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Spinning fluids in the Einstein-Cartan theory
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An Eulerian variational principle for a spinning fluid in the Einstein-Cartan metric-torsion

theory is presented. The variational principle yields the complete set of field equations for the
system. The symmetric energy-momentum tensor is a sum of a perfect-fluid term and a spin

term.

I. INTRODUCTION

An Eulerian variational principle for a perfect fluid
in general relativity was presented some years ago. '

Recently, we generalized this variational principle to
deal with fluids having intrinsic spin. Our main goal
in this paper is to generalize the spinning-fluid varia-
tional principle to the Einstein-Cartan (EC) theory.

In the EC theory spin takes on an important role as
the source of the torsion part of the gravitational
field. Thus, what we derive in this paper is a funda-
mental theory, based on a Lagrangian, which intro-
duces spin into the EC theory for a macroscopic spin-
ning fluid. The torsion-spin equation of our theory
leads to the Weyssenhoff convective form for the
canonical spin tensor; however, the energy-
momentum tensor has explicit spin-dependent terms.

There have been several recent studies of spinning
matter in the EC theory ', however, none of these
studies deduce the field equations of the theory from
an Eulerian variational principle such as in this paper.

The theories that we studied in Ref. 2 and in this
paper are based on the work of Halbwachs who for-
mulated an Eulerian variational principle for a spin-
ning fluid in special relativity. Reference 1 is a
generalization of Halbwachs's theory to general rela-
tivity for fluids without intrinsic spin while Ref. 2 is
for fluids with intrinsic spin.

II. LAGRANGiAN DENSITY

The Lagrangian density for a spinning fluid in gen-
eral relativity that was discussed in Ref. 2 has the
form
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1T= 2SyOJ (2.2)

where S& is the spin tensor and the angular velocity
associated with the intrinsic spin is defined by

I rrk
j/ ~ l~ Vj ~ jul VI k U (2.3)

where we have introduced an orthonormal tetrad u "I

to represent the spin density sj and the four-velocity

The term involving ~ in (2.1) is the spin kinetic ener-

gy density of the fluid T:
U'of the fluid via

Ss = p~(a &a J
—a Ja;) = ps'J1 2 1 2 (2.4)
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where ~ is a scalar function K(x) with the dimen-
sions of angular momentum per unit mass and p is
the density of the fluid. In (2.1) we have gone
somewhat beyond the results of Ref. 2 by allowing
the thermodynamic properties of the fluid to depend
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upon the spin density sj,
Ss S(lip (2.6)

the Weyssenhoff form, so that the canonical spin an-
gular momentum tensor has the form

F = p[c + k(p, s,sg) ] (2.7)

through the s» dependence of E which now has the
form

.Sk= (p/2) s'~U« . (3.5)

Variation with respect to the metric g(k leads to the
EC field equation

The thermodynamic law now takes the form

de= Tds Pd(1—/p) +
z aosdss,

with

(2.8)
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where the modified torsion tensor is given by

T(j =Sij +28[jSj]„"

(3.6)

(3.7)
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(2.9)
and where the symmetric energy-momentum tensor
has the form

»'=r(») .k (2.10)

We shall give the equations of motion only for the
EC case since general relativity is included as a spe-
cial case. The variables to be varied are p, s, X, U',

g(k, a", a ', and the various A. 's representing the
Lagrange multipliers plus the torsion S» which arises
in an EC spacetime and is defined as the antisym-
metric part of the asymmetric affine connection

T'"= p (1 + e/c 2+ P/pc ) U' Uk+ Pg 'k

«sk JU +~ [ U«sk ] l(isk
C2

U(isk)( Uj (3.8)

The variations with respect to p and U' have been
used to reduce the form of T' . The energy-
momentum tensor can be broken down into two
pieces:

(1) a perfect-fluid part,
HI. FIELD EQUATIONS

This section is similar to the calculations in Ref. 2
which may be consulted for more details. Variations
of Z with respect to a" and a ' yield eventually the
spin equation of motion

DS» 2 ( 2+
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dv c c

TF =p(1+ k/c +P/pc ) U'U +g'"P

(2) an intrinsic-spin part,
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The precession of the spin implied by (3.1) is that for
Fermi-Walker transport since

elks' + cups; = ——
2 U(Uisg +—

~ U(UJS i, (3.2)

which, when combined with (3.1), gives

This same form for the symmetric energy-
momentum tensor is also valid in general relativity.
If the intrinsic spin of the matter vanishes then we
are left with just the perfect fluid T~. We have not
found a derivation of this energy-momentum tensor
in the literature. Note that the last two terms in
(3.10), those involving 0i,j, are corrections to the
energy-momentum tensor due to the inclusion of
spin as a thermodynamic variable in (2.8).
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(3.3) IV. DISCUSSIONS AND CONCLUSIONS

Note, ho~ever, that since this is EC theory the abso-
lute derivatives in (3.3) are with respect to the full
affine connection 1 Jk. This same result (3.3) is also
valid in general relativity.

The variation with respect to torsion Sj yields the
result

In order to arrive at the EC Lagrangian density
(2.1) it was necessary to extend the results of Ref. 2
to the metric-torsion geometry. However, there is
not always a unique extension of a metric Lagrangian
to a metric-torsion geometry. For example, we can
write the conversion of mass constraint in two forms
in general relativity:

S»k P $~jUk
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or

(4—g pU'), =0 . (4.2)

'7;(pU') =0 (4.3)

(v —g pU') =V (4—g pU')=0

These two expressions are identical in the Riemanni-
an geometry of general relativity. If we extend these
to a metric-torsion geometry we have

where M(o ) =f 4—g pU'dV~ is the mass of the
system on p-. This theory then implies that the tor-
sion is associated with the change of mass of the sys-
tem and not with spin. Although such theories
would probably not be interesting in astrophysical set-
tings, they might be models for Dirac's" mass-
creation cosmological theories: The geometrical tor-
sion field creating mass through the law (4.6). This
seems to us to be a novel interpretation of torsion.

The second extension, Eq. (4.4), leads to the more
conventional interpretation of the mass constraint as
conservation of mass:

—= 4—g V, (pU')+24 —gS,J pU', (4.4) (4—g p U'), I
=0, (4.8)

respectively, where we have used V; to represent the
covariant derivative with respect to the asymmetric
affine connection I ~k of the EC spacetime

f/k= (/kI+Sp Sky+St (4.5)

and (/qj is the Christoffel connection. The two ex-
tended constraints (4.3) and (4.4) now differ by the
term 2S& pU', which is not a divergence. These ex-
tensions therefore lead to different, inequivalent,
theories. %e have studied the theory with constraint
(4.3) for nonspinning matter in Ref. 10. The mass
constraint for this theory has the form

'7)(p U') = (4 gpU'), ; —2—v' gSs~pU'=0— (4.6)

Applying Gauss's law to (4.6) for the region X

between two spacelike hypersurfaces a-~ and cr2 en-

closing all the matter. we arrive at

M(o2) —M(cr)) =2 J 4—gS~J pU'd X, (4.7)

which we have chosen for our anlaysis.
In order to avoid confusion we point out that the

intrinsic spin discussed in this paper is not associated
with quantum-mechanical spin, as is sometimes done
in discussions of the EC theory. Here the intrinsic
spin of the fluid is associated with the particles of the
fluid, which in the case of cosmology are galaxies or
clusters of galaxies. Thus the field variables occur-
ring in our variational princip)e are the fluid variables

p and s& that are normally employed. This theory
should be useful in studying the influence of spin on
the dynamics of the early universe. At early enough
times we must, of course, switch to a description in
terms of quantum mechanics. The theory discussed
herein is then va1id back to a time when quantum
processes become important.
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