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Radial spectra and hadronic decay widths of light and heavy mesons
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A potential model for mesons is presented, which combines quark confinement and strong
decay in a realistic approach. The multichannel Schrodinger formalism is employed to
describe a system of one or more permanently closed quark-antiquark channels in interac-
tion with several two-meson channels. For the potential in the qq channels a harmonic os-
cillator with constant frequency is taken. As for the meson channels only Okubo-Zweig-

Iizuka-rule-allowed decays into two mesons of the pseudoscalar or vector type are con-

sidered. Final-state interactions between these mesons are not yet taken into account. The
communication between confined and free channels is supposed to take place via the 'I'0

mechanism, for which a locally approximated transition potential is derived. In order to ob-

tain an analytic solution for the S matrix, the transition potential is treated by using a
multi-5-shell method. Kinematically relativistic corrections and color splitting allow a fair-

ly successful treatment of pseudoscalar as well as vector mesons for all quark flavors. The
results are confronted with the data and discussed.

I. INTRODUCTION

This paper is the second of a series of papers on
the spectra of mesons and baryons based on a model,
which we have proposed recently. ' In Ref. 2 pre-
liminary results of the model for charmonium and
b-quarkonium systems are given. In this paper we
achieve a universal description of the light mesons
n', s), p, P, . . . as well; we extend our inodel to in-
clude a treatment of both the heavy and light
quarks.

It is a rather well known fact that the level spac-
ings of the first few radial excitations of the f and
the Y systems are remarkably similar. We note that
this kind of universality (i.e., level spacing indepen-
dent of the constituent quark mass} extends to, for
example, the p and P systems as well, if one assigns
the first radial p excitation to the state at 1250 MeV
(Ref. 3}, the second one to the state at 1600 MeV
(Ref. 4), and if the recently reported P resonances at
1650 MeV (Ref. 5) and 1900 MeV (Ref. 6) may be
identified with the first and second radial P excita-
tions, respectively. This universality is one of the
important features of our model and distinguishes it
from other models.

Many quark models have already been proposed
in the past. Their basic ingredient is the principle of
confinement, which is taken into account by means
of mechanisms (boundary conditions, rising poten-
tialss'9), which permanently bind the quarks to a
hadron, thus describing hadrons in first instance as
being stable systems even with respect to strong de-

cays. Very often the effects of strong decay are un-

derestimated. Exceptions are Refs. 10 and 2. Both
Refs. 10 and 2 note substantial influence on the
spectra and wave functions, but differ qualitatively.

As far as the binding mechanism is concerned our
approach is comparable to what many authors have

proposed, but considering hadrons as stable systems
provides in our opinion a too simplified and, as we
have shown explicitly in Ref. 2, an incorrect picture.

Let us illustrate this last remark by considering,
for example, the state P(4030). We might distin-

guish several components: in one component the
charmed quark and the charmed antiquark are kept
together by the confining force; the other com-
ponents contain mesons with open charm (such as
D, D, Ii, I', etc.). The coupling between the cc and
open-charm components is provided by the creation
or annihilation of a light-quark and antiquark pair.

In this investigation we limit ourselves to the
creation or annihilation of only one qq pair, which
means that we do not consider three- (or more)
meson channels. This is reasonable since mul-
timeson channels have a smaller effective coupling
to the decaying meson and have therefore less influ-
ence on the binding forces between the quark and
the antiquark in a meson.

A basic ingredient of our model, which has been
described already in Ref. 2, is that the coupling be-
tween the quark-antiquark channels and the two-
meson channels is accounted for properly by em-

ploying the coupled-channel Schrodinger formalism.
The use of the Schrodinger equation guarantees (i) a
unitary scattering matrix, (ii) proper threshold
behavior of amplitudes, (iii) good analyticity proper-
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ties, and (iv) Wigner causality.
A nonrelativistic Schrodinger model examined in

Ref. 11 serves as a starting point. In Ref. 11 we
studied the behavior of Regge poles in the complex
angular momentum plane of a two-component
scattering model. One of the channels in this model
is permanently closed by means of a harmonic-
oscillator potential representing the cc component.
In the other channel(s) the scattering takes place,
which represents the open-charm component(s).
The transition potential in Ref. 11 was constructed
by using only one spherical 5 shell. In retrospect
this was not a bad approximation of the more realis-
tic I'0 transition potential which we use in this pa-
per (see below}. For small coupling the resonance
positions are near to the bound-state positions of the
harmonic oscillator in the absence of coupling. For
larger coupling the original harmonic-oscillator
spectrum is deformed drastically. In Ref. 2, we
have shown that particularly the bound states,
which lie below the threshold of the scattering chan-
nel or below the threshold of the most dominant
scattering channel(s), if there are more of them, are
shifted to much lower energies, especially the
ground state. As we have shown in Ref. 2 the spec-
tra of charmonium and b-quarkonium indeed exhib-
it this feature.

In extending the model as presented in Ref. 2 to
the light-quark systems such as m, p, . . ., we apply
kinematic relativistic corrections to the Schrodinger
equation. These corrections are derived by means of
a standard reduction and transformation' of a sys-

tem of coupled-channel two-body Bethe-Salpeter
equations to a coupled-channel Schrodinger equa-
tion in configuration space. (Notice in this context
that we use constituent quarks, which are quite
heavy in contrast to current quarks. ) As in Ref. 2
we use a flavor-dependent harmonic-oscillator po-
tential in the quark-antiquark channel to describe
the confining forces.

In order to implement universality the confining
potential is taken to be proportional to the constit-
uent quark mass, which leads to a common basic
frequency co for all quark-antiquark systems. We
comment briefly on this point in the next section. A
second reason for taking a harmonic potential is that
it is solvable analytically. This is important for the
obtainment of an analytic approximation (see Ap-
pendix A} of the S matrix, which facilitates enor-
mously the tracing of the bound-state and resonance
poles in the complex energy plane. %e derive the
transition potential between the quark-antiquark
channels and the two-meson channels using the I'o
model for the meson decays. ' ' The latter model
has been applied successfully to meson decay by
several authors. ' '

0.770 1.25 1.60
1.020 1.65 1.90
3.095 3.684 4.03
9.435 9.993 10.32

4.414 3.772 4.16
10.59

To maintain the universality of the spectra it is
necessary to have a dependence of the transition po-
tential parameters on the quark masses. This depen-
dence can be explained in a natural way as will be
discussed later.

The impact of the two-meson channels on the
spectra of the mesons is very substantial (see also
Ref. 2}. In our model it turns the harmonic-
oscillator spectra into realistic ones.

This paper is organized as follows: In Sec. II we
discuss the data on which the ideas underlying our
model are mainly based. In Secs. III and IV and
Appendix A the Schrodinger equation is derived and
solved for the S matrix. Sections V and VI are de-
voted to the transition potential. The results and
their comparison with experiment are contained in
Sec. VII, followed by the conclusions in Sec. VIII.

II. THE DATA

Before we explain the details of our model, we re-
view some aspects of the present situation in hadron
spectroscopy. %e are particularly interested in the
relative resonance positions of radial excitations.

A first observation is that the best experimental
information on (radial) excitations is available for
the negative-parity and negative-C-parity vector
mesons and for the nucleon resonances. In Table I
we give a classification of ground states and radial
excitations of the J =1 mesons.

The S states of Table I are depicted in Fig. 1,
where some interesting regularities may be observed.
The energy regions are totally different, but the en-
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FIG. 1. Radial spectra of the p, P, g, and T.

30-

TABLE I. Masses of J =1 meson resonances in

GeV. We use the spectroscopic notation n ' +'Lq, where

n is the number of radial nodes + 1, S is the total qq spin

(0 or 1), L is the orbital angular momentum of the qq sys-

tem, and J is the total angular momentum of the state.

Level 1 S( 2 S) 3 S& 4 S) 1 D) 2 D)
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ergy splittings are very similar.
From Fig. 1 we draw the conclusion that a qq po-

tential describing these spectra must have a flavor-
mass dependence of the form

V(m, r) = V(v m r), (2.1)

where m is the flavor mass and r is the relative
quark distance. Evidently a large class of potentials
satisfies (2.1). As in Ref. 2 we use in this paper a
harmonic-oscillator potential, which according to
(2.1) must be proportional to the flavor mass (see
also Ref. 1). It is known that the g and Y spectra
can be described by a flavor-independent potential as
described in Ref. 10. However, this latter model
would certainly not work for the p and P resonances
as classified in Table I. In the literature a flavor-
independent potential is often motivated by referring
to perturbative QCD. However, unperturbative
QCD could very well lead to quite a different pic-
ture. For example, in a recent construction of Niel-
sen and Patkos, ' confinement is described by a sca-
lar field representing a color dielectric. Because of
gauge invariance this scalar field couples to the
quark kinetic energy. This leads to a picture of
quarks moving in a potential which is linear in the
quark mass. Then condition (2.1) results in the har-
inonic potential of this paper.

The assignments for the p and P resonances are
not established yet. If the p' (1250} (Ref. 3) is the
1 D ] state rather than the 2 S~ state, we may argue
that for a slightly perturbed harmonic oscillator
these resonances are in each other's neighborhood, in
which case there should be a 2 S~ p state in the en-

ergy region around 1250 MeV. This then implies

that the p"(1600) could be the 3 Si p resonance.
Similar arguments for the P resonances and prelimi-
nary experimental results, which indicate a P state
at 1650 Mev, lead to the classification shown in
Table I.

In Fig. 2 we have compared the radial spectra of
charmonium and nucleon resonances. ' ' We see
that the spectra are very similar. However, the
spacings are different: the ratio of the mass differ-
ences of the first and third radial excitations of the

g system [t/r(4414)-f(3685)] and of the nucleon
N(2050}-N(1410}]equals 1.14. The mechanism of
this ratio is not yet contained within our model.
However, as we have seen in Ref. 2, the above spac-
ing is related to the harmonic-oscillator frequency in
the confined channel. So we conclude that it makes
sense to investigate whether baryons may be treated
similarly to mesons, but with a different oscillator
frequency. This will be done in a subsequent paper.

III. THE MODEL

a;+b; —+a +b. . (3.1)

Here each channel j consists of two particles (either

qq or M i M2) aj and b~ with momentum p, and pb .
The normalization of the one-particle states is

(a'
~
a) =(2m) 2E,(p, )5 (p, .—p, )5. . . (3.2)

Consider a system of n quark-antiquark (qa)
channels in interaction with m two-meson (MiM2)
channels:

GeV GeV
where s, and s, are the third components of the
particle spins. The S matrix and the M matrix are
related by

(i [S [j )=(i ~j ) i(2') 5 (P—; PJ)(i ~M ~j ) .—

(3.3)

Here P; and PJ are, respectively, the total final and
initial four-momenta of the system. We introduce
the relative momenta kj by

3.0— (w +wb =1}. (3 4)

FIG. 2. Radial spectra of charmonium and the nu-

cleon.

In our model we neglect the transition to
negative-energy states and we also neglect the depen-
dence of the interaction and the amplitudes
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M J ——(i
i
M

i j) on the relative energies kj. (Notice
that we use constitutent quarks in our models,
which are still fairly heavy, even in the case of the u

and d quarks. ) With these approximations the
l

coupled-channel Bethe-Salpeter equation, which in
first instance is apt to describe the coupled-channel
system of our model, reduces to a Blankenbecler-
Sugar-Logunov- Tavkhelidze-type equation

Mij(k;, ki, V.s )=IJ(k;,kJ, V s )+g Jd k„I;„(k;,k„;Ms)g„(k„;Ms)M„J(k„,kl. ,Vs ) . (3.5)

The Green s function g„(k„;vs ) is not unambiguous. In order to account for the relativistic velocities of
the mesons in some channels (e.g., the pions in the case of the p system) we need a coupled-channel
Schrodinger equation with relativistic kinematics. Therefore, we take~'

g„(k„;~s„)
s, k (s)—k„(s„)+ie

where

~s„=E, (k„)+Eh (k„)

(3.6)

Pn= [4' (kn)Es (k.}]'"

PJ'

2pjj(E)
(ai, bi i T, Viaj, bj)=

2pii E

The transition to a relativistic Lippmann-Schwinger equation is performed via the definitions

(a;,b; i
M,I

i aj, bi )
2ms

(3.7}

(3.8)

For convenience we define

where s=s;=sJ=E, the total energy squared in the c.m. frame and where the elements of the
(n +rn) X(n +m) reduced mass matrix p(E) are defined by

E, Eb.
2pgg(E) =(d k; /dE)5' 5——ij .J E +E J'

M, (E)
p, (E)=

Mf (E) (3.9}

In (3.9) M, is the n &(n reduced mass matrix for the confined qq channels and Mf the m )& m reduced mass ma-
trix for the meson-meson channels. With (3.7}—(3.9) we get

TJ(k;, k )=VJ(k;,kj)+g fd'k„Vi„(k;,k„), , T„l(k„,kj) .
k; —k„+is

(3.10)

The corresponding coupled-channel relativistic
Schrodinger equation reads

[—b, +2p(E) V —k i(E)]/=0, (3.11)

~C ~1Ilt
V=

7~lnt
(3.12)

where P is the coupled-channel two-particle wave
function.

The potential in (3.11) is spherically symmetric
and might be represented by a symmetric
(n+m)y(n+m) matrix

I

In (3.12) V, is the potential in the confined channels

[V,(r}],,=5), ( ,
'
p, ,~'r'+C, ), — (3.13)

where co is the universal frequency, r is the relative
distance in the qq system, and C; is the ith diagonal
element of a diagonal n &(n constant matrix C. Vf
is the diagonal threshold matrix. [VJ ]JJ DJ is the-—
sum of the rest masses of the bosons in the jth
meson-meson channel.

The specific form of the off-diagonal term in
(3.12) will be discussed in the next section.

Let P(r) be a radial (n m+)-com peontnwave
function, then the set of radial Schrodinger equa-
tions to be solved is
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2

dr T

al, m|

—k (E) P(r)=0, (3.14)

where L is the orbital angular momentum matrix: 0.&,m&

kl,
(L3, m3

Lc 0
L= (3.15)

Cl, , mI

FIG. 3. Diagram of momentum flow for the process
described in formula (4.1).

with L, and Lf diagonal n Xn and m )& m matrices,
respectively, which contain the orbital angular mo-
menta of the n +m channels.

There are for (3.14) 2(n +in) independent solu-
tions. The physical solutions must satisfy n+m
boundary conditions in the origin and an additional
n boundary conditions at infinity for those com-
ponents, which belong to the permanently confined
channels, No other boundary conditions are to be
imposed as long as the energy is above all thresh-
olds. In that case there are m-independent physical
solutions, which can be found in a straightforward
way and lead to an m Xm unitary and symmetric S
matrix. Note that in this context by S matrix is un-
derstood the scattering matrix for the open two-
meson channels.

An explicit expression for the S matrix is derived
in Appendix A.

When E is smaller than some of the DJ then the
corresponding momenta as defined in (3.4) become
purely imaginary. In order to satisfy additional
boundary conditions at infinity for those com-
ponents of the wave function, which belong to the
closed meson-meson channels, the imaginary parts
of these momenta should be chosen positive. If
these values are substituted in (A15), then the sub-
matrix of S corresponding to the reinaining open
channels is again unitary and takes over the function
of the Smatrix.

Once Vi„, (3.12) is given, we can calculate the S
inatrix (A15) and its pole positions in the complex
energy plane. Each pole is either identified with a

I

resonance (provided it is close to the real axis) or
with a bound state. In this paper we make the ap-
proximation that the real part equals its mass and
the imaginary part equals half its hadronic width.
For bound states with respect to strong decay the
poles are on the real axis. The M~M~ channels in
these cases are closed, but not empty. For instance
in our picture a J/f meson is represented by a
nine-component wave function, which contains be-
sides the confined cc channel also closed channels
containing pairs of D and D* mesons or F and F'
mesons.

In the present article we will study the vector-
meson resonances (J =1 ) and the pseudoscalar
mesons (J =0 +).

IV. THE TRANSITION POTENTIAL

We describe the transitions between the quark-
antiquark and the two-meson channels through the
creation or annihilation of a quark-antiquark pair in
the Po state. ' ' In the following we treat the
quarks nonrelativistically.

Since we deal in this investigation with a wide
range of flavor masses, it appears that for
phenomenological reasons we have to extend the Po
model of Ref. 15. We do this by assuming more
structure in the string breaking mechanism. The in-

teraction Hamiltonian which can accommodate our
phenomenological needs reads (see also Fig. 3)

Hl =y,fd ki d'k65 (ki+ki —k5 —k6)

XI/(k2, kg,'k5, k6)[C~ q„oC~ ~ q, S"~"„(k 2k3)b~ ~ (kq)d~ ~ (ki)M~ ~ ]

X[b~, ~, (k ki5)b~, ~, (ki)da ~ (k4 —k6)d~ ~ (k4)]+H.c. ] . (4.1)
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Here k;, m;, and a; (i =1,. . .,4) are the momentum,
SU(2}-spin and SU(N)-flavor indices, respectively, of
the quarks and antiquarks. Furthermore,

k2 —k3

i kz —k3i

(4.2a)

and MN, '~, describes a flavor-singlet quark-

antiquark pair. (For typographical reasons we have
not distinguished between upper and lower SU(N}
indices [see also {5.3)].) Color SU(3) is added in Sec.
VI, but omitted here. The dimensionless constant yo

describes the strength of the creation and annihila-
tion process .In (4.1) the function {{)(kz,k3', k5, k6)
describes the momentum distribution of the created
or annihilated qq pair (variables kz and k3), the
momentum transfer between the "spectator" quarks
(variables k5 and k6), and a possible relation be-
tween these variables. Note that the special choice

$(k~ik3, kq, k6)=5' '(ks+ks) (4.2b)

leads to the Po model of Ref. 15.
In this paper we use the ansatz

p(kz, k3,'k5, k6) =pz3(kg, k3)$56(ks, k6) . (4.3)

The incoming quark-antiquark state in the c.m. sys-
tem is given by

i k;s,p, ;v}=C' ' &M'"' b (k)d ( —k)
i 0}, (4.4)

where k is the c.m. momentum, s is the total spin, and v denotes the SU(N}-flavor state. The latter is described
by the flavor matrix M [so: (5.3) for a definition).

Similarly for the two-meson state one has

I I ~ 1 2$' f ~. , f -+.
i

p~s'~p'~v|~vq} =Co v w Ci(p~sl, p»vi)Cz( —piszipz, vz)
i
0} .

Here the meson creation operators C; are given by

(4.5)

C|(pi si,pi, v|}=fd'qid'qzfi(E(p|), q|,qz)5"'(q|+qz —p|) C', ', „',MpII bp, , (qi)dp, ~, (q )z,

(4.6)

C2(p2, s2,p2, v2) =fd'q3d'q402«( pz), q3, q4+"'(q3+ q4 —p2) Cm", ",'p', M p,'p,b p, ,m, (q3)d p, ,m, {q4) .

(4.7)
Here g (i =1,2) are the internal wave functions of the mesons. Their energy dependence is due to a Lorentz
transformation from the meson rest frame to the two-meson center-of-mass frame.

In the following we call the process in Fig. 3 the direct (exchange) process when the mesons with quantum
numbers v& (vz) and vz (v&) are composed by the quarks 1 and 2, respectively, 3 and 4. The direct (exchange)
potential VD (VE) corresponds to the matrix element of Hl for the direct (exchange) process.

Working out (4.1), using (4.3)—(4.7) we get

2

t(p';s', ju';siv|, szvz I VD
I
"'s p'v&= yoCI' &„I C' „—I'„o

In the derivation of {4.8) we used

1

$1

sz Tr(M ' M ' M")E|z (p, k) .
23

1 s'
(4.8)

1 1

1/2 1/2 1 1/2 1/2 2 1 2 s' 1/2 ]/2s 1/2 1/21 s 1 s'
~1 2~1 ~ ~ ~ ~ ~2~™1 4 I™2 ~3 ~23 ~I23I 2 2 2

s 1 s' (4.9)

Furthermore, we have introduced

F|z~, (p, k}=2fd q 8""(k —p —q)ks6(qi —q)023(p —k+q, —p+k —q)

X1( i(E-;k —q, —k+p+q)17&(E-;k —p —q, —k+q) . (4.10)
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Introduring

2=k —p, Q=k+p,
we rewrite (4.9) for later use in the form

F12,m, ( p k )=2fd 'q +,( ~ —q }pss( q —q )((}23(—~ + q ~ —q )

(4.11)

X /1(E-, ; ——,&+ —,Q —2q)g 2(E-, ; —,&+ —,Q —2q), (4.12)

where we have used that in the applications further on we will always assume that the internal wave functions
depend on the difference of the momenta only. The transition matrix elements in configuration space are ob-
tained by the Fourier transformation

F12m„(r', r)= f fd pd ke '0'''F12 m„(p, k)e'"'' . (4.13)

exp[ ——,(q1 —qz}2R; t,0(q1, qz}=

In the nonrelativistic limit, using the Gaussian wave function, i.e., ground-state wave functions,

g 2

(4.14)

1 2 2
((tss(ks. k6}-exp[——,(ks —ks) ro ]

Ijk23( kz k3) —1

we find in local approximation (i.e., Q =0}for r0 «R;
2

F1z „(r', r)=y5 (r ' —r)—exp ——
z Y",', (r) .

ro Po

(4.15)

(4.16)

(4.17)

In (4.17) we have accounted for all constants in the transition from y0 to y. Because the expression for
F1z m (p, t) in (4.12) has a convolutive form we get that in general F12 m„(r ', r) is a function of (1/r0+1 jR;)
and so the r0 parameter in (4.17) is different from that in (4.15). For charmonium and upsilon they will be the
same in this paper because then we have r0 «R; (see Sec. VI).

In this paper we will use the form given in (4.17) and generalize it to the relativistic case by making y apart
from flavor also energy dependent.

So, finally we arrive at the configuration-space transition potential

~ 1 s p slv1 szvz
I V21

~
r;s,tu;v)

1

2

I'} ~~2»™z»»0 2

S

1

S)
1 r

ro 2 ~o
1 s'

The potential for states with total angular momenta J,J' and total orbital angular momenta L, L' is for the po-
tential (4.18) given by

(~ M L» s lvl szvz
~

VD(r}
~
~,M;L,s &

2 2 I

1 1 s (V&} (v1 } (z} P ] P
2

$2 S 1 S 5J J5MMTr(M M M "
)—exp ——

z

s 1s' p'o 2 p'0

In the derivation of (4.19) we used

=Cm & stC „'stfdQ„Y' ~
' (r ')fdQ„Y' '(r)(r ';s'p', S1v1,szvz

~
V

~
r;S,1u;v}

1 1

'i 1/2
3(L +L'+1)=y
Sn (2L'+ 1)

(4.19)

QY' ~ r Y"„r Y' 'r =
1/2

3(2L +1) Ct, 1L, 'CL, 1 I, '

4 (2Lg+ 1) 0 00 m mz3 m (4.20)
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and the identity

L1L'
L's'J' Ls J s 1 s' 1 1 0 L1 L' I

gC~'&'MC~&srC&& 3&C~ & pC~ tn tn
= s 1 s 5JJ5MM

J 0 J
(4.21)

In this section we present tables for the
O(3) XSU(2),&,„XSU(N)fi, „„part of the potential
(4.18). We consider processes of the form [(3.1) and
Fig. 3]

~;.t: qi+q2~(qiq)~, +(qq2)M, . (5.1)

The orbital angular momenta and spina of the con-
fined channels qi+q2 and of the meson channels

M1+M2 are denoted by I, L, s, and S, respectively,
and the spins of the mesons M1 and M2 by s1 and

s2, respectively. The total angular momentum of
the system is denoted by L With these definitions
the O(3) XSU(2),z,

.„part of (4.18) for the transitions
(5.1) is given by

(qi+q2 I
I'.t IMi+~z)

3(l +L +1)
2(2L +1)

1 1

1!2 l 1L
1 1s1S ——s2 2 2

J 0 J s 1 S
(5.2)

The normalization of the matrix elements in (5.2) is
such that the sum of the squares of the couplings of
one qq channel to all scattering channels equals one.

In Ref. 2 we observed that in our model for the
J =1 mesons the mixing between S states and
D states is small. For simplicity we shall drop the
l =2 permanently closed qi+q2 channel in the
present investigation for all mesons. The matrix ele-
ments (5.2) which are relevant in this paper (l =0

TABLE II O(3) )& SU(2) p' part of the coupling
strengths

I
(meson+meson

I V;„,
I
meson)

I
.

Because (4.1) is the nonrelativistic interaction Ham-
iltonian, the potential (4.19) can be used directly in
the partial-wave Schrodinger equation (3.14).

The contribution of the exchange process to the
transitions is included implicitly in the next section
[see Eq. (5.4)].

V. TRANSITION MATRIX ELEMENTS

P=

(~ ~') Z' D- —8'
2

F G

F+ q,
BO GO

(5.3)

1

2
(oi+p )

and thus J=s and L =1) are summarized in Table
II.

A further restriction is the assumption that only
uu, dd, and ss pairs are created or annihilated in the
process (5.1). This is not unreasonable since the
coupling of meson channels and confined channels,
which communicate via the creation or annihilation
of cc and bb pairs, is highly suppressed, because the
thresholds in the scattering channels are at much
higher energies. For the qq pair in (5.1) we have
chosen exact SU(3)~,„„symmetry, which implies
that the matrix elements (qq IO) and (OI qq) as
well as the transition radius ro in (4.16) are the same
for nonstrange and strange quarks.

As mentioned before we consider only those two-
particle-scattering channels, which contain the pseu-
doscalar rnesons m, g, g', E, D, F, B, and G and the
vector mesons p, oi, P, E', D', I", 8*, and G".
Here we have denoted the open-b-flavor analogs of
the well-known open-charm mesons D, D', F, and
P', by 8, 8", and G, and G'. Of these mesons only
the 8 meson has been found in the energy region
around 5.2 GeV. For the masses of the 8', G, and
G* rnesons we have to make some estimates inspired
by the splittings between the open-charm mesons.
Moreover, we take ideal mixing for the g, g', co, and

P mesons.
It is convenient to define the conventional 5X5

matrices P p and V p for the 24+1 pseudoscalar
and vector multiplets of SU(5)fi,„„(seealso Ref. 16):

~ (rl+m )
1 0

S1
S2
S

0
0
0

1

1

2
vZ

(co —p ) E* D' 8*

1

12

1

4
1

6

1

4
1

6

1

36

1

2
5

9

V=
DgP Dg +

ytgl G III

F'
G Q
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TABLE III. Couplings of confined and free channels
for g, and f.
g, (cc )

1

3

1

3

1

6

1

6

f(cc }

1

18
2

9
1

54

10
27

1

36
1

9
1

108

5

27

DD

D*D'

D D

D'D'

Spin

If in (5.1) q~+qz is the member A;J of one of
these multiplets and M~ and Mq are the members
BkI and C~„of the multiplets P or V, then the rela-
tive coupling strengths can be found from

(B~ C„ I TrA+[BPC+o(A, B,C)CPB]
~
A'),

2 TrP

(5.4)

where P is a projection operator and where o(A, B,C)
is given by the product of the charge-conjugation
parities of the three mesons A, B, and C. By taking
P=diag(1, 1,1,0,0) in (5.4) we select those cou-

plings, which are connected with the creation or an-
nihilation of light-quark pairs.

The expression (5A} is appropriate for all charge
modes of each meson. For practical reasons we put
together all two-meson channels with the same (or
nearly the same) thresholds.

In Tables III, IV, and V the total
O(3) XSU(2),~;„XSU(5)a,„„relative coupling
strengths are shown for the P and ri„ for the D, D',
F, and F"' mesons and for the light mesons, respec-
tively. The results for the Y and rib are identical to
the results for the f and ri, .

Notice that the couplings of a particle to all its
decay channels add up to one, except for the co and

P mesons. This deviation originates from the fact
that we have selected only a special class of decay
products. In this paper we have renormalized the
couplings of the co and the P.

culations. The main ingredients are simplicity and
phenomenology.

The radial dependence g(r} of the potential given
in (A6) can be read off from the expression (4.18) to
be

r 1 r
g (r}=g—exp

fP 2 P'p
(6.1)

Tp=
mq mq

mq +mq
(6.2)

where the dimensionless constant po is the same for
all mesons.

For phenomenological reasons we also need a
suppression of the coupling to scattering channels
with a high threshold, because the kinematical
suppression is not sufficient to reduce their influ-
ence. The effect is mainly seen in the resulting had-
ronic widths, which otherwise are too small com-
pared with experiment.

As we have approximated the nonlocal transition
potential by an effective local one, this can be done
by taking the elements of the matrix V;„, in (A6) to
be dependent on the threshold value of the corre-
sponding scattering channel:

( V;„,);;-D, =(mM„+mM„). , (6. .3a)

where (V;„,);i describes the transition from the ith
permanent closed channel (i =1 in this paper, be-
cause we take only the l =0 qq channel into account}
to the jth two-meson channel and where mM

kj
(k =1,2) are the masses of the two mesons. How-
ever, the choice (6.3a) would mutilate the effective
coupling constant, since thresholds for light mesons
differ drastically from thresholds for heavy mesons.
For this reason we alter (6.3a} such that for thresh-
olds at the resonance position, the effective coupling
is the same for all mesons:

' 1/2

where g is a fit parameter.
In order to fit simultaneously the light and heavy

mesons, the transition radius ro in (6.1} must be
dependent on the flavor masses of the quarks of
these states. This might be interpreted as a conse-
quence of the dependence of the momentum-transfer
distribution (4.14) on the quark masses m& and m&qi q4

(see Fig. 3}. For simplicity we have chosen

' —1/2

VI. COLOR SPLITTING AND
PHENOMENOLOGICAL REFINEMENTS

(V;., );,— (6.3b)

In this section we present the precise form of the
transition potential which we have used in our cal-

This introduces an energy dependence in the po-
tential, because E is the energy in the Schrodinger
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TABLE IV. Couplings of confined and free channels for D, D, F, and F mesons.

27

D(cn )

1

24
1

8

1

12

1

24
1

8

1

12

1

12

1

4

1

6

D (cn)

1

72
1

24

1

36

1

36
1

12

1

18

1

36
1

12

1

18

1

216

5

54
1

72

5

18

1

108

5

27

F(cs )

1

6

1

12

1

6

1

12

1

3

1

6

F (cs)

1

18

1

36

1

9

1

18

1

9

1

54

10
27

1

108

5

27

Fg'

Dco

D co

D'K'

D K

D K*

F'K'
S'K'
F'K'
F P
FQ

Spin

equation {3.14). However, the resulting S matrix is
still analytic.

A possible contribution to this suppression may
come from a boost of the internal wave functions of
the final-state mesons from the rest frame of one
meson to the c.m. frame. However, such effects are
model dependent and depend on how one takes into
account a wave function for the Po pair. Besides, a
complete account of this boost introduces extra non-

local effects in the transition potential.
Since also the pseudoscalar mesons are treated in

this article, it is necessary to describe the mechanism
which gives the mass splittings between the pseudo-
scalar and the vector mesons. In commonly accept-
ed models this is accomplished by means of a
correction term which stems from a one-gluon-
exchange potential. For the mesons under con-
sideration the splitting has the form~4 s
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1

9
1

9

1

72

TABLE V. Couplings of confined and free channels for the light mesons.

Spin

1

6
1

6

1

2

1

6

1

3

1

3

1

3

1

3

1

6

1

3

1

6

1

24

1

12

1

24
1

12
1

8

1

12

1

6

1

4

1

3

1

36

1

9

1

108

5

27

2

9

1

18

2

9

1

54

10
27

1

18

1

9

1

36

1

54

10

27

1

108

5

27

1

36
1

36

1

18

1

24

1

12

1

36
1

18
1

12

1

216

5

54

1

108

5

27

1

72

5

18

g' E

g' E

P P

P P

s
~+color-

mqm-
q

(6.4}

where g(0) is the qq wave function at the origin and

where (m } ms and (s ) ss are the (anti-) quark mass
and the (anti-) quark spin, respectively.

For harmonic-oscillator functions (6.4) would re-
sult in a term
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s q
s — Nlq p?l-

q qhE„]„-
Plq/Pl- mq +m-

3/2

(6.5}

This could be taken as a constant correction term in
the direct qq potential, but this has the unwanted
consequence that radial excitations would have
about the same mass splittings as the ground states,
contrary to experiment and contrary to earlier re-
sults, which showed that in this model the wave

I

functions at the origin of the radial excitations are
smaller than the wave functions at the origin of the
corresponding ground state and therefore should
give smaller mass splittings according to (6.4).
However, we notice that a similar term, taken as a
correction of the transition potential has to second
order in perturbation theory an effect comparable to
(6.5}, but has the advantage that then the proper
wave function is taken into account. Therefore, we
use a transition potential of the form

E (mqm }'~
g (r)[I int]ij =gcig —gc~~ 3g2 q'

(mq+m )

1/2
r

r 1 r—exp
rp 2 rp2

(6.6)

Also a word must be said about the consequences of
the nonrelativistic approximation to the relativistic
formulation (3.11).

In those scattering channels, for which the thresh-
olds are far below a resonance position, it is clearly
wrong to do calculations with nonrelativistic
kinematics. In Sec. III it is shown how relativistic
kinematics might be accounted for in a Schrodinger
equation. Our strategy has been as follows: In open
scattering channels relativistic kinematics is used:

k2= ,E 2[E —(m~,+m—~, )2]

X [E'—(ms'
~

—ml2)'],

p(E}= ,E '[E—' (mM, —+mM2t'(mM, mM2) I

(6.7}
Closed channels are treated nonrelativistically:

k =2@(E—ml —mM ),

W =(m~, +mM, ) mar, mar,
—1

(6.8)

This procedure does certainly not yield an S matrix
with the usual analyticity properties. However, for
any particular energy region, it is possible to do the
choices (6.7} and (6.8) beforehand. This restores
piecewise analyticity and one can figure out after-
wards whether the different solutions for different
energy regions overlap in adjacent domains. This
has been checked to be the case.

The choice (6.8) below threshold is necessary be-
cause of two annoying features of analytic continua-
tion of the expressions (6.7): (a) For

&(mM)+mM }
I mMi mM

I
the reduced mass

becomes negative. (b) Below the pseudothreshold,
i.e., for E & Imsr, —mM I, the exponential wave

TABLE VI. Masses (in GeV) of the mesons used to fit the parameters, and their widths (in
MeV).

Particle Theoretical mass Experimental mass Theoretical width Experimental width

P
p
p
E
E*

ytl

J/f

pl
t

/Ill

Y
gt
+II
+III

0.76
1.29
1.59
0.50
0.93
1.03
1.53
1.87
3.10
3.67
4.05
4.41
9.41

10.00
10.40
10.77

0.770
1.25
1.6
0.496
0.895
1.020
1.65
1.9
3.095
3.684
4.030
4.414
9.433
9.993

10.324
. 10.548

150
30
75

48
5

10
62

21
89

37

158
-125
-200

50
4

—100
-400

52
43
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TABLE VII. Masses (in GeV) of the remaining
ground-state mesons.

GeV
2

300-

Particle

Qc
I

QC

Theoretical mass

0.40
0.39
0.60
0.84
1.66
1.75
1.94
2.04
2.83
3.61

Experimental mass

0.138
0.549
0.958
0.783
1.866
2.030
2.007
2.140
2.981
3.592

200

100

0.5 0.9

FIG. 4. Elastic p-wave mm cross section.

'l. l
GeV

functions in terms of k no longer satisfy the proper
boundary condition at infinity.

VII. RESULTS, COMPARISON
WITH EXPERIMENT, AND DISCUSSION

The parameters of the model are (a} the
harmonic-ascillator frequency co, which approxi-
mately can be read off from the experiinental radial
spectra (sm Fig. 1) to be about 180 MeV; (b) the cou-
pling constants g and g„which determine, respec-
tively, the overall coupling strength of the qq chan-
nel to the scattering channels, and the mass split-
tings between the pseudoscalars and the vectors; (c)
the dimensionless transition radius po, at which posi-
tion the transition potential has its maximum; and
(d) the constituent quark masses m„=m„=md, m„
m„and mb.

A least-squares fit to the meson masses, which are
shown in Table VI, gives for these parameters the
results

op=190 MeV, po ——0.56,

g /4ir=7. 59, g, =5.47,

m„=406 MeV, m, =508 MeV,

m, =1S62 MeV, mb =4724 MeV .

With this set of parameters we obtain for the oth-
er mesons the results as shown in Table VII. At this
point we should remark that for the masses of reso-
nances we take the real parts of the poles in the S
inatrix, except for the p(770). The reason to do so is
the observation that for nearly all the meson reso-
nances considered the real part of the pale energy
roughly coincides with the maximum in the calcu-
lated total cross section. However, for the p(770),
being a very well established resonance, we have tak-
en the more accurate value of the peak in the cross
section (depicted in Fig. 4}, which is about 25 MeV

higher than the pole value, due to the large width
and the relatively low mass of the p.

The total widths of the meson resonances, for
which we take twice the distance of the pole to the
real axis, are summarized in Table VI as well. Some
of the radial excitations, however, exhibit structures
in the theoretical P-wave cross section, which clearly
carry a great deal of background coming from the
ground-state resonance pole (see Fig. 4}. This makes
a direct comparison of imaginary parts of pole posi-
tions and widths of cross-section peaks very diffi-
cult.

Comparing the calculated masses with the more
or less established experimental ones we see a good
agreement for the radial spectra, except for the Y"',
but a clear discrepancy for the m, the ri's, and the
open-charm mesons. The relatively low-lying Y'"
state, which does not fit in our equal spacing
scheme, is possibly an indication for the presence of
a short-range term in the quark-antiquark central
potential, becoming important for very heavy and
thus small systems. Such an extra term could
indeed make the level splittings decrease going to
higher radial excitations. As for the q, the il', and
the g, we note that these isosinglet states, having
quantum numbers J =0 +, can annihilate into
two gluons, which could give rise to an effective
repulsive quark-antiquark potential, thereby lifting
the masses of these particles. Moreover, in our
model such an effect would be roughly proportional
to mq ', where mq is the quark mass, so the shifts
of the il and ri' would be some two. or three times
the shift of the g„which is about what is needed.
Apart from this, deviations from the assumed ideal
mixing could give rise to additional changes of the
masses of especially the ri and the il'. Investigations
on a dynamical incorporation of such mixing effects
in the model are being done. The too small results
for the masses of the D, O', I", and Ii' mesons may
be due to the nonrelativistic treatment of closed
scattering channels, which differs substantially from
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the relativistic approach above threshold, because
for these particles several pseudothresholds lie close
to the physical masses. Then these open-charm
states consisting of quarks with highly unequal
masses might have a different effective decay cou-
pling constant. An adjustment of this parameter
only for the open-charm systems leads to a good
agreement with the data. Finally, for the n. meson,
having a mass much smaller than its binding energy,
the approximations which have been made with
respect to the coupling mechanism and the color
splitting might have led to deviations, moderate
compared with this binding energy, but very large
compared with the actual rest mass. Moreover, the
physical m. meson could in principle be a mixture of
a qq state and a Goldstone boson.

Turning to the hadronic decay widths we see very
good results for the p, E', and P, but too small ones
for the p and P radial excitations (note at this point
the observations above}. For the latter states, how-
ever, possible decay channels of a type not con-
sidered in this investigation, such as decays into
internally excited mesons, might add substantially to
the hadronic decay widths. The p'(')(1600), for ex-
ample, decays mainly into A~a. in a relative s wave,
where A& denotes an I J =1 1++ state with
internal / =1. Such decay channels can be incor-
porated in the model though it will lead to a prolif-
eration of components in our multichannel formal-
ism. This will be studied in the future.

In conclusion, we examine the calculated elastic
p-wave n.m cross section in the energy region be-
tween 0.5 and 1.7 GeV. The very pronounced peak
of the p resonance at 760 MeV has a height of 295
GeV (115 mb), as it should have because of uni-
tarity, and a width of 180 MeV. The rather small
bumps at the positions of the assumed p' and p" res-
onances are far below the umtarity limit, showing
the occurrence of competing inelastic channels like
pcs, EE, and pp (for the p"). The vagueness of these
structures in the mw cross section might explain the
experimental difficulties in establishing these states,
in particular the p'(1250}.

VIII. CONCLUSIONS

The model which has been extensively described
in this paper involves an efficient and practical

scheme to incorporate strong decay in a quark
model of mesons. In the first, rather simplistic, ver-
sion of the model good results for the spectra of
charmonium and b-quarkonium could be produced
already, but there the calculated hadronic decay
widths turned out to be unrealistically small. In this
article the model has been refined and extended in
order to make it applicable to a wide variety of qq
systems. The most significant modification is the
introduction of a far more realistic transition poten-
tial, which in local approximation can be derived
from the Po model. A rapidly converging analytic
approximation scheme is given which is very con-
venient for limiting the computer time needed for
the tracing of bound-state and resonance poles. Fur-
ther, in order to be able to do reliable calculations in
the light-meson sector, we perform kinematically
relativistic adaptions of the equations. Finally, for
the simultaneous handling of pseudoscalar and vec-
tor mesons, color splitting is introduced.

The results for the masses and widths of the
mesons as produced by the model in its present stage
are rather promising. The model can be extended as
indicated in Sec. VII and work is in progress to im-
plement improvements: (i) inclusion of additional
decay channels involving orbitally excited mesons,
(ii) inclusion of two-gluon annihilation and mixing
effects of the ri mesons, (iii) introduction of final-
state interactions, and (iv) modification of the inner
region of the confining potential.

In conclusion, our work indicates that results
from models not dealing with strong decay have to
be reconsidered. In particular we have shown that a
harmonic-oscillator spectrum with the same level
splittings of all quarkonia can be distorted by strong
decay such as to give the physical spectra.

Spectroscopy and scattering features are described
within the same model.
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APPENDIX

The method we have chosen to solve Eq. (3.14) is the following: First we write for (3.14) the integral equa-
tion

0
P(r) =$0(r)+ I dr'G(r, r')2p(E) T0 I';ni r'

V;„,(r')
P(r') . (Ala)
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In (Ala} the Green's function G (r, r') is a solution of

d~ L(L+1) V, (r) 0

2 2 +2IJ,(E) V
~ —k z(E) G(r, r') = 5(r—r')—

0 VJ(r (A lb)

and Pp a solution of

d L(L+1) 0

V ( )
k (E) Pp(r)=0 ~ (A 1c)

The integrand in (Al) is sufficiently well behaved in order to allow us to approximate the integral in (Al) by a
sum (rp ——0& ri & r2 & . . )

0
P(r) =Pp(r)+ g h(r; )G (r, r;)2P(E) Vr

i=1 Vln~ ri

V;„,(r;)
P(r; ), (A2)

0
P(r) =Pp(r)+ f dr'~(r')G (r, r')2p(E)

0 int r
P(r') +5(r' —r;) . (A3)

Finally the integral equation (A3) can again be written as a differential equation:

where h(r; )=r; r;—
The sum in (A2) can be terminated after N terms for practical purposes and can be written as an integral:

V(„,(r')

d2
,+, +2@(E)V(r)—k'(E) P(r)=0,dTP

where the potential V(r) is defined by

0 V;„(r)
V(r)=gb, (r;) T 5(r r;) . —

V(„, r;

For simplicity we absorb the b,(r;) in the off-diagonal term by the definition [using (3.9)]

&(r;)V~„,(r;)=- g(r;)
Tp

(A4)

(AS}

In (A6) we assumed that the radial dependence of the transition potential is the same for all matrix elements,

V;„, being an n X rn matrix without r dependence and g (r) a simple function of r Equati.on (A4) can be solved

analytically.
Let us define the following diagonal matrices: an n Xn radial quantum number matrix u, which through

(3.13), (3.14), and (3.1S}is given by

E =co(2u +L, + —,}+C;
the n Xn confiuent hypergeometric function matrices

p( u,L, + , ;M—,cur ) and —1(( u,L, + z
',M,—d'or 2) (A8)

which are self-evident generalizations of the P and P functions defined in Bateman, Chap. VI; the corre-
sponding regular and irregular solutions of the uncoupled wave equation:

3. 2
„2i2 0( »Le+ —

~
x)'

F(u,L, ;x) x ' e
r(L„+-,' )

and

G(u, L, ;x)=x ' e ' ~'g( u,L, + , ;x');—— (A9)

the m )(m velocity matrix

U =Mf 'k; (Alo)
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and m Xm matrices, which are generalizations of the spherical Bessel, Neuman, and Hankel functions

J(Lf,kr) =krj I (kr),

N (Lf,kr) =krnl, (kr),f
and

H ' (Lf,kr)=J(Lf, kr)+iN(Lf, kr) .

Furthermore, it is necessary to introduce the (2n + 2m) && (2n +2m) matrices

g (r; )[M,co] O((u L~k) ri}(yp I ( —u}
rp

(Al 1)

X(r;)= k-'
g(r;)M~ Mf Og(u&L~krri) 12m&&2m

rp

where the 2n X2m matrix 0) and the 2m X2n matrix Oz are defined by

G(u, L, ; [M,a)]'~ rt)
O, (u, L,k, r;)=, , „q~, V;„,(J(Lg, kr; ),N(Lf, kr; ))—F( u, L„')M,a) ) r; j

and

Oz(u, L,k, r;) =
N(Lf, kr; )

Vr„,(F(u,L,;[M,to]'~ r;),G(u, L,;[M,o)]' r;)) .
J(Lf,—kr;

We also define four n )(n matrices Xij
' (ij =1,2}, four n X m matrices Xi(J

' (i =1,2„j=3,4), four m )& n
matrices XJ '

(i =3,4, ;j = 1,2), and four m && m matrices XJ ' (ij =3,4) by

XJ ' —[X(re) X(r)—)],I (ij =1, ,4) .

Finally we define

Z (E) [ X(i)()X(tt) X(N) +X(i)()][ X(N)X(N) X(N) +X(N) ]
—1

f
With (A10) and (A14) the S matrix reads

SL, (E)=v'r [1 iZr (E—)][l+iZt. (E)] 'v

(A13)

(A14)

(A15)
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