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Upper and lower bounds upon the subtraction functions required in the dispersion

theory of the proton Compton process are derived in a framework which optimally ex-

ploits the gauge invariance, the fixed-t analyticity, and the s-u crossing properties of the
scattering amplitudes, together with the consequences of the s- and u-channel unitarity.
The bounds, which are expressed only in terms of measurable s- and u-channel physical

quantities, without any reference to model-dependent annihilation-channel contributions,

appear to be quite restrictive for some values of the momentum transfer t. The results

are significant for removing the sign ambiguity of the pion decay constant E and for the

estimation of the electromagnetic polarizabilities of the proton.

I. INTRODUCTION

It is known that the scattering amplitudes
describing the proton Compton process cannot be
fully determined in terms of the photoproduction
matrix elements, according to the s- and u-channel
unitarity condition, since some of the invariant
amplitudes require subtractions in the fixed-
momentum-transfer dispersion relations. ' The
subtraction terms, which are functions of t (s, t, u

are the Mandelstam variables), are usually evaluat-

ed by exploiting the unitarity relation for the an-

nihilation channel NN —+yy. However, the poor
knowledge of the reaction yy~m~, which is re-

quired for the evaluation of the t-channel ab-

sorbtive parts in the two-particle approximation of
the unitarity sum, seriously affects such calcula-
tions, making the determination of the subtraction
functions and, consequently, the entire theoretical
description of the low-energy Compton scattering
strongly model-dependent. '

Since a clarification of the situation along these
lines has to wait until more reliable information
about the reaction yy~mw will become available, a
different approach to the dispersion theory of had-

ron Compton scattering, proposed recently,
developing some ideas previously formulated in
Ref. 9—11, seems to be of much interest. Instead
of pursuing the delicate line of building models for
the annihilation-channel contributions, the efforts
have been now concentrated on deriving rigorous
restrictions upon the magnitude of this contribu-
tion, by exploiting the available s-channel physical
quantities, in a framework which optimally incor-
porates the gauge invariance, the fixed-t analytici-

ty, the s ucrossi-ng properties of the amplitudes,
and the s-channel unitarity condition.

Actually, up to now this general program was
accomplished only partially. The starting point of
this approach was represented by the construction
of a new set of six amplitudes, having the same
analyticity properties in the v variable

[v =(s —u)/4] at fixed t as the crossing-even in-

variant, amplitudes, and being connected to the hel-

icity amplitudes by a matrix unitary on the s- and
u-channel cuts. The unpolarized differential cross
section (UDCS) of the elastic y-nucleon scattering
is written therefore as a sum of moduli squared of
such objects and this allows one to resort to the
powerful mathematical tools of the interpolation
theory for vector-valued analytic functions ' in

order to constrain the values of the amplitudes (or
their derivatives) at low energies below the pion
photoproduction threshold, in terms of the UDCS
of the y-nucleon scattering above this threshold.
Particularly, in Ref. 7, upper and lower bounds on
the subtraction functions of the fixed-t dispersion
relations were derived and computed numerically
in terms of this physical input. However, in spite
of their optimality, these bounds turned out to be
disappointingly weak, and therefore not of much
interest from the physical point of view. A possi-
ble way to improve these bounds, indicated in Ref.
7, is to take into account the main dynamical in-
formation about the proton Compton scattering
not included in the above formalism, consisting of
the s-channel unitarity condition. A first attempt
to use this information in a model-independent

way, i.e., with no need to resort to t-channel contri-
butions, was undertaken in Ref. 8. In this work,
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the absorptive parts of the scattering amplitudes,
expressed by the unitarity condition in terms of
photoproduction matrix elements in the low- and
intermediate-energy region, supplemented by the
knowledge of the UDCS of the y-nucleon scatter-
ing along the remaining part of the unitarity cut,
were optimally exploited by means of appropriate
mathematical techniques, providing model-indepen-
dent restrictions upon the values of the amplitudes
at low and intermediate energies, below and above
the pion photoproduction threshold. This ap-
proach proved to be very useful for the analysis of
the proton Compton scattering above the first in-

elastic threshold, and especially in the first reso-

nance region, evidencing some inconsistencies be-

tween the pion photoproduction multipoles and the
data on the UDCS of y-nucleon scattering. How-

ever, the upper and lower bounds on the subtrac-
tion functions of the fixed-t dispersion relations

computed in this approach remained still unsatis-

factory. ' Actually, neither the method of Refs.
4—7 nor that of Ref. 8 exploited entirely the phys-
ical information available in the s channel of
proton-Compton scattering, succeeding to take into
account, in the low-energy part of the unitarity

cut, . either the UDCS or the absorptive parts of the
amplitudes separately. The problem of exploiting
simultaneously both these quantities, with the aim
of improving the bounds on the scattering ampli-

tudes up to a convenient level, remained therefore
open. In the present paper we consider this prob-
lem and solve it completely, By resorting to more
powerful mathematical techniques than in the pre-
vious works, we were able to derive optimal
bounds for the scattering amplitudes and in partic-
ular for the subtraction functions of the fixed-t
dispersion relations, by taking fully into account
the UDCS along the whole unitarity out and the
s-channel unitarity condition at low and intermedi-
ate energies, in a frame which fully exploits the
gauge invariance, the s-u crossing symmetry, and
the fixed-t analyticity properties of the scattering
amplitudes. The general program, formulated in
Refs. 4—8, of finding optimal restrictions upon the
magnitude of the unknown t-channel contributions,
in terms of the known s-channel contributions, is
now completely accomplished. Particularly, the
numerical upper and lower bounds on the subtrac-
tion functions proved to be quite strong for some
values of t, showing the great constraining power
of the physical information used as input and lead-
ing to interesting conclusions concerning the sign
of the pion constant F and the nucleon elec-

We shall work as in Refs. 1 and 4—8 with the
Bardeen-Tung invariant proton-Compton-scattering
amplitudes A;(v, t), i = 1, . . . , 6 and with the di-
mensionless, crossing-symmetric amplitudes
A;(v, t) obtained by multiplying A;(v, t) with suit-
able factors containing the nucleon poles. In the
lowest order in electromagnetism, at fixed t, the
amplitudes A;(v, t) are real analytic functions in
the v complex plane with the s- and u-channel un-
itarity cut along the real axis, from the pion pho-
toproduction threshold vo to ao [vo ——p(@+2m)/
2+tl4, @=pion mass, m=proton mass]. In the
point v =vii ——t i16, the amplitudes A, have
values A;(vq, t), completely specified in terms of
the charge e, and the anomalous magnetic moment
a of the proton. .

%'e shall consider particularly the subtraction
functions defined as'

Fi(t) =(A i
—A i )(u =m, t),

F,(r)= A', +—A', (u =m', t),
Nl

appearing in the fixed-t dispersion relations for the
amplitudes A;, subtracted at the point u =m 2 (A

denotes the "continuum part" of A;, obtained from
it by subtracting the nucleon poles). The model
calculation of these functions relies usually on
dispersion relations in the t variable. ' ' %e recall
here that&'7

Fi(0)=4'(a —P), (2.2)

where a and P are, respectively, the generalized
electric and magnetic polarizabilities of the proton,
and that in a dispersion representation F2(t) can be
written as'

F&(&)=F2 ~'(&)+Fz (t)

2' gmNN +Fi (t),
m(p —t)

(2.3)

tromagnetic polarizabilities.
The paper is organized as follows. In the next

section we formulate the problem and derive expli-
cit optimal bounds on the Compton-scattering am-

plitudes and particularly upon the subtraction
functions. The numerical applications of the
method are presented and discussed in Sec. III.
Section IV contains some final comments.

II. OPTIMAL BOUNDS FOR
THE PROTON-COMPTON-SCATTERING

AMPLITUDES
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where the first term is the npole and the second
contains the higher states contributions. The
evaluation of this part is at present model-
dependent. '7 In Eq. (2.3) g zz denotes the strong
md% coupling constant, while I' is the m —+2y
decay constant, which is experimentally known up
to the sign. ' One of the purposes of the present
analysis is an attempt to remove the sign ambigui-

ty of F in the context of proton-Compton-disper-
sion theory. Indeed, as was shown in Ref. 7, at
low values of

~

t
i

it is the pole term which dom-
inates F2(t). A model-independent estimate of the
subtraction function F2(t) in this range of t would
be therefore of much interest for establishing the
sign of F„. In the case of F, (t), such estimates
would give indications about the proton elec-
tromagnetic polarizabilities a and P appearing in

(2.2). In what follows we treat this problem in its
most general formulation and derive model-

independent upper and lower bounds on the sub-

traction functions F;(t},at fixed t (0, which in-

clude completely the s-channel physical informa-
tion.

We consider first the UDCS of the elastic y-
nucleon scattering in the center-of-mass system
(der/dQ ), , which is expressed in terms of the
amplitudes A; above the pion photoproduction
threshold vo as

6

g Mti(v, t)A; (v, t)AJ(v, t)

=a(v2, t), v )vo', (2.4)

where the matrix M is Hermitian and positive de-

finite and

The s-channel unitarity yields in addition the
dynamical conditions'

ImA;(v, t)=p;(v, t), i =1, . . . , 6,
vo (v (v;„, (2 6)

where the functions p;(v, t} can be computed ex-
plicitly in terms of the photoproduction matrix ele-
ments by using the kinematical relations given in
Refs. 1 and 4. The upper limit v;„depends upon
the intermediate states taken into account in the
unitarity sum. By inserting into this sum only the
single-pion photoproduction multipoles available
from Refs. 14 and 15, we have to take
v;„=mto;„+t/4, where to;„=2@,+2@2/m is the
photon laboratory energy corresponding to the
double photoproduction threshold s;„=(m +2p) .

As was shown in Refs. 4 and 5, in order to ex-
ploit in an optimal way the condition (2.4},one
must introduce a new set of six analytic amplitudes
which "diagonalize" the bilinear form expressing
0. For our purposes it is useful to recall here that
this procedure was realized practically in two
steps. ' First, let us define the amplitudes

6

ip;(v, t) = g Nij(v, t)Ai(v, t) ~

j=l
i =1, . . . , 6, (2.7)

where the 6&& 6 matrix N has the following decom-
position:

0

0 Nqq

cr( v, t) = 128m. 2s

C.Ill.

(2.5) in terms of the 3)&3 matrices

m t '/'—
2v2L, '

0
[v +(v 2 2}1/2]

(4m —t)' 2

4v2 ( t)i/2

m' (4m' —t)' '
4~2

m (2.8)

&n=
4~2L i

8( t)—1/2
2 2 1/2

(4m t)—i/2 [vo+(vo —v } ]

SmL2

(4m' —t)'"

( t)1/2
(4m t)' [v +(v —v—)' ]

L2
(4m t)'—

4v

m
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and

I. =2[(v —v )' +(v —v )' ] L =2[(v —v )' +(v —v )' ]

t 1/2

4

The amplitude g; has the same analyticity properties in v as A; and transform (2.2) into

6

g lq);(v2, t) l2=o(vz, t), v )vi12. (2.9)

(2.10)

The only disadvantage of the matrix N displayed above is that it is not invertible everywhere in the v
plane [detN«(v, t) =0 for v =v;„]and this could in principle spoil the optimality of the bounds derived
on the amplitudes using the condition (2.9). Actually, the unwanted zero of detN could be eliminated by us-

ing the standard Blaschke-Potapov factorization. '

Finally, the following amplitudes were defined:

y;(v, t)= g NJ(v, t)AJ(v, t), i =1, . . . , 6,
j=1

where

o

&~r
(2.11)

and

L2

2(2V )1/2[v +(V 2 V 2)1/2]1/2

gtnL, (2v }1/2[v +(v 2 V2)1/2]1/2
L2

(4tn 2 t)1/2(2vp)1/2
m

x [ + (
2 v 2)1/2]1/2

,L 2[vp+(vp' —v;.'}'"]
m

x I v, +(v, '—v'}'"1

l [v +(v 2 v 2)1/2]
Vmin

X[V +(V 2 V2)1/2]

. 2+Vmin J

l[vii+(vp vmin } ]
m

X [v +(v 2 v2)1/2]+v2l

(2.12)

For convenience, we shall work in what follows

with the variable z:
such that v~ becomes z=O. %e note in particular

that the point v;„becomes z;„=e '", where

(Vp —Vs ) —(Vp —V )
2 2 1/2 2 2 1/2

2 2 1/2 2 2 1/2
(Vii —VS ) +(Vii —V )

(2.13)
(V 2 2)1/2

Vin —VO;„=2 arctan
(vp —vs )

(2.14}

which maps the cut v plane into the disc
l
z

l
& 1, The amplitudes q&;(v2, t) at fixed t are real analytic
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functions of z [y;(z~) =y';(z}] and satisfy on the
frontier of the unit disc (z =e' ) the following con-
ditions resulting from (2A} and (2.6),respectively:

6

2 g ~y1(8)
~

=1, 8E(—m. ,m)s
(2.15)

and

modulus equal to [o(8)]'~ =[o(v, t)]'~, defined
by

8&+Z
S(z}=exp f s lno(8)d8

(2.17)

In addition to Eqs. (2.15) and (2.16) we have also
the relations

6
Im $ N ',J.(8)y;(8) =p;(8),

8e( 8,„—,8;„),t =1, . . . , 6. (2. 16)

In (2.15) S(z) is an outer analytic function in

~

z
~

& 1 (Ref. 12), having on the boundary the

q);(0)=g;(e,a. , t), i =1, . . . , 6, (2.18)

where g; are known expressions, computed by us-
ing the relations (2.10) in terms of the values
2;(ve, t).

The subtraction functions E;(t) defined in (2.1)
are related to the amplitudes p;(z) through the re-
lations

F1(t)= l

(4m t)'— dz x=0

2 23
( )

2 2p,

( —t)
2e (2m+a }

m (4m —t)'

4m &&t 1 ~ ImA1(s', t)ds'
+

(4m' —t)'~1 ~ ~~+a~' (s' —m )(s' —m +t)

p ( )
2~2p

mt ( t}'— 2e (2m+a )p,—2ys(0) +dz, o m t— (2.19)

From (2.19}it follows that in order to find re-

strictions upon the subtraction functions P~(t), im-

posed by the conditions (2.15)—(2.18), we must

derive optimal bounds upon the derivatives

(dy;/dz), o, i =2,3, since all the other quantities

appearing in (2.19}can be easily computed. In
what follows we shall treat this problem.

Let us consider more generally n; derivatives

yI"'(0},0&k &n; of the amplitudes y; (in the par-

ticular problem investigated here n; will take the
values 0 or 1) and let us denote by

w(8)
P2( W )=111111

2n. -~ S 8

X g ~q&;(8) (2d8
1/2

(2.20)

where the minimization is performed upon the an-

alytic functions y;(z) which have prescribed values
y'; '(0), 0&k &n; and satisfy also Eq. (2.16). In
(2.20), w (z) is a fixed outer-analytic function in

~

z
~

& 1, normalized on the boundary by the condi-
tion

the largest domain taken by these values, consistent
with the conditions (2.15) and (2.16). It can be
shown, using arguments standard in the analytic
interpolation theory, that the exact description of
the domain D' is related to the solution of a
minimum norm problem for vector-valued analytic
functions. ' ' Let us consider the quantity

f i
w (8)

i
zd8 & 1 . (2.21)

p1(w) &1 (2.22)

The quantity pz(w) depends implicitly upon the
values yI '(0), besides other known quantities enter-
ing the conditions (2.15) and (2.16). It can be
shown that the inequality



14S4 I. CAPRINI

represents, for each fixed analytic function w be-

longing to the class described by the property
(2.21},a necessary condition that must be satisfied

by the values q&I '(0). By taking in (2.22), the
supremum upon the admissible functions w, we ob-
tain the stronger inequality

p~ =sup p2(w) & 1, (2.23)

which can be shown' ' to represent the optimal,
necessary, and sufficient restriction upon the
parameters )pI"'(0} of interest. In what follows we
shall find explicitly the quantity p2(w} for each
fixed w, by solving completely the minimization
problem (2.20}, and we shall perform afterwards an

approximate maximization upon w, based on a lim-
ited class of suitable functions. This procedure of
approaching an optimal inequality by means of a
family of nonoptimal but necessary inequalities
was applied also in other problems. ' %'e consid-
er first the minimization problem (2.20} for a fixed
w, leaving the discussion referring to the choice of
w to the end of this section.

The functional minimization (2.20) with the ad-
ditional constraint (2.16) upon the analytic func-
tions )p;(z) is actually a standard convex optimiza-
tion problem which can be treated by applying the
general theory of Lagrange multipliers. ' We first
write down the Lagrange functional

2
6

2

f X lm (8) I'd8 ——f ',
"

X n (8) m X ¹)(8)q,(8)—p, (8) d8,

(2.24)

containing six Lagrange multipliers 2};(8}related to the constraints (2.16) (the factors multiplying 2}; were
introducixI for the simplicity of the subsequent calculations}. Since we deal with real analytic functions [i.e.,
Im)p;( —8}=—Imp&;(8 }],we can assume without loss of generality that 2};(8)are odd functions on
(—8;„,8;„). Then we notice that the last term of the Lagrangian can be written equivalently as

6
——f X 2};(8) i X N ';~*(8))pj'(8) p;(8) d8,—

j=1

since the real part of the complex function X. i N, z pz )brings no contributions due to its parity.
According to the Lagrange theory, )s we must compute first the minimum of the Lagrangian W with

respect to the functions )p;(z). These functions still satisfy the constraint that the first n; derivatives are
fixed. In order to take into account this condition with no loss of information, it is convenient to develop
)p;(z},

r ~ (k)

)p)(z)= X,+z ' X c„"z", i =1, . . . , 6,S(z) ' wA z ~;+)" (;)„
k=o .=o ' n=o

(2.25)

where the real coefficients c„"are free of constraints. By introducing (2.25) into the Lagrangian (2.24), we
obtain

i =1k=0

%r' 1 6 00

S' k)
, z=O ' i =1 n =0

6——X~ c=1

(k)
n ~

q J i k () S g ()
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On this expression it is easy to perform the unconstrained minimization of ~ with respect to the free coef-
ficients c„"by setting BWIBc„"=0,n=0, . . . , Oo, i= 1, . . . , 6. We obtain therefore the optimal coeffi-
cients c~

(i)
Cn

7T
g N ij, '(y)rl&(qr)dy, n =0, . . . , co, i =1, . . . , 6. (2.26)

By introducing these expressions in (2.25) we obtain the optimal functions ip;(z):

S(z)
ip;(z) =

w (z) k p S

' (k)
~ 8,.„ —I (n,.+ l)q

z S(z) ii+ i/ i" w (ip) e ~ N
—i iii(+ Z

' jI' f' '9j 0'
k! w(z) m

—e. S(ip) 1 ze—

i=1, . . . , 6, (z
~

(1. (2.27)

We determine now the yet unknown Lagrange multipliers il;(8) by demanding that these functions fulfill
the additional constraints (2.16). Actually we have to set in (2.27) z =re and take the limit r~1. Then
we obtain from (2.16) the conditions

NI

Im g g N ';J(8)
j=l k=O z=0

in w(ip)S(8) ~ i(ii +i)(e q) —
i

(
i „dip (8)+ lm

r in —i. w(8)S(ip) .
&

lJ IJ f g(g ) PI
1 —re'

8E( —8;„,8;„), i=1, . . . , 6,
which can be written in the equivalent form

8,.„ 61 i w( p)iS(8) ~ i(iij+I e —y) i i dg)
gj,l=1

W+J 1 S 8=p;(8)—g Q, Im N ',J(8)ei e

J i/ p S pk ~ w(8)
i =1, . . . , 6, 8E(—8;„,8;„) . (2.28)

Actually (2.28) represents a system of six singular integral equations for the determination of the real and
odd functions rl;(8) defined on ( —8;„,8;„). We can cast this system in a standard form, by applying the
Plemelj relations'

»m —' f'&)d+ =f(8)+—'
p~l 7p ) re&(~ —y) 77. ] e&(e—y)

where the last integral is taken

1 iii f ( p)d ip i1
-~. ] e"8-+) m

as a principal part, and also by writing

dg, g=e'~, z =e'f(0) ie
r,„g z

Then we obtain from (2.28), after some straightforward manipulations, the Cauchy singular system written
in the standard form '

6
1 i)(g) 6 1 e,„g A;J(8)i'(8)+ g 8; (8) J„gd+g —I P";~(8,y)r)J(y)dpj=l ~

l 7T lIl

~ (k)

=p (8)- g g ' I N-'-(8)
p S g pk! ' w(8)

i =1, . . . , 6, 8E(—8;„,8;„)

(2.29)
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where the matrices A and B are

A =Re(N N) ', B =i Im(N N)

and M,i(g, q&) is the Fredholm kernel defined as

w Sg 1

(2.30)

(2.31)

where the functions N ',J(8), S(8) as well as
w(8) (with the choice made below} are Holder con-
tinuous.

According to the general theory, ' the system of
singular integral equations (2.29) can be regularized
1

det(A +B)+0 .

In the present case, the condition is satisfied, since

det(A +B)=det(N tN)

=detN 'det(N ) '+0,

where the explicit form of the complex nonzero
functions G;(z) and of the real functions n,z(z) can
be easily extracted from (2.8)—(2.11). As we shall

prove below, due to the property (2.32), the first
system of Eqs. (2.29) can be reduced to three in-

dependent Fredholm equations. This property is
unfortunately not valid for the submatrix N» given
in (2.12)~ However, by looking at the expression
(2.8) of the matrix N, from which N was obtained

by means of the Blaschke-Potapov factorization of
the zero of detN», we notice that a property simi-
lar to (2.32) holds for the whole N, namely

8 E(—8;„,8;„) N J (z) = n'J'(z), ij = 1, . . . , 6 .
1

Z
(2.33)

as follows from the explicit expression of N given

in (2.12). The system (2.29) can be effectively reg-
ularized by reducing it to a Hilbert-Riemann boun-

dary value problem for piecewise analytic func-
tions. ' lt is interesting to mention that, since the
elements of the matrix N are rational functions of
g =e', the regularization of the above system
reduces to quadratures in the particular case
8;„=n, i.e., if w. e would know the absorptive parts
ImA; along the whole unitarity cut. Actually, due

to the particular form (2.11) of the matrix N, the
system (2.29) splits into two separate subsystems,
each of them containing three equations. We no-

tice moreover that the first submatrix Ni has the

property that, except for a global complex factor in
front of each line, its elements are functions real
on the unitarity cut, i.e., we can write

We show now that the factorization (2.33) leads to
a considerable simplification of the system of equa-
tions (2.29), in which we replace the matrix N with
the matrix N. We start from the relations (2.29)
and introduce there the expressions

N ';~(8)=GJ(8)n ',z(8), ij =1, . . . , 6,
which follows from (2.33). It is convenient to de-

fine a new set of six Lagrange multipliers 5;, relat-
ed to the previous ones ri; (corresponding to N) by
the relations

ri;(8)= g 2 n~;(8)5J(8),
1

G (g)f2 J J

i = 1, . . . , 6 . (2.34)
1

(Ni),J — n,~(z), i,j = 1, . . . , 3,
G;(z)

(2.32)
Then we obtain from (2.28)

(gy (g} R 1 '" w(g&)S(8) ~ j(8} e
m

—e. w(8)S(y) ~, G.(~) 1 ei(e m) ~i i—
(k)

wpj. 1 i GJ(g)S(8)=Pi(8) —g g n 'ij(8)lm ei 8

j=l k=O . ~ z=O k' w(8)
l=1, . . . , 6

We multiply each of the above equalities by n;~(8 } and sum upon 1. Then the system splits in six indepen-
dent equations, one for each unknown function 5;(8). I3y 1ntroducing the notations
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;4),is) G;(8)S(8)
g;(8)=—(g;(8) (

e ' =, i = 1, . . . , 6
io 8

(2.35)

6

p;(8)= g n,j.(8)pj.(8), i =1, . . . , 6,
j=1

we obtain the equations

(2.36)

g;(8)»n[(8 —q )(n;+ —,)+P;(8)—P;(q )]
sin[(8 —q )/2]

. (k )

1=p; —g, ~g;(8)
~
sin[/;(8)+k8], i =1, . . . , 6; 8E(—8;„,8;„) .S g okf

(2.37}

From the definition (2.35) it follows that, with a suitable form of the function u), the phases P;(8) are
Holder-continuous functions. Hence the integral equations (2.37) are of Fredholm type, and their solutions
5;(8) can be found easily by applying standard numerical methods. It is convenient to take advantage of
this situation, and therefore, in practice„we worked with the amplitudes g; defined in (2.7} instead of the
optimal amplitudes y;. As we explained above, this is equivalent to a certain loss of information (actually
affecting only the amplitudes y4, p5, and qr6 and not the amplitudes y2 and y3 which are related to the sub-
traction functions F;(t), but this leads on the other hand to a considerable simplification of the numerical
work. We mention that this simple solution was adopted only for computation reasons, since actually the
treatment of the optimal system (2.29) raises no fundamental difficulties. Its solution can be found com-
pletely using appropriate techniques, and will in principle improve the results obtained in the simple version
adopted here.

Havihg determined the Lagrange multipliers ri; or 5;, we return now to the explicit evaluation of the
minimum expression pz(u)) of interest. By introducing the development (2.25) in the definition (2.20) we can
write

6 "s

)M2(io) =
i =1k=0

2

N i' 6 oo

+lim g g r'"c„").=o k) -i;=i.=o

1/2

(2.38)

where the real coefficient c„"'have the optimal expressions (2.26}. By using these expressions in (2.38) we
obtain

6
p(~)= X X

i =I k=O,

15, ok!

2
1

s u)(8)+lim, f, d8

t)()g(8)6 i (IIJ+ I )(eP)
X f dy g .

,s )
N ',J(8)N 't '(q))ri;(8)rit(y)

J

1/2



1488 I. CAPRINI

We take now into account the equation (2.28}, which simplify the last relations to

6

p2(w) =
i=1k=0

. (k)

1

z=O &!

2

i=1 J'=1 k =0

w+J ]
ImS g ok!

'"(8)S(8)e'
w(8)

d8

1/2

(2.39}

It is convenient also to express p~(w) in terms of the Lagrange multipliers 5;(8), defined in (2.34). After
some straightforward manipulating we obtain from (2.39)

"
t'

6

pg(w) = '~

I, i =1k=0

1S, Ok!

2

5 (8) ' wq'.
+— p; g — g; g slQ; + 8 g"" =i lg;(8}I' «=o

1/2

(2.40)

The above expressions of p, 2(w) are still not very convenient for applications since their dependence upon the
parameters p,'"'(0) of interest is not entirely made explicit. Indeed, as follows from Eqs. (2.29) and (2.37),
the Lagrange multipliers I;(8) and 5;(8) themselves depend upon these values. Fortunately, the parameters
qrI '(0) appear linearly in the right-hand side of the integral equations (2.29) and (2.37), so that the depen-
dence of the solutions upon them can be easily made explicit. Namely, considering for simplicity the equa-
tions (2.37) and using the linearity of the corresponding Fredholm operators K; and their inverses, we can
express the solution 5;(8) as

&;(8)=y;(8)—g S , y;.«(8), i=1, . . . , 6,1

z=o
(2.41)

where the functions y;(8) and y; «(8) satisfy the Fredholm integral equations

(E;y;)(8)=P;(8), i =1, . . . , 6, 8&(—8;„,8;„),
(K~y;.«)(8)= lg;(8)

l
sin[/;(8)+k8], k =0, . . . , n;,

(2.42)

the operator E; being defined in (2.37). It is convenient to write formally the solutions of these equations,

7';«=I: '[lg(8)l »n[p;(8)+k8]], i=1, . . . , 6, k=0, . . . , n,

(2.43)
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and introduce them in (2.40). We obtain, after rearranging the terms,

wy;

S z=ok

2

Wfi

k k'=0 S

- (k)

p S, p k!k'!

&&
—f, &

.
'[

I g I
»n(4+k'8)]

I g;(8}
I

»n(W +k8}
in Ig;(8) I'

n; —f IK; '[p;] Ig;(8) I
sin(P;+k8}

k p S z pkIm

+p;(8)E; '[
I g; I

sin(P;+k8)]I
Ig;(8) I'

+ —f p(8 )E; '[p ] (2.44)

The general case (2.39) can be treated in a similar way. Therefore, we have expressed finally )M&2(w) as a
quadratic function of the parameters f&,' '(0), involving calculable coefficients. It can be shown' that this is
also a convex function of g; (0). By introducing p, z(ip) in the inequality (2.22), for different admissible
functions w, we obtain necessary restrictions upon the values g,'"'(0) of interest. Of course, in order to op-
timize these inequalities we have to perform the additional maximization (2.23} upon the admissible func-
tions w. As we mentioned, we shall treat this problem approximately, using to this end a particular but very
suitable class of functions w. As was shown in the previous works, s' such a suitable choice for io proves to
be

(2.45)

the maximization upon w reducing to simply varying the real parameter j in its allowed interval. Details
about the procedure and its efficiency in closely approaching, with little computational efforts, the exact
supremum are given in Refs. 8 and 17.

III. APPLICATIONS

We first apply the present formalism in order to deduce a rigorous sum rule for the Born-pole residua.
To this end we consider in (2.44) the particular case n; =0, i = 1, . . . , 6, which leads to the inequality

w (0)@. (0)
&'(0)

1+—f K; [ Ig; I
sing;] Ig;(8) I

sintt);(8)
n sin Ig(8)I~

(3.1)
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—f [E:; '[p;] ~g;(8)
~

sing;+p;(8)E~ '[ ~g; ~
sing;]]

f '"
p;(8)Ki '[P;], (1.—sin

' '
~g(8)~2

A11 the quantities entering in this relation are actu-
ally known, being expressed in terms of the physi-
cal input of the problem. We have derived there-
fore a family of rigorous sum rules, relating the
static electromagnetic characteristics (e and a ) of
the target to the differential cross section of the
Compton process above the pion photoproduction
threshold v02 and the absorptive parts of the
scattering amplitudes, expressed by the unitarity
condition in terms of the photoproduction matrix
elements. The present result generalizes the sum
rule for Born pole residua obtained in without in-

corporating the s —channel unitarity, as well as the
corresponding sum rule given in, where the
knowledge of the differential cross section was ex-
ploited only partially.

The inequality (3.1) can be tested numerically by
using the experimental data. In our calculations
we have used the pion photoproduction multipoles
tabulated in, ' ' for photon laboratory energies co

below 1210 MeV and a compilation of the data on
the UDCS for y-nucleon elastic scattering.
Details about the utilization of the experimental
material are given in Ref. 8. With these data we
calculated the coefficients required in the integral
equations (2.42) and solved these equations by ap-
plying standard numerical techniques. By using
the solutions (2.42) thus found and the known
values y;(0) from (2.18), we evaluated then the ex-
pression (3.1) of pq (w), choosing, according to the
remarks given above, a function w of the particular
form (2.45). The calculations were repeated for

I

various values of the parameter g entering this
form, the largest value of p2 (w) yielding the op-
timal sum-rule inequality. It turned out that prac-
tically in all the cases considered in the present
work, the supremum upon m was obtained by tak-
ing the parameter g equal to 1, which corresponds
to w(8)=1.

In our analysis we applied the two-particle uni-

tarity condition (2.6) in the region where it is
rigorously valid, i.e., below the double pion pho-
toproduction threshold co;„=2@+2@/m. Above
this threshold multipion photoproduction matrix
elements must be taken into account. For com-
pleteness, we investigated the condition (2.6) also
for several higher values of co;„, simulating the
possible effect of the neglected multipion pho-
toproduction by randomly varying ImA; by +10%,
this being the estimated order of magnitude of this
contribution. ' In Table I we give the results of
these calculations for several values of t in the
range allowed in the present formalism (as shown
in Ref. 4 the condition that the entire unitarity cut
is in physical region imposes the limitation
t )—3.48p, ). For completeness we listed in the
first column the values obtained previously (Ref. 7)
without incorporating the unitarity condition,
which corresponds to setting in the present formal-
ism co;„equal to the single-pion photoproduction
threshold coo ——p, +p /m. The errors quoted in the
table were obtained by taking into account both the
uncertainties upon the absorptive parts discussed
above and the experimental errors upon 'the cross

coo ——p+p /2m 2@+2@ /m =320 MeV 1210 MeV

TABLE I. Test of the sum-rule inequality for the Born-pole residua Eq. (3.1), for several values of ~;„and t.

400 MeV 4SO MeV

—0.1

—0.5
—1.0
—2.0
—2.5
—3.0
—3.3

0.40+0.04
0.30+0.03
0.25+0.02
0.20+0.02
0.18+0.02
0.10+0.01
0.10+0.01

0.50+0.01
0.41+0.01
0.39+0.02
0.39+0.02
0.40+0.02
0.41+0.02
0.42+0.02

0.56+0.01
0.51+0.03
0.52+0.01
0.57+0.04
0.60+0.04
0.67+0.05
0.69+0.05

O.S7+0.01
0.54+0.04
0.56+0.04
0.63+0.05
0.70+0.06
0.77+0.07
0.79+0.07

0.61+0.015
0.62+0.04
0.70+0.OS

0.96+0.09
1.20+0.1

1.40+0.2
1.50+0.25
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section cr(v, t). Actually, in order to increase the
reliability of the results we overestimated these
data by 5%, since this increase can be shown (Ref.
8) to weaken the resulting inequalities.

The results given in Table I show that the incor-
poration of the unitarity condition (2.6) has the ef-
fect of bringing the sum rule for the Born-pole
residua closer to saturation. This effect is most
significant for large values of

~

t
~

. As expected,
the results become gradually stronger by increasing
co;„, i.e., by imposing the unitarity constraint along
a greater energy interval.

The most remarkable feature of our results is the
almost exact saturation and even the slight viola-
tion of the sum rule (3.1) which occurs in some
cases when p, ~ (w) exceeds unity. Having in view
the general theoretical frame in which the sum rule
(3.1) was deduced, we can explain these situations
only by invoking the experimental information
used as input in the numerical evaluations. We
mention that some inconsistencies between pion
photoproduction multipole extraction and the data
on the elastic y-nucleon differential cross section
were discovered already in the more particular for-
malism developed in Ref. 8. The results given in
Table I confirm these conclusions and suggest that
either the multipion photoproduction contribution
to the absorptive parts of the Compton-scattering
amplitudes up to co =1210 MeV is more significant
than our estimation of 10%, or the cross section
has to be increased by a convenient factor, in order
to make these data consistent with the rigorous
sum rule (3.1).

After the illustration of the formalism in the
above particular case we pass now to the problem

W PJ

s .=o

w w(0)

z=0

Then we can write from (2.44) the inequality

I'i (w}=a+ 2b; gj —c&0, —j=2,3,

(3.2)

(3.3)

where the real coefficients aj, bj, and c have the
simple expressions

of major interest for the fixed-t dispersion theory
of the proton Compton scattering, i.e., the investi-
gation of the subtraction functions F;(t). Accord-
ing to the relations (2.19},we have to consider in
this case the derivatives qj(0) and qr&(0). Actual-

ly, by taking suitable values for the parameters n;
in the general relation (2.44}, we can obtain in the
present formalism rigorous restrictions upon these

derivatives, considered either separately or simul-

taneously. For simplicity we consider here the
first alternative, which will lead to explicit upper
and lower bounds upon each of the subtraction
functions separately. The simultaneous treatment
of gj(0) and p3(0), which would provide a direct
correlation between the values of the subtraction
functions Fi(t) and Fz(t), can be performed in a
similar way.

We take therefore in (2.44) the parameters n; =0,
for i' and nj ——1, where j will be set equal either

to 2 or to 3. We introduce for simplicity the nota-
tion

1 &&

0
.

g ~ ] .
0

d8
in

J J 1 J
[ (8) [2

b = f Ipj(8)KJ. '[ Jgj. f
sin(QJ+8)]+ fgj. f

sin(QJ. +8)KJ '[pj]I (3.4)

w (0)q&; (0)
c = 1 —g +—f pj(8 )KJ '[pj.]S'(0) ~ -'. ' ' '

~g, (8)
~

'

in terms of the new functions p;, defined as

w (0)q;(0)
p (8)=P (8) g'0 '~g;(—8)

~
»ny;(8); l =1, . . . , 6.
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From the inequality (3.3) and the relation (3.2) we obtain easily bounds upon the parameter y'(0) of in-

terest,
J

S(0) bj (—bj +a Jc)'~

w (0) al.

S(0) bj +(bj +ale}'~
w (0) aj.

N
q .(0)S z=O

(3.5)

These model-independent upper and lower bounds

upon the derivative pj (0} improve the previous

bounds obtained in Ref. 7 without incorporating

the unitarity condition. They can be evaluated nu-

merically without difficulties. In order to find the

coefficients az, b/, and c we have to solve the cor-

responding Fredholm integral equations of the type

(2.42), built up in terms of the physical input con-

tained in the functions S(8},p;(8 } and the param-

eters qr;(0}. The derivatives S'(0) and w'(0) can be

evaluated easily from definitions (2.17}and (2.45),
respectively. A subsequent optimization upon the

functions w, as we indicated above, allowed us to

find the best results yielded by (3.5). By properly

modifying within reasonable errors of 5 —10' the

absorptive parts ImA; and the differential cross

section cr(v, t), we estimated finally the uncertain-

ties affecting the results. From the bounds thus

obtained upon qj (0), j=2,3, we deduced, using

Eqs. (2.19), upper and lower bounds upon the sub-

traction functions E&(t) and E2(t). The results of
our calculations are presented in Tables II and III,
respectively. Actually, in Table III we indicated

directly the corresponding bounds upon the m -pole

contribution, obtained using the estimations of the

higher dispersion contributions appearing in (2.3},
taken from Ref. 7. These contributions were listed

for completeness in the third column of Table III,
and are seen to be, in this range of t, small com-

pared to the magnitude of the pion pole, indicated

in the second column of the table (the upper and

lower signs correspond, respectively, to F p 0 and

I

E &0, using the sign convention of Ref. 1). The
errors quoted in Table III contain, besides the ef-

fect of the experimental errors, evaluated according

to the above discussion, also a theoretical uncer-

tainty related to the model-dependent term Ez (t),
of about 20—30% of its value.

As in the previous example, referring to the
Born.-pole residua, we exploited the unitarity condi-

tion below the double photoproduction threshold,

m;„=2@+2@/m, and also at some energies slight-

ly above this threshold (co;„=400 MeV). For com-

pleteness, we showed also the values obtained previ-

ously, without the unitarity condition

(co;„=coo——p+p /2m). As expected, by increasing

co;„, the resulting bounds become gradually

stronger.
From Tables II and III it follows that at very

low
~

t
~

the calculated bounds upon the subtrac-

tion functions are rather weak. However, starting
from

~

t
~
=2@ the bounds become quite restric-

tive and impose nontrivial limitations upon their

evaluations in particular models. For instance, the

range allowed for p Ei(t} at
~

t
i
=2@ is situated

entirely above the value p Ei(t) =0.0032 obtained

in the model evaluation. ' In general, the range
allowed for E|(i) at these values of t is seen to be

shifted towards positive values. Unfortunately,

this strong limitation is not obtained at very low

values of
~

t ~, which are of particular interest for
making a precise estimation of the electromagnetic

polarizabilities, according to Eq. (2.2). However,

assuming a reasonably smooth variation of Ei(t) in

TABLE II. Calculated upper and lower bounds upon the subtraction function p F&(t), for several values of co;„and

coin coo p+p /2m2

Lower bound Upper bound
co;„=2p+2p /m =320 MeV

Lower bound Upper bound
co;„=400 MeV

Lower bound Upper bound

—0.1
—0.5
—1.0
—2.0
—2.5
—3.0
—3.3

—0.78 +0.07
—0.18 +0.02
—0.09 +0.01
—0.040+0.002
—0.037+0.004
—0.030+0.003
—0.027+0.003

0.79 +0.08
0.19 +0.02
0.10 +0.01
0.058+0.006
0.048+0.005
0.043+0.004
0.039+0.004

—0.18 +0.005
—0.028 +0.0005
—0.0065+0.0004

0.0056+0.0003
0.0071+0.0003
0.0105+0.0002
0.0067+0.0002

0.21 +0.001
0.054 +0.0002
0.033 +0.0001
0.023 +0.0001
0.021 +0.0001
0.0207+0.0001
0.0154+0.0001

—0.07 +0.02
—0.0035+0.0005

0.0058+0.0003
0.0113+0.0002
0.012 +0.0002
0.0141+0.0002
0.01 +0.001

0.095 +0.001
0.029 +0.0003
0.021 +0.0001
0.0175+0.0001
0.0174+0.0001
0.0173+0.0001
0.0124+0.0001
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the present range of t, we obtain from the bounds

given in Table II an almost model-independent in-

dication that the ordering a —P & 0 holds for the
electric and magnetic polarizabilities of the proton.
This conclusion is of considerable interest in con-
nection with the experimental determinations ' "
and the previous theoretical studies' of these
quantities.

Referring now to the pion pole contribution to
Fq(t) given in Table III, we notice first that at low

~
t

~
the range allowed for it is consistent with

both signs of the pion decay constant F . When

~

t
~

is increased, this range remains no more
symmetrical around zero, but is shifted systemati-

cally towards positive values. As a consequence, in
capotea number of cases, the negative values of F2 ~"

given in column 3, which correspond to F~ &0,
remain outside this allowed range, which, on the
other hand, is always compatible with the positive
values yielded by F &0. These results might be
interpreted as an almost unbiased indication that
the s-channel physical data on the proton-Compton
scattering, when exploited in an optimal way, seem

to reject the alternative F & 0 and to favor the
positive sign F & 0. We notice that this is actually
the sign suggested in the past by the Goldberger-
Treiman calculation of the n ~2y decay rate in

the NN model and by the Primakoff effect. 6 Of
course, the above conclusion is not completely
model independent, but the effect of the model cal-

culated part, in the range of t considered, is very

low. It could receive further support when accu-
rate data on the reaction yy ~en, required . f.or the
evaluation of this part, will become available. Our
results prove anyway that the present formalism is
a powerful tool for providing a decisive answer to
the question of the sign of F

IV. CONCLUDING REMA.RKS

In the present paper we derived model-indepen-
dent bounds upon the subtraction functions of the
proton Compton dispersion relations, which exploit
optimally the physical quantities of the s channel,
together with the fixed-t analyticity, the s-u cross-
ing symmetry, and the gauge invariance of the
scattering amplitudes. The formalism developed
here generalizes in a manifest way the previous
treatments, which succeeded in incorporating
only partially this physical information.

Our results evidence the considerable constrain-
ing power of the physical s-channel information,
which is able to impose severe limitations upon the
magnitude of the t-channel model-dependent con-
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tributions. In particular, our results provide a seri-
ous indication towards the inequality a —P & 0, in-

volving the generalized electromagnetic polarizabil-
ities of the proton, and favor the sign F~ & 0 for
the pion decay constant which is actually the sign
suggested in Refs. 25 and 26.

We mention, finally, that by suitable develop-

ments the formalism presented here can be applied
in order to study correlations between the two sub-

traction functions Fi (t) and F2(t), to incorporate
data on the differential cross section on y-nucleon
scattering below the pion photoproduction thresh-
old, and to investigate higher derivatives of the
scattering amplitudes below this threshold.
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