryons. Also we incorporate several improve-
ments of the model, some new and some partially
treated in earlier work.

Our results are given in Sec. IV. A short sum-
mary follows here.

We obtain a good description of the low-lying
meson and baryon spectrum, including a light pion.
Since our model includes several new elements, the
parameters are not the same as in earlier bag calcu-
lations. We use a running coupling constant, and
thus have AQQD as one parameter. The bag constant
8 is computed using a model for the QCD vacuum.
No "Casimir" or "zero-point" energy —Zo/R is in-

cluded, but instead we have self-energy contributions
(a, /R)et for both quarks and gluons. The constants
e; are calculable in cavity perturbation theory, but
are in this work kept as free parameters. We also
correct for the effects of the center-of-mass (c.m. )

motion in a static cavity. These corrections are the
inain reason for the very light pion. For the
("current") quark masses we take m„=md ——0 but
keep m, as a free parameter. The numerical result is
shown in Table III.

Proceeding to the glueball sector, all parameters
for states of type (TE)" are fixed from the meson
and baryon spectrum. Hence we expect some relia-
bility for mass predictions of these states. The sca-
lar (TE) state plays a special role in our scheme
since it is assumed to mix strongly with the vacuum.
The remaining four (TE) and (TE) states lie be-
tween 1.8 and 2.9 GeV; see Table IV. The other
states in Table IV involve (TM) gluons and we have
made the simplest assumption about the self-energy
parameters and put eTM

——eTE. This gives a relative-

ly light pseudoscalar (TE)(TM) glueball at 0.7—0.9
GeV. In Sec. IV we briefly discuss the relevance of
this result for the rl-rl' mass splitting, and the possi-
ble identification of t(1440) (Ref. 9) as a glueball.

Before describing the details of our model, we
should place our work in context by remarking upon
other hadron models.

Have the recent rapid developments in numerical
(lattice Monte Carlo) calculations of the hadron
spectrum directly from the @CD Lagrangian made
bag- and potential-model phenomenology obsolete?
For two reasons we believe that the answer is no.
First, the calculation of higher excited states, as well
as quantities directly related to the shape of the
quark and gluon wave functions, such as radiative
widths, might be difficult to perform using present
numerical techniques. Such problems may be more
readily approached in a constituent space-time
model such as the bag. Second, the phenomenologi-
cal hadron models provide a physical picture which
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we believe has a value regardless of how precise the
computer-generated mass estimates become.

One may also ask why we choose the bag-model
approach instead of the potential models which are
so popular in baryon and charmonium spectroscopy.
One reason is that it is more clear how to use the
bag model in new situations. We can give the QCD
vacuum and glueballs a unified treatment along with
mesons and baryons. Potential models have been
successful in describing the spectrum of baryons
made from light quarks. However, most treatments
do so by introducing "constituent masses" and using
nonrelativistic kinematics. The bag, using relativis-
tic kinematics for the constituents, deals easily with
light quarks and extends straightforwardly to
gluons. Also, it is not obvious what potential to use
for glueballs, while in the bag model, the bag con-
stant is the same regardless of whether we discuss
baryons, mesons, or glueballs.

The paper is organized as follows. Section II
summarizes the quantum numbers of the low-lying
mesons, baryons, and glueballs. Section III de-
scribes our version of the MIT bag model, and Sec.
IV presents numerical results for the spectrum and
also contains a discussion and conclusions.

II. MESONS, BARYONS, AND
GLUEBALLS IN THE BAG

Let us now list the states to be considered and es-
tablish our notation. We will use the "static-
spherical-cavity approximation" to the NIT bag
model. Hadrons are made by combining quark and
gluon cavity modes into color-singlet spin eigen-
states. We consider mesons and baryons made from
quarks in their lowest mode, and glueballs made
from TE and TM gluons in their lowest respective
modes:

mesons (qq): J =0 +, 1

baryons (qqq): J =—,
glueballs (TE)2: J =0++ 2++

(TM)2 J'c=o++,2++

(TE}(TM): J' =0-+,2-+,
(TE): J =0++,1+,3+

Other multigluon states and states such as q q
(Ref. 10}or qqg (Ref. 11) will not be considered here.

III. THE IMPROVED BAG MODEL

There have been a number of developments and
improvements of the MIT bag model after the origi-
nal works, ' and we single out for discussion a par-
tial resolution of the center-of-mass motion prob-
lem, the perturbative calculations of mass shifts to
0(as), and the relationship between the QCD vacu-
um and the bag constant B. We also discuss the sta-
bility of glueballs and conclude by summarizing the
formulas used in our calculations.

A. The center-of-mass momentum problem

Almost all calculations using the bag model have
been done in the "static-spherical-cavity approxima-
tion. " This means that a spherical bag is frozen in
space, and is not an eigenstate of total momentum.
A prescription must be given to relate the eigen-
values of the static bag model Hamiltonian H to the
hadron masses. This is done in two steps.

First we give a relation between the bag-model
Hamiltonian H and the true Hamiltonian Hg~g
=P +m . Wechoose

H =8+m
So for static-bag eigenstates

~

E ),

quarks: 'S&~2, xq
——2.043,

gluons: TE, J =1+, x~ ——2.744,

a lE&=E IE&,

one has

E =(E iP iE)+m

(2)

(3)
TM, J =1, x~ ——4.493 .

The energy of each mode is given by

co;=[xt +(m(R) ]'~ iR

where 8 is the bag radius and m; the mass of consti-
tuent i The x~ gi.ven above is for massless quarks;
for massive quarks, x& is given in Ref. 2.

From these modes, the following low-lying had-
ron states can be constructed:

Note that this prescription is not unique. With the
choice

H —(P +m )'

one instead obtains

E = (E
~

(P'+ ')' '
~

E ) (4)

which is not equivalent to Eq. (3} since
~
E) is not

an eigenstate of P . This last prescription, which
was used in Ref. 8, is somewhat more complicated
to implement but gives essentially the same results
as Eq. (3).
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FIG. 1. O(a, ) interaction graphs. Solid lines are
quarks and wiggly lines gluons.

TABLE I. The coefficients a, b, and c in Eq. (7). For
the quark case we only quote the mq

——0 values. The ex-

pressions for m~&0 can be found in Ref. 2.

The second step is to estimate the matrix elements

(E ~I' ~E). For this, one must know the total
momentum distribution in the bag. We will take a
simple approach and assume that all the momentum
is carried by the valence particles. Furthermore, if
we neglect all interactions and treat these particles
as independent we get the estimate

(E~P'~E)=gn, —'

R
(5)

(TE)'
(TM)

(TE)(TM)

w w

0.263
0.247
0.255
0.177

—0.041
—0.007
—0.017

0

SE= +~E,,+ Q~E, ,

where

b,E,q — ——(
~

A; Ai( a,iS; Si+b(i T(i.

0.164
0.028

—0.083
0

where n; is the number of constituents of type i
Although this prescription only provides a partial

resolution of the problem concerning the c.m. ener-

gy, it has the virtues of being very simple and not
adding any new free parameters. We believe that
more refined considerations would at this stage be
meaningless because of the overall crudeness of the
model.

B. Cavity perturbation theory

Understanding the level splitting in heavy quar-
konium systems in terms of potentials generated
from one-gluon exchange is one of the great
successes of QCD-based phenomenology. The bag
model allows us to extend these ideas to hadrons
composed of gluons or light quarks or both. Here
the nonrelativistic potential description breaks
down, but the effect of gluon exchange can still be
calculated by evaluating graphs like those in Fig. 1,
where the external legs represent cavity wave func-
tions. Tree diagrams like those in Fig. 1 can be cal-
culated, albeit with more labor than for their free-
space counterparts. ' '

Techniques are also being developed for handling
loop diagrams. '5*'6

In our mass calculations we will include energy
shifts due to the lowest-order color interactions. Di-
agrams 1 give rise to color-spin interactions, while
the loop diagrams in Fig. 2 contribute only spin-
independent terms. In the notation of Ref. 14 the
total O(a, ) energy shift for color-singlet states is
given by

+ v ii + ii ~i ~

& ~

l R l

Here o,, is the strong coupling constant, A; and S;
are generators of color and spin, respectively, and 9'
is the projection operator on the color-octet spin-one
state. I;J is the unit operator in spin space, and

Tq ——2[(S; Si) —1]+S; Si .

The values of the constants a, b, and e, for relevant
constituents, are listed in Table I, and d ~~+~2= —0.529.

Since the calculations of the loop diagrams in Fig.
2 have either not been attempted or not been con-
firmed, ' we shall treat the constants e;, i
=q,TE,TM, as free parameters. '7

With massless quarks QCD is a parameter-free
theory where the coupling strength is traded for a
scale parameter A. This happens also in the con-
fined theory since the short-distance properties are
not affected by the bag boundary. Thus the effect of
many higher-order diagrams, such as those in Fig. 3,
will. be to change the constant lowest-order u, to a
running a, (AR). Because of asymptotic freedom,
and the universality of the lowest-order P function,
one obtains, for small bag radii,

a, (R)
2m 1

g«~ —& 9 ln1/AR '

FIG. 2. O(a, ) self-energy graphs.
FIG. 3. Examples of O(a, ) vertex and propagator

corrections.
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where A~s-0. 1—0.2 GeV (MS refers to the modi-

fied minimal-subtraction scheme}. The scale A can-
not be related to, e.g., AMs before the subtraction
and renormalization scheme is specified. In our cal-
culations we keep A a free parameter but expect
A=AMs. (This is very different from the lattice cal-
culations where A—s-3OA~gttj~ In the lattice case
the short-distance behavior of the theory is changed,
while in the bag it is the long-distance behavior that
is altered. ) For real hadrons,

R =5 GeV-'=(0. 5—i)A~-'

so Eq. (9} cannot be used as it stands. Without a
full calculation we do not know the behavior of
a(R } for large R so we must resort to a parametriza-
tion consistent with Eq. (9). We shall use

a, (R)= (10)
in[1+ I/(AR)')

where n is a positive parameter. There is no strong
reason for choosing this particular form (see, e.g.,
Ref. 8 for another choice) but we have checked that
our results are rather independent of the parametri-
zation of a, (R}.

C. The QCD vacuum and the origin of 8

In the original version of the bag model, the vacu-
um energy density, or bag constant, was a free
parameter determined from data. Recently, K.
Johnson and two of the present authors (T.H.H. and
C.P.} proposed a model for the QCD vacuum which
allows 8 to be calculated given a, (R) and the con-
stant erE (i.e., the self-energy of the lowest TE gluon
mode). The basic idea is that the vacuum is filled by
0++ (TE} glueballs which form a negative energy
condensate. For details we refer to Ref. 7 and here
only quote the expression for 8:

8= ( —m )'i
8mRp

where m g0 is the mass squared, and Rp the radii
of the condensed (tachyonic) glueballs, as calculated
using bag-model wave functions.

E. The mass formula

For the convenience of the reader, we will now
summarize the formulas used in our calculations.
The mass m of a hadron is given by

'2 1/2

2 XgE —$n R
(13)

E= gn;co;+ , qrR 8+bE, — (14)

This equation expresses pressure balance and ensures
the stability of the bag surface. For j=—, quark
modes, the pressure is spherically symmetric, and
Eq. (12) can be implemented simply by minimizing
thc energy with respect to R. For gluons the situa-
tion is different. One can show that the pressure
—,(E —B ) cannot be both spherically symmetric
and everywhere &0 for any classical gluon field. '

%e might thus be led to believe that there are no
stable spherical glueballs (and even worse, any de-
formed shape with the same topology is still un-
stable' ). This has led to speculations about glue
bags with toroidal shape.

However, the above argument is classical, while a
quantum-mechanical evaluation of (E 8) f—or
J=0 states gives a spherically symmetric and posi-
tive pressure. ' Unlike the j= —, quark modes, how-

ever, the individual gluon modes do not exert a uni-
form pressure.

For J&0, we may still suppose that the states are
spherical, or nearly so, within the context of the
QCD vacuum model referred to in the previous sa-
tion. Since the vacuum is supposed to be filled by
spherical two-gluon glueballs, the lowest excited
states are formed by destroying one such localized
state. This stabilizes the spherical shape, and the
pressure balance condition should not be imposed.
The essence of the argument is that not only the size
(R -8 '~

) but also the shape of hadrons is "built"
into the vacuum. In this work we shall assume that
spherical glueballs do exist and treat them in the
same way as mesons and baryons without imposing
Eq. (12).

D. The QCD vacuum and the stability of glueballs

There is a long-standing question whether or not
the bag model allows for spherical glueballs. Let us
briefly state the problem. In the original bag model,
the gluon fields satisfy not only the linear boundary
condition n~F'I'=0 (n is the normal to the bag sur-
face) which forces all states to be color singlets, but
also the quadratic condition

8=—,(E —B )+ —,n V(qq) ~,„,~„,. (12}

where

8 =
& I2xrE —[2xTE —6a, (Ro}(aEE+2b@F

3 2

8mRp

+e }]2I1/2

(16}
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a, (R)
hE = — const,

R
2mn 1

In[1+ 1/(AR )"]

(17)
I.8—

~" " EXPERIMENT

BAG-MODEL PREDICTIONS

MASSES USED TO DETERMINE
BAG-MODEL PARAMETERS

( p, p, h„, G)

The value of Ro which determines the bag constant
is obtained by minimizing the vacuum energy (i.e.,
maximizing B) for a given A and eTn. The resulting
value for B is then used to determine the hadron
masses.

The (state-dependent) constant in Eq. (17) is a
linear combination of the a, b, c, d, and e's with ap-
propriate color and spin factors. (These factors are
easily computed and are also listed in Refs. 2 and
14.)

The free parameters are A, eTE, eTM, es, and m, .
We put e, =e„=e~——eq and assume that any actual
difference can be effectively incorporated into the
strange-quark mass m, .

We do not include any state-independent
"Casimir" term of the form —Zo/R. Such a term
adds an extra parameter, and is not needed to obtain
a good fit to observed meson and baryon masses. It
might happen, however, that when the self-energies
are calculated ab initio the "Casimir" term must be
reintroduced.

The constant n is not included among the free
parameters. Our attitude is that the scheme is
trustworthy only if the mass fits are stable when n

varies. Such a stability is explicitly shown in the
next section.

Our parametrization can be compared with the
one of the early work in Ref. 2. There the free
parameters were 8, Zo, a„and m„so we have trad-
ed the first three for A, eTE, and es. In the original
work B, Zo, and a, were all free parameters. In our
case there is a possibility of computing both erE and

es, and, at least in principle, of relating A to AMs.

4 g& ~ ~ ~ ~ ~ ~ ~ ~

n = I, 2, 3

p n ————

0.8—

0.6—

0.2—

by fitting the masses of p, p, 6, and 0 . Then we
predict the masses of the remaining S-wave mesons
and baryons. Finally predictions for the glueball
spectrum are made.

GeV

i.o-
0.8—

0.6

0.4—

J=~/2 I I IJ =I/2 J=l J=O
BARYONS MESON S

FIG. 4. Meson and baryon masses for n=2 with

m„~——0. The masses of p, 6, p, and 0 were used to
determine the parameters, all other masses are predicted.

IV. HADRON MASSES

We now compute the hadron spectrum. First we
deal with the quarkic sector, and fix our parameters

0.2
EI /4

A

TABLE II. Relations between the parameters used in
this work and in Ref. 2. The bag constant 8 is related to
eTa and A via Eq. (16), and by using a running coupling
constant, a, can be replaced by A. The quark self-energy
parameter e~ replaces the "Casimir" parameter Zp.

0.6—

This work Ref. 2
0.4—

= a, (const)

Zp

I -n
l 2 3 4

FIG. 5. n dependence of the parameters.
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A. The quarkic sector

As discussed above, our approach for the qq and

qqq states has several differences with earlier calcu-
lations2:

(1) We minimize m (R)=E (R)—&P~(R}}rather
than E(R).

(2) We use the running coupling constant a, (R)
given by Eq. (18}.

(3) We do not include any state-independent term
—Zo/R, but instead self-energies of the type

e;A; a, /R. These procedures are different even
in the quarkic sector since in our scheme mesons
and baryons receive different contributions

—2X —,eea, /R

and

—3X 3eeag/R .

(4) The model for the QCD vacuum described in
Sec. III C gives the bag constant B as a function of
A and erE. This means that fitting B to the (qq)
and (qqq) states in reality involves a determination
of eTE since A is essentially fixed by the spin split-
tings.

m'=E' —a &P'} (19}

and choosing a &1 (e.g., a=0.95 for n =2) to get
m =0. All strange hadrons come out right except
the kaon. Making the above adjustment to get
m 2=0 pushes mx up to an appropriate value (e.g.,
a =0.95 and n =2 gives mx ——468 MeV).

As is well known, a spontaneous breakdown of
chiral symmetry results in m =0. This is an exact
result. In QCD, chiral symmetry is explicitly bro-
ken by a small amount, m„q &A&zD, so that the
pion is an approximate Goldstone boson. Lowest-
order chiral perturbation theory gives a relation be-
tween m and m„,~,

fit is very insensitive to n as seen in Fig. 4. In Table
III we give the numerical values for n =2. The
masses of the p, p, and 5 are used to obtain the
parameters eTE, A, and ee. The variation of these
parameters with n is shown in Fig. 5. For n & 2 they

. are quite stable. Finally, the strange-quark mass m,
is determined from the inass of 0

A few comments on our results in Table III:
(i) The pr on 'and kaon masses T. he pion mass

comes out m~ &0 which signals a small overesti-
mate of the c.m.-motion correction. If one wants,
this can easily be remedied by changing Eq. (3) to

The points (2)—(4) are illustrated in Table II which
shows the connection between our parameters and
those of Ref. 2.

We have carried out the calculations for a wide
range of n In the. quarkic sector the quality of the

m =m„&m'I uu
I
m'&+ma&a

I
dd (20)

As noted in Ref. 8 this m~- +me dependence is ex-
pected in the kind of model we study. In fact, ex-
panding E around mq 0,

TABLE III. Meson and baryon masses for m„q ——0 andri =2 using the parametrization of
a, (R) in Eq. (10). Masses used to fix the parameters are underlined. The pion mass is given
as zero; cf. the discussion under (i) in Sec. IV A.

Particle

P
K~

JP

A
y+
~p

0

m,„~ (GeV)

0.139
0.495
0.549
0.770
0.892
1.019
0.938
1;116
1.1&9

1.321
1.236
1.385
1.533
1.672

mb, ~ {GeV)

0
0.372
0.630
0.770
0.914
1.057
0.938
1.104
1.125
1.280
1.236
1.381
1.525
1.672

R (GeV ')

2.42
2.55
2.30
2.65
2.66
2.70
3.21
3.22
3.21
3.22
3.29
3.30
3.29
3.29

a,(R)

0.74
0.77
0.70
0.79
0.80
0.81
0.96
0.97
0.96
0.97
0.99
0.99
0.99
0.99

A =0.172 GeV, eTE ——0.107, eq ——0.607, m, =0.288 GeV;
8' =0.228 GeV, Rp ——2.73 GeV
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TABLE IV. Glueball masses for n =2 using the same
parameters as in Table III and putting eTM

——eTE.

5.0

0++

State mb, ~ (GeV) R (GeV ') a, (R) 2.5— 2++

I+

(TE)' 2++
(TM)' 0++

2++
(TE)(TM) 0-+

+

(TE)' 0++
1+—
3+—

1.88
1.58
2.51
0.81
1.98
2.71
2.36
2.85

3.16
3.36
3.53
2.91
3.29
3.65
3.65
3.67

0.94
1.01
1.07
0.87
0.99
1.11
1.11
1.11

2.0—
2++

Ciu I.5—

I.O—

0.5—

0++

2 '

0-+

8AG-MODEL PREDICTIONS
FOR LOWEST LYING
GLUE8ALLS

n~ 1, 2, 5

A=0. 172 GeV, eTM ——eTE ——0.107; 8'~ =0.228 GeV 0
(TE) (TM) (TE')(TM) (TE)

FIG. 6. Lowest-lying glueball masses for n =1,2, 3 us-

ing A and eTE as determined from mesons and baryons
and assuming eTM ——eTE.

E(mq)=E(0)+mq E(mq)
~

p,
a'

c)mq

and using Eq. (3) gives

(21}

Pl~ =APtlq+Bmq + ' ' ' (22)

According to Eq. (22) one expects that m rises
steeply with mq. This is indeed the case. With

mq 70 MeV one obtains the physical pion mass
m~=140 MeV.

(ii) The values of R and a, (R). As is seen from
Tables III and IV the hadronic radii R are -3
GeV '. This is significantly smaller than in earlier
works where R typically -5 GeV '. A lower value
for R is phenomenologically favored if one identifies
the bag size with the size of hadrons as deduced
from scattering experiments.

Although, lacking higher-order calculations, noth-
ing can be said with certainty about the convergence
at the cavity perturbation expansion, it is appealing
that we obtain a, (R) ( 1 rather than a, =2.2 in ear-
lier calculations. The small a, is a consequence of
R being small, since a, (R)/R is fixed by the p-b,
mass difference.

(iii) The bag constant We get 8'.~c=200—220
MeV rather than 8'~ =145 MeV in Ref. 2. Of

. course, 8 itself is not directly observable. However,
it is interesting to notice that 8' =250 MeV was
favored in a recent bag calculation of the charmoni-
um spectrum using a Born-Qppenheimer-type ap-
proximation.

B. The gluonic sector

Now turn to the (gg) and (ggg) states. We limit
ourselves to states made from the lowest TE and
TM modes, and for (ggg) states consider only (TE),
since (TM)(TE), (TM) (TE), and (TM} turn out to

be too heavy for phenomenological interest.
For 8', A, and eTE the values previously deter-

mined were used. The only new parameter needed
for the glueball sector is the transverse-magnetic
self-energy parameter eTM. The simplest assump-
tion is to put eTM

——eTE. The predictions with this
assumption are shown in Table IV (for n =2) and in
Fig. 6 (for n =1,2,3). As seen from Fig. 5, our
predicted glueball masses, as opposed to the baryon
and meson masses, do depend on the parameter n.
The reason for this is that eTE, by the fit to the
known hadron masses, is forced to vary with n as
seen in Fig. 5. The n dependence is not too strong,
however, so we can make several predictions. The
lowest glueball mass is for the 0 + state, in the
range 700—900 MeV. This is significantly lower
than the experimental 0 + glueball candidate
c(1440). The next states are the (TM) 0++ and
(TE) 2++ which populate the mass region where
e(1670}has been found. Excepting the 0 +, all the
states considered here are heavier than previously es-
timated in the bag-model framework. ' '

If c(1440 is a glueball, then our naive predictions
are too low. Of course our assumption eTM ——eTE
could be wrong, but to obtain a (TE}(TM) 0 + state
at 1440 MeV would require eTM to have opposite
sign from eT~ and eq, and to be significantly larger
than e&E (for n =2)

~
eTM/e&E

~

2.5 would
needed). Even if this should be the case, and our
0 + state could be identified with c(1440}, the
masses of rl and q)' would still pose a serious prob-
lem. The solution of the U(l) problem will most
likely involve a simultaneous understanding of the
g, g', and 0 + glueball masses. No simple level
mixing scheme (one level always goes down) will do
much good, but it is conceivable that a 8-vacuum
contribution is present in the pseudoscalar sector as
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suggested in models based on phenomenological La-
grangians.

In conclusion, we have presented a consistent and
unified spectrum calculation for mesons, baryons,
and glueballs using the bag model, incorporating
several improvements in the model. We have
corrected for the center-of-mass motion, used a run-
ning coupling a, (R}, included self-energy terms for
quarks and gluons confined in a cavity, and obtained
the bag constant from a model of the QCD vacuum.
The "Casimir" term —Zo/R has not been used.
Our fit to the meson and baryon spectrum, includ-
ing the pion, is satisfactory and predictions for the
glueball spectrum have been given.
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