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Lie-B'icklund symmetries for the Harry-Dym equation
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A recursion operator (strong symmetry) for the Harry-Dym equation is found. It is also

hereditary, and can be used to generate infinitely many Lie-Backlund symmetries.

Among the nonlinear evolution equations solvable
by means of the inverse spectral transform, the so-
called Harry-Dym equation'

up=Au u~3

where A. is a constant, deserves special attention.
In fact, Eq. (I) is not quasilinear, unlike the most

popular completely integrable nonlinear evolution
equations, and admits soliton solutions expressed by
implicit functions. Furthermore, performing a pro-
longation calculation, ' we have found that one can
associate with Eq. (I) a (presumably) infinite-
dimensional non-Abelian Lie algebra whose closure
can be forced to give an SL(2,R) algebra.

We remember that closed algebras can be generally
used, within the prolongation scheme, to obtain
Backlund transformations. ' However, for the
Harry-Dym equation the usual procedure fails, in the
sense that this leads to the trivial Backlund transfor-
mation only.

In order to overcome this difficulty, we have made
a symmetry approach ' to Eq. (1). Precisely, we
have shown that Eq. (1) possesses infinitely many
Lie-Backlund symmetries' which can be generated
each from the other through a recursion operator, "
which enjoys the property of being hereditary6 " (see
later). This feature might be related to the existence
of N-soliton solutions7'0 of Eq. (1) and, it is hoped,
to the possibility of writing down Backlund transfor-
mations.

We recall that a given evolution equation of the
type

where X(q) is the Lie-Backlund operator associated
with (2), defined by

X(g) =g +(D,q) +(Dq)8 8
u ~ur gu&

+(D q) +
Qu2

Here D, and D denote the total derivative with
respect to t and x, respectively.

Taking

E(u) —= Zu'up,

condition (4) gives

3u'utv]+u D 'g=7tgu t13+v]g D(u u3)

+ 'g g D ( tt u 3) +

where

v)„= tip/tiu, (j = 0, I, 2, . . .) .

(6)

(7)

One sees immediately that Eq. (7) is satisfied by

and

'"=u'u=u u3

(8)

which correspond to the invariance under space and
time translation of Eq. (1), respectively.

Now we look for a generalized symmetry of Eq. (1)
of the form

u, =E(u) (2) 'ri = 'g (u, ut, ut u3 u4, u5) (10)

admits a Lie-Backlund symmetry of the form
g(u, ut, . . . , u~), N arbitrary, where

u, J=0, 1, . . . , N
Qx

if and only if

(3)

To this end, substituting (10) in (7) and putting the
coefficients of powers of us and u7 equal to zero, we
get

(3)
'gu

from which one has

(4) 'tl = u u 5 +F (u, u t, u 1, u t, 114) (12)
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where F is a function of integration. Repeating this
procedure, i.e., inserting the quantity (12) in Eq. (7)
and equating coefficients of powers of u 5, u6, and so
on to zero, after cumbersome but straightforward cal-
culations one finally obtains

'g = u u5+ 5u u1u4+ 5u u2u3 +
2

u u1 u3 ~
(3) 4 4 3 2 (13)

b.'[E ] = [E', b ] —=E'b —bE', (14)

where K' and 5' denote the Frechet derivatives of
the function (6) and the operator-valued function b,
defined by

At this point, we have looked for a recursion opera-
tor for Eq. (1), namely an operator which satisfies the
relation6

respectively.
To this end, we have first checked that the opera-

tor

b=u'D' uut—D+uu3+u3u3D '—
u

(17)

(18)

ug = Au1

where D ' is defined by

(D 'f)(x) = „I f(g)dg,
generates both symmetry q

' from q" and q
"

from q
' . We have assumed that asymptotically

(x +Do) u constWO and u& 0 (j=1,2, . . . ).
Using (17), we notice that Eq. (1) can be written

in the form

and

E (u)[v] = E(ll +ev)
e 0

(u ) [v]w = b( +ue)vw
e 0

(15)

(16)

where we have put u (—~) = I/X A 0.
The operator (17) verifies condition (14), i.e., it is

a recursion operator (or a strong symmetry'0) for Eq.
(1). To prove this formally, let us explicitly calculate
the commutator on the right of (14).

One has

t

E'b =(3u3u3+u3D3) u2D2 —uutD+uu3+u3u3D '
u

=u D +Su utD +(3u ul +4u u3)D +6u u3D +(4u ulu3+Su u4)D

and

+4u u5+14u'u2u3+15u utu4+6u ut u3+[3u u3 +u D (u u3)]D '—
u

r

bE'= u D —uulD+uu3+u u3D ' (3u'u3+u D )
u

r r

(20)

=u D +Su utD +(3u ut +4u u3)D +4u u3D +(Su utu3+6u u4)D

+10u u2u3+9u u1u4+3u u5+2u u3D 'u3 (21)

where the relations

D v = vD +v1, D v = vD + 2v1D + v2, D v = vD + 3v 1D + 3v2D + v3

have been used.
In virtue of (20) and (21), one sees that the expression for [E', b] coincides with the Frechet derivative

b' [E]=2u u3D —(4u ulu3+u u4)D+6u ut'u3+4u u3u3+6u ulu4+ll u5

+ [3u u3 +u D (u u3)]D —2u u3D u3
1

u

of the operator (17).
Furthermore, we have checked that the operator (17) is also a hereditary operator, '3 i.e., it satisfies

[b, b'] [v]w = [b, b'] [w ]v,

(22)

(23)

where

[b, b'][v]w =b(b'[v]w) —b'[bv]w (24)



140& LEO, LEO, SOLIANI, SOLOMBRINO, AND MARTINA 27

and v, w are arbitrary functions of u, u 1, . . . , u~.
To point out the importance of the hereditary

operators in the study of nonlinear evolution equa-
tions, we recall that'0 if an operator P(u ) is heredi-
tary and is a strong symmetry for a given evolution
equation (2), then it is also a strong symmetry for
any of the equations

u, =@"(u)K(u), n =1,2, . . . (25)

Moreover, if $(u ) is invariant under x translation, it
is a strong symmetry for u, = u1 and for any of the

equations

u, =@"(u)ut, n =1,2, . . . (26)

u, =A"(u)ut, n =1,2, . . . . (27)

In other words, Eq. (1) possesses infinitely many
Lie-Backlund symmetries which can be obtained each
from the other by means of the recursion operator
(17). The first few of these are given by

In the case of the Harry-Dym equation one has that
the recursion operator (strong symmetry) given by (17)
is also a strong symmetry for any of the equations

g"'=u=Q1

'g u u3

'g u Q5+ 5Q Q1Q4+ 5Q Q2Q3+ 2 Q Q1 Q3

'g u Q7+ 2 u u1 u5+ 21u u2u5+ 14u u1u6+ 2
u u1 u4+ 105u u1u2u4(4) 7 105 5 2 6 6 105 4 5

+21Q Q3Q + 2 Q1 Q2Q3+ 2 u Q2 Q3+42Q 3 +
8 u6 147 4 63 5 2 63 3 4

(28)

(29)

(30)

(31)

To conclude this Communication, we note that Eq.
(27) could be exploited to find multisoliton solutions
of Eq. (1). In fact, concerning this it has been
shown7'2 that, if a relation of the type (27) holds,
then the soliton solutions of (27) are given by those
functions u (x, t) which can be expressed by

(32)

I

where the quantities wJ are eigenvectors, with time-
independent eigenvalues, of the recursion operator h.

This property could be useful in looking for
Backlund transformations of Eq. (1). At present this
problem is under investigation.

One of us (G.S.) is very grateful to the Theoretical
Division of CERN, where part of this work was car-
ried out, for its kind hospitality.
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