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In the presence of anomalies, the requirement that a classical symmetry group G has a
proper action on the fermion measure or in the effective Lagrangian description imposes
Bohr-Sommerfeld conditions on the anomalies, and often implies that G is broken to a sub-
group H as well. We show these results in this paper and apply them to QCD and SU(5).
In particular, constraints on the QCD order parameter are derived, and an argument is
presented which suggests that the breakdown of the chiral flavor symmetry and the emer-
gence of some sort of generation structure in QCD may be natural.

I. INTRODUCTION

It is well known that quantum corrections can
alter the symmetry group of a classical system in a
dramatic way. A familiar example of this kind
occurs in theories with spontaneous symmetry
breaking where the symmetry group cannot be uni-
tarily implemented at the quantum level, but instead
acts only as a group of automorphisms of the alge-
bra of observables. Another example is found in
gauge theories where classically conserved currents
may cease to be conserved by the presence of quan-
tum “anomalies.” The corresponding group action
at the quantum level produces a change of coordi-
nates to a physically inequivalent set and leads to a
number of well-known and often dramatic conse-
quences, for instance a perfectly reasonable classical
theory may become inconsistent at the quantum lev-
el. In recent years, these anomalies have played a
useful role by furnishing constraints for model
builders,! by suggesting a resolution of the U(1)
problem,? and by providing information on the spec-
trum of massless fermionic bound states.’

The divergences of currents have an intimate rela-
tion with the Lie algebra of the classical symmetry
group and its infinitesimal transformations. While
there have been many detailed investigations in the
literature of current divergences and therefore of
these infinitesimal transformations, there has been
hardly any study of finite transformations even
though the response of Green’s functions to these
transformations can be expressed in terms of the
anomalies as well.* In this paper we attempt such a
global study of anomalies.

The global analysis shows that unless certain con-
straints are satisfied, the action of the classical sym-
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metry group cannot even be defined at the quantum
level. The usual local analysis of anomalies does not
of course reveal this important feature. However, to
derive statements that go beyond such formal con-
clusions, we must make additional assumptions. A
reasonable set of assumptions, including one of
those used by ’t Hooft,> leads to constraints on order
parameters for QCD (Refs. 5 and 6), conditions on
the pattern of breakdown of gauged symmetries, and
conditions on sectors which can decouple. In partic-
ular we present an argument which suggests that
the breakdown of the global flavor group
SUL(Ny)XSUg(Ny) along with the emergence of a
generation structure may be natural in theories like
QCD.

Our investigations do not appear to be related
directly to those of ’t Hooft.> ’t Hooft’s conditions
govern statements about the spectrum of gauge
theories. Thus a gauge theory may be realized in
different phases at different energy scales, and he re-
quires that the particle spectrum in each phase
reproduce the same anomaly structure of the theory.
By contrast our analysis gives a judgement about the
overall consistency of a theory and requires the
gauge symmetry to breakdown in a specified pattern
in order to accommodate the global action of
anomalous symmetries. »

We do not expect our results to be dependent on
renormalization effects. Our analysis of the non-
Abelian anomaly depends only on its tensor struc-
ture. This-is known to be unique.” Consequently,
any overall renormalization of this anomaly should
not affect our conclusions. For the U,(1) anomaly
the overall normalization is important, but the
Adler-Bardeen theorem® guarantees its insensitivity
to renormalization. Recently, it has been suggested
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that the Adler-Bardeen theorem may fail in super-
symmetric gauge theories.” If this is true, the global
implementation of the U,(1) symmetry would indi-
cate new constraints on the theory. However, we do
not analyze supersymmetric theories in this paper.

Sections II and III contain a resume of known re-
sults on the properties of quantum anomalies for a
classical symmetry group G. We also show the rela-
tionship between the response of the fermion func-
tional measure du and the effective action under
finite group transformations. In Sec. IV we derive a
generalized Bohr-Sommerfeld condition for the
anomalous transformations from the requirement
that the functional measure du be single-valued
under the global (i.e., rigid) action of the group G.
We also show that the same statements follow from
the effective Lagrangian description.

Since the Wess-Zumino formalism* which we use
may be unfamiliar, in Sec. V we illustrate the Bohr-
Sommerfeld condition in this formalism for the
U,(1) anomaly before analyzing the full non-
Abelian case in later sections. Here the Bohr-
Sommerfeld condition leads to constraints on the
possible order parameters in QCD. The results of
this section are analogous to results obtained by
Harari and Seiberg® and Weinberg® who used the
Bohr-Sommerfeld condition for U,(1) groups, of
course without referring to it by this name, to elim-
inate mass terms in the effective Lagrangians of
composite fermion theories.

Section VII analyzes the Bohr-Sommerfeld condi-
tion for non-Abelian anomalies in detail. We sum-
marize the results in the form of two constraints. In
particular constraint 1 describes the pattern of
breaking for the group G. The surviving symmetry
group H is embedded in G in a well-defined way.

These results are illustrated in Sec. VII by taking
SU(5), QCD and a composite fermion model of
Yamawaki and Yokota'® as examples. The discus-
sion includes the results mentioned in previous para-
graphs.

Appendix A recalls some formulas involving the
non-Abelian anomalies which are needed in Sec.
VII. A lengthy Appendix B describes the proof of
constraint 1.

II. EFFECTIVE LAGRANGIANS
AND ANOMALIES

We review the work of Wess and Zumino* in this
section. The construction of the effective Lagrang-
ian which generates a given set of anomalies is out-
lined, and its transformation properties under finite
gauge transformations are deduced.

Let G and G be the representations of the gauged
group and of its Lie algebra on a subset of spin-half
fermions. Let L, be a basis for G with L] = —L,.

The anomalous conservation laws of the currents J,
which correspond to these base elements can be ex-
pressed as

HIE=A (W), (2.1)

where W, =W/|L, is the gauge field.

(For consistency of the gauge theory, these
anomalies have of course to be canceled by those due
to another set of spin-half fermions.)

It is convenient to introduce the notation

B(e,W)= [d*x €(x)4, (W), (2.2)
where
€=La6a (2.3)

is a Lie-algebra-valued function. Then if 3§,
[n(x) € G] generates an infinitesimal gauge transfor-
mation,

Sy Wyu=[n,W,]—-03,1m, (2.4)

Wess and Zumino* show that B must fulfill the
“consistency” condition

8,B (€, W) —8B(1, W)=B([n,€], W) . (2.5)

Here, of course,
8,B (€, W)=linear term in 7 in
B(e,W—S,,W)——B(e, w). (2.6)

The effective action S, which generates the
anomalies is a functional of W and possibly of other
fields (the Goldstone modes) which under a gauge
variation generates the appropriate anomaly:

6.84=B(e, W) . 2.7
The gauge variation is here performed on all the
fields in S4.

Since
[81,’85]=8[17,e] ’ (2.8)

we see (by applying this identity on S,) that the con-
sistency condition is the integrability condition for
the existence of S;.

[It may be noted that in the presence of fermionic
condensates which contribute to the anomalies, the
anomaly expression in (2.7) is the difference of the
anomaly expression in the fundamental theory and
the contribution of these fermions. Thus for pre-
cision, we should distinguish the true anomalies
from those which occur in (2.7), the two may or
may not be the same. We do not do so since such a
distinction will not be required for our needs.]

Let us introduce the field g with values in
G,g(x)EG. Under gauge transformations, it is
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transformed as follows:
g(x)—s(x)g(x), s(x)EG . (2.9)

The action S, will be constructed as a functional of
gand W:S,=S,(g,W). Thus

8¢S 4= linear term in € in
SA (g ——558, W'—‘SGW)—SA (g, W)

=B(e, W),
(2.10)
6.8 =€g .

The field g represents the Goldstone modes. If
the theory depends on all the components of g in a
nontrivial way, then the entire symmetry group G is
spontaneously broken (in the limit W,=0). If the
breakdown is only to a subgroup H, then we have to
impose the condition

S4(gh,W)=8,(g,W), H(x)EH (2.11)

on S, since the Goldstone modes for such a symme-
try breakdown have values in G /H. (This condition
makes sure that the true degrees of freedom in S,
are W and these Goldstone modes.) We will defer
the discussion of this condition to the end of this
section.

The construction of S, proceeds as follows.* Let

[U(s)F)(g, W)=F(s ~'g,s "o W) ,
(s T W)y (x)=s "1 (x)W,(x)s (x)

+5 71 (x),s (x) (2.12)

define the operator U(s) on functionals F. It imple-
ments a finite gauge transformation on such func-
tionals. Consider now a one-parameter family of
fields s, and write s,(x)=s(x,t). Since
s ~1(x,1)9,5(x,t) EG, it is evident that

(U [s(x,0)19,U[s (x,)1S,}(g, W)=B[s ~'s, W],

s(x,t)=0;s (x,1) . (2.13)
If s fulfills
s(x,0)=e ,
(2.14)
s(x,1)=g(x),

we can write

1
U(g)Sy—Sy= fo dt %U(s)s,,

[ @t UG U (6B, U()S,). (2.15)

The evaluation of this at (g, W) thus gives

1
Sa(g,W)=S,leg "o W)— [ dt Bls~'5,s o W)
ESA(e,g‘lo W)—f:B(s‘lds,s‘lo W),
(2.16)

where a convenient notation has been introduced
and the limits there indicate the limiting values of s.
(Note that d implies differentiation only in t.)

Now S,(e,g 'oW) is gauge invariant. Thus
(2.16) gives S4(g, W) in terms of B up to the arbi-
trary gauge-invariant function S, (e,g ~lo W).

We want to deduce the transformation properties
of S, under finite gauge transformations. Let g’ be
a (t-independent) field with values in G [that is,
g'(x)EG]. Then from (2.16),

r—1
S4(g'g,g'o W)—S4(g,W)= [ eg B(s~lds,s—'o W).
2.17)

The integrals in (2.16) and (2.17) are path in-
dependent (that is, depend only on the terminal
points of the path) provided the integrability condi-
tions (2.5) are fulfilled. We shall discuss this point
further later.

Since the Goldstone modes have values in G /H, if
there are anomalies associated with H, then in the
absence of fermionic contributions to anomalies, the
functional S,(e, W) has to reproduce the H
anomalies under gauge transformation of W. This
follows from (2.11):

Sy(h~h~loW)=S,(e,h o W),

h(x)EH . (2.18)

An anomaly which admits such an S,(e,W) is re-
movable by the counterterm —S, (e, W) in the origi-
nal classical action.!! Such anomalies, perhaps, are
not so interesting. However, there are cases where
the anomalies in H cannot be reproduced by a coun-
terterm depending only on W. In other words H
may have nonremovable anomalies. Since the Gold-
stone modes which have values in G/H cannot
reproduce these anomalies in the effective action,
the effective theory should then contain spin-half
fermions transforming nontrivially under H which
reproduce the anomalies in H via one-loop diagrams.
The representation content of these fermions will be
constrained using the anomaly matching conditions
of ’t Hooft.?

III. THE FUNCTIONAL MEASURE

Let ¥ denote the multicomponent field of spin-
half fermions which transforms according to the
representation G. It has been pointed out by Ver-
geles and Fujikawa!? that the anomalous Ward iden-
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tities are due to the anomalous transfozmation laws
of the fermion functional measure dydy. We write

dydy=du(y, W)

where the notation indicates the implicit dependence
of dydy on W (through the anomalies). Then ac-
cording to their work,

du(s,so W)=du(y, W)eiPsW)
s(x)EG,

(3.1

where if s =1—e+0(€?),
B(s,W)=B (e, W)+0(€) . (3.2)

It follows that du(y, W) and exp(iS, ) transform in a
similar way under gauge transformations:

du(g'y,g'o W)

-1
=du(y,Wexp |i fj B(s~'ds,s"lo W)
(3.3)
IV. BOHR-SOMMERFELD CONDITIONS
ON ANOMALIES

The existence of a well-defined action of the
group G on the measure du(y, W) requires that the
anomalies fulfill certain quantization conditions of
the Bohr-Sommerfeld type. These conditions come
about as follows. Let us vary g’ in (3.3) over a
closed path C from identity to identity. Then since
the left side should return to its original value when
g’ returns to e, we find

exp fCB(s_lds,s‘lo w)|=1. 4.1)

If the transformation s corresponds to a
nongauged current, then (4.1) should hold for the
fundamental theory as well as all effective versions
of it. An example of such an s is the axial U,(1)
transformation which we discuss later. However,
for gauged currents one often encounters the situa-
tion where the theory has two or more sectors in
which the anomalies from one sector cancel against
another. At certain energy scales only some of these
sectors may be relevant as a result of condensation,
decoupling, etc. An effective Lagrangian descrip-
tion of such a phase would require (4.1) as a con-
sistency condition on the measure of the surviving
fermions and the effective action of the Goldstone

bosons. )
An important corollary of (4.1) is that under

small deformations of C,
5[ B(s~'ds,s ™o W)=0. (4.2)

The integrability conditions (2.5) ensure this equa-
tion. However, when G is not a suitably broken

symmetry, these integrability conditions are as a rule
fulfilled only if e(x) and 7(x) vanish at space-time
time infinity. This in turn means that (4.2) may not
be fulfilled for small deformations of C which do
not vanish at infinity. We shall in fact prove in Sec.
VI that the validity of (4.2) for all deformations
often requires the breakdown of G (spontaneously or
otherwise) to one of a class of subgroups H. The
physical significance of this result will be the subject
of Sec. VIL

Remark. The transformation y—g'yy, W—g'o W
can be thought of as a change of variables in the
functional measure. The failure of the condition
(4.1) then means that du(y, W) is not single valued
in its arguments. It is this lack of single-valuedness
which prevents a consistent action of G on du(y, W)
when (4.1) is not fulfilled.

V. THE U,(1) ANOMALY AND
THE QCD ORDER PARAMETER

In this section, we illustrate the Bohr-Sommerfeld
condition in the context of the axial [U,(1)] anoma-
ly in QCD (with no electroweak interactions). It
leads to restrictions on the QCD order parameter.

We shall make the conventional assumption that
the fermions in the QCD effective Lagrangian
(baryons) do not reproduce the gluon contribution to
the U,(1) anomaly. Therefore the effective La-
grangian itself must exhibit the U,(1) anomaly.

Let us first briefly recall the QCD effective La-
grangian and the standard representation of the
U4(1) anomaly therein.

In the QCD effective Lagrangian, the mesons are
described by a matrix-valued field M which is a
color singlet and has definite transformations laws
under the flavor group U(N), X U(Nyf)g ={(u,v)}
where Ny is the number of flavors. The Lagrangian
density is invariant under this group except for a
piece .£,4. This piece under the chiral U(1)
transformations (e‘¢,1) or (1,e’®) transforms as fol-
lows>*:

(e'1): L y—.L 4+aNsQ, (5.1
(Le®): £4—L4—aNsQ, (5.2)
Q0= = TtF*Fy,, . (5.3)

We have denoted the gluon field tensor by F,,,. This
anomalous transformation law reproduces the
anomalies of the associated currents. .Z 4 is invari-
ant under SUN,);, XSU(N¢)g and the vector U(1)
group {(e'%e’*)}.

It is also conventionally assumed that M,
transforms like g,(1+7y5)q, where a,b are the flavor
indices of the quark fields g and their color indices
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are summed over.

The purpose of this section is to find restrictions
on the properties of the order parameter M and to
suggest that the identification

Mab ~q_a( 1 +75)qb (54)

is essentially unique [up to U(Ng). XU(Ny)g and
color-invariant factors]. For example, we exclude
the following order parameters:

(i) For Np=1,

M ~g(1+y5)9q(1+vs)g . (5.5)
(i) For Ny > 1,
Mgy, ca ~qa(14v5)gpG.(1+75)q,4 . (5.6)

Such restrictions are derived from the hypothesis
that these order parameters are responsible for the
U,(1) anomaly in the effective-Lagrangian ap-
proach.

As a prelude to the derivation of these results, we
review the construction of .£ 4 in greater detail.

Let U,(1)={(e’*1),} denote the U(1) group
which acts only on the left-handed quark of flavor
a:

i(1+ys)ar/2

(eia,l)a qqa—e 9a >
) (5.7)
(e'a,l)a qp—qp » bsa .
For such a transformation,
(e'%1);:.L 4> L 4 +aQ(x) (5.8)

[which follows from setting Ny=1 in (5.1)].

To construct .¥ 4, we have to first construct a
function F(M) with the following properties: (i) It
transforms homogenously under U,(1) for each a:

(e'?,1) F(M)=e'P*F(M) . (5.9)

Here p is an integer (£0) which should be indepen-
dent of a. () It is invariant under
SUW,), XSU(Ns)g and the vector U(1) group (this
condition is required for the invariance of .Z4
under these groups).

If a function F(M) with properties (i) and (ii) can
be found, then according to known results,>* we can
set

£, =%iQ(x)lnF(M)+H.c. (5.10)

and reproduce (5.8). It is easily checked that direct
integration of Eq. (2.16) for S, in the case where s is
a U,(1) transformation leads to this equation;
InF (M) can be identified with the Goldstone mode.
We now show that if the color group is SU(3) and
the quarks are in its triplet representation, p must in
fact be +1. This follows from requiring that

exp(iS, ) be a single-valued function of M Here
Sy=[d*x 2, . (5.11)

The proof is as follows. Since
[d*x ox)=2mp, p=0,%1,%2,... (5.12)

(cf. Ref. 13), the choice of a different branch of
InF (M) changes S, to

SA+ZJ;”— , (5.13)

where p can take any integer value. Hence |p| =1.
The condition |p|=1 is also required if the

group U,(1) is to act properly on exp(iS,). This

follows because :

(e?7/P,1),:F (M)—F (M) . (5.14)
Thus (e/2/#,1), should not affect e . Since

(e7%,1), " —»eis"exp(ifd4x aQ) (5.15)
because of (5.8), we find

(ei21r/p’1)a:eiSA_,eiS”exp i%ﬂ fd“x Q| (5.16)

Hence the condition |p| =1.

The result |p| =1 can be deduced in a third way
from the properties of the 6 vacuums [and the re-
quirement that the theory should be insensitive to
the choice of the branch of In F(M)]. Thus, from
(5.12) and (5.13), we see that a change in the branch
of InF (M) corresponds to the change

e_>e+ﬁ;2 (5.17)

of the vacuum parameter 6 of QCD. Since any
choice 0+ 2wp gives an identical theory, we see that
if |p| =1, the theory is insensitive to the definition
of InF(M).

For the choice (5.4), we can take F(M)=detM
and fulfill the conditions (i), (ii), and |p|=1. For
(5.5), the choice F(M)=M leads to p=2 and is not
allowed. [Since

InM 2= InM (mod2i) ,

the choice F(M)=M1"? also leads to trouble.] For
(5.6), neither Tr MTM nor det M has the requisite
properties.

If the quarks are not in 3 of SU(3), but in some
other representation I', we have to change (5.12) to

Trp ’2)»,,2 ]

m . (5.18)

[d*x @(x)=2mv
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The subscript on Tr indicates the representation in
which the trace of the quadratic Casimir operator
> A, is taken. Thus in general, we have to change
the condition on p depending on I'. For I'=6,

Trg [EMa)Z ]
Tr, [zk(a)z ]

and p can be 1 or 5.

=5, (5.19)

VI. GLOBAL TRANSFORMATIONS AND THE
EXISTENCE OF FUNCTIONAL MEASURE

In this section we examine the restrictions which
follow from the Bohr-Sommerfeld condition [(4.1)
and (4.2)] for a non-Abelian group G acting on the
measure du(y,W). We assume in our discussions
that the entire group G is gauged. The case where
only a subgroup G of G is gauged can be easily ob-
tained by setting the gauge fields in the quotient
G /G equal to zero.

The gauge theory consisting of the fields ¢ and W
alone is not consistent; the anomalies generated by ¢
have to be canceled by the anomalies due to other
fermion fields L. The purpose of examining the ¥
sector by itself is to see if it can decouple from the L
sector or form condensates with little admixture
from the L sector, etc.

The gauged group can in general contain invariant
continuous subgroups which act trivially on 4.
Such subgroups are irrelevant when discussing the
properties of du(y,W). Thus it is the quotient of
these two groups that we call G. The group G is
thought of concretely as a group of matrices acting
on .

The presentation of the results is much simplified
by using the convention where the right chiral pro-
jections are singlets under G (cf. Ref. 14). We adopt
this convention. Thus ¥ is a left-handed field.

Let

P
G= ®IG§"’®GA , 6.1)
y=

where G is simple. For later purposes, we shall
also regard them as simply connected. The group
G4 is Abelian.

Of course, the group which acts faithfully on the
space of fields (i, W) may not be G but G /Z where
Z is a discrete subgroup. Since the arguments lead-
ing to the first constraint are not affected by the
presence of Z, it is ignored for the moment.

We denote the components of the field ¢ by
Yaa, - ap where the index a, is transformed only
by G

As constraint 1 below will make precise, G must
break to a subgroup H if G does not satisfy the

Bohr-Sommerfeld condition. The subgroup H can
be written in the form

H=H®H, , (6.2)

where Hg is a semisimple and H, is an Abelian Lie
group. (The actual surviving symmetry would in
general be [Hs® Hy XD]/Zy where D and Zy are
discrete groups. We shall say nothing about D, it is
ignored hereafter. For our current reasoning, Zy is
also not important and is ignored.) The index a,
will transform in a definite way under Hy:
Yog,... ™" D B Y. s

v aqa), a

hEH; .

(6.3)

The matrices {D*(h)} form a representation of Hg
which we call H".

Constraint 1 can now be stated as follows. Sup-
pose HY is nontrivial, H"'~{e}. Then the Bohr-
Sommerfeld condition [or equivalently, the existence
of a well-defined action of G on du(y,W)] implies
one of the following:

@@ G is anomaly free (that is, G is an
anomaly-free representation) or (b) Gs” is a repre-
sentation of SU(M) for some M and Hg" is a repre-
sentation of an SU(2) or SO(3) subgroup of SU(M).
In the defining representation of SU(M), by a choice
of basis, this subgroup can be brought to the form

) (6.4)

where {g} is one of the (2j+ 1)-dimensional irreduci-
ble representations of SU(2).

A preliminary version of this result was presented
in Ref. 15. It is a consequence of the condition (4.2).
The latter is fulfilled only if the consistency condi-
tion (2.5) is fulfilled. We shall deduce the above re-
sult from the consistency condition when 7 and €
are space-time independent.

Note the following: we can write up to discrete
subgroups, '

Hg=H¢(1)®Hs(2)® - - , (6.5)
where Hg(k) are simple. Correspondingly,

H'=H{(1)eH{'(2)® - - -, (6.6)
where H{"'(k) is simple or trivial. Now, for those v

for which G_é") has anomalies, the existence of
du (i, W) requires HS" to be either trivial or a repre-
sentation of SU(2). In the latter case, only one
H{(1) is thus nontrivial; further it is homomorphic
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to SU(2). This in turn means that Hg(l) is
homomorphic to SU(2). In summary, if G§ has
anomalies, at most one H{"(]) is nontrivial and if
there is such a nontrivial H$(), then Hg(l) and
H{(1) are homomorphic to SU(2).

The expression for the anomalies 4, we shall use
will be that where (cf. Appendix A)

Aa( W)=dapyapy( W) ,
dopy=TrL (a)(L(B)L(y)+L(y)L(B))
=TrL(a){L(B),L(7)} .

(6.7)

This expression is not unique, but the nonuniqueness

does not affect the conclusions as we shall indicate

when we conclude this discussion (see Remark 3).
When € is x independent,

B(e,W)=€®[d*x A,(x) . (6.8)

The explicit expression (A1.1) for 4,(W) also shows
that for global transformations, A,(W) transforms
like the component of a vector in the adjoint repre-
sentation. Thus if 7 is also x independent,

8, B(e, W)=B([n,e],W) . (6.9)
This means, by (2.5), that
B([7n,e],W)=0. (6.10)

The simplicity of G§” implies that any element of

the Lie algebra G of G with nonzero components
only in the Lie algebra G & of G§ can be written as

[7,€] for some n and €. Thus
B(n,W)=0 (6.11)

for every n€G .
Now since A4, is a total divergence [cf. (A1)], we
can write

Jd*x4,0m= [ _dupdlWids,, ,

6.
ag(W)=3,88 W), 612

where S° is the sphere at space-time infinity. On
this S3, only those gauge bosons associated with the
unbroken subgroup H do not vanish, since the
remaining gauge bosons are massive. Consequently,

equations is carried out in Appendix B. It is shown
there that these restrictions are the same as those
stated in constraint 1. The sufficiency and necessity
of these restrictions are also proven there.

We would like to emphasize that constraint 1 fol-
lows from the fact that the Bohr-Sommerfeld condi-
tion is a topological invariant; namely, the integral
in Eq. (4.1) is invariant under small deformations of
the curve C in the group G. Beyond the stability re-
quirement for such deformations, Eq. (4.1) con-
strains the value of the integral since the phase fac-
tor is set equal to unity. We call these further con-
ditions constraint 2, and reformulate them below for
facility in computations.

It was remarked earlier that the group which acts
faithfully on the space of fields (), W) may not be
®G$'®G,, but rather its quotient by a discrete sub-
group Z. To emphasize this distinction, we intro-
duce the notation

G=9G{"2G,,
— (6.13)
G=G/Z.
The elements of Z will be denoted by
(ZS’ZA ),Zsé'® GéV)’ Zy EGA . (614)

A curve g(t) [0<t<1] in G becomes a curve
C[g(#)] in G under the homomorphism G —G. It is
closed in G if g(1) differs from g(0) by an element
of Z, g(1)g(0)~'€Z. Further

Cl&(t)(zs5,24)]=CIZ(D)] . (6.15)

The Bohr-Sommerfeld condition in this notation
reads

-1 —1 _
f C[g‘(t)]B (s ~'ds,s "o W)=2mp ,
p=0,+1,+2,...

(6.16)

for
g(0)= identity ,
gnez.

The following consequence of (6.15) is useful: If

g(0)= identity, g(1)=(zs,24) , 6.17
expression (6.11) along with (6.12) will imply restric- ‘ go)=1 8 §54 (6.17)
tions on the subgroup H. Further analysis of these then
|
L -1 -1 = o« o -1 -1
[fC[g‘(t)]+ fcmn]+ ]B(s ds,s "o W) [ fC[E(t)]+ fC[E(t)E(l)]+ fC[E(t)g‘(l)Z]+ B(s™ds,s ™ so W)

— -1 -1
= [ B s M5 Tlo W) (6.18)
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Here i(t) is a single curve in G from e to g(1)"
where n is the number of terms in the starting ex-
pression. The explicit form of 7 (¢) is

m(t)=g(nt), 0<t<1/n

<t

) 2
=g(nt —1)g(1), ”

§|»—

=g(nt—p)g(1)?, %StSL:—l— ,
6.19
p=0,12,...,(n—1). (6.19)

The purpose of the second constraint is the sim-
plification of (6.16). It may be stated as follows: In
order that (6.16) is fulfilled, it is necessary and suffi-
cient to fulfill constraint 1 and

-1 -1 _
fc[gm]B(s ds,s "o W)=2mp ,

p=0,+1,%2,..., (6.20)

— e -1 -1
2mpk= | [t ooyt o | Bl s o w)

Here mi(1)=(5%,%)=(identity,#%). Thus the pro-
jection into ® GS” of the curve mi(z) is closed. As
®GS” is simply connected, we can deform i(t) so
that this projection shrinks to a point. In this pro-
cess, (i) C[m(¢)] becomes a curve confined to the
Abelian part, (i) the value of the last integral in
(6.23) does not change due to constraint 1 (which
guarantees the integrability condition). Thus we ar-
rive at constraint 2.

Restrictions on the QCD order parameter which
we derived in Sec. V are a direct application of con-
straint 2 [cf. Eq. (5.13)]. In the next section we dis-
cuss several examples illustrating the constraints.
However, since constraint 1 is a necessary condition
for constraint 2, we have not found new conse-
quences coming from constraint 2 for these exam-
ples.

Remark 1. Suppose the ¢ sector condenses. Let
S, be the part of the effective action which
represents the interaction of the ¥ condensates with
W due to the presence of the anomalies [cf. Sec. II)].
Let du‘ be the measure for the fermions in the con-
densed phase which contribute to the anomalies.
Then du(y, W) and du‘exp(iS,) are supposed to
transform in the same way. Therefore in the ab-
sence of constraint 1, the global group G does not
act consistently on du‘exp(iSy). Further in the ab-
sence of such fermions, constraint 2 implies quanti-
zation rules of the Bohr-Sommerfeld type on Sj.

Remark 2. We can now clarify in what way the
theory can be inconsistent if the Bohr-Sommerfeld

Jfor every curve of the form

2(0)= identity in G ,
(6.21)
g(1)=(z; = identity ,z,)EZ .

Further we can regard g(t) in (6.20) as confined en-
tirely to the Abelian part G, of G. (That is, on this
curve, only the Abelian factors of the group element
need vary.)

The necessity of this constraint is trivial. To
prove sufficiency, consider a curve g(¢) from identi-
ty of G to

g =(524)EZ . (6.22)
Let k be the period of %, so that £¥ is the identity.
Then we can replace (6.16) by the equation where
C[g(1)] is traversed k times and use (6.18),

— -1 -1
= [imip B TS5 Tlo W) (6.23)

condition is not satisfied. When the constraints are
not fulfilled, the correlation functions of ¢ in a
given external field W are not well defined. For in-
stance, the propagator is

(TP w= [ du, Wipx)Pip)eSH»
(6.24)
up to a normalization. So
(TP gow
= [ dp(p,g0 Wip(x)i(p)eShe?)

= f du(gi,go W) (g)(x)(gy)(y)e’Sehee )

=eP&™ [ du(y, W)(g)x)gh(ple’S® W)
(6.25)

since the classical action S is gauge invariant. Now
(g¥)(x) is just the matrix g(x) applied to the vector
(x); the last integral is thus single valued in g. The
single-valuedness of the propagator in W is thus
controlled by exp[iB(g, W)]. When g is varied over
any closed loop, the propagator returns to its origi-
nal value only if the constraints are fulfilled.

Remark 3. The expression for the anomalies is
not unique. But if B and B’ are two expressions for
the anomalies, Bardeen!! has shown that the latter
can be obtained from the former by changing the
measure du(y, W) to
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dp'(, W) =dpu(p, W)e"C

Sc=[d*x Lcw), (6.26)

for a suitable choice of .. This is equivalent to
adding the counterterm S to the canonical action.
The important point for us is that .Z (W) is a poly-
nomial function of W and its derivatives.!! Thus
exp(iS¢) is single valued and the group has a well-
defined action on it. We therefore conclude that our
results are not sensitive to the choice 4, for the
anomalies.

VII. APPLICATIONS

A. The standard model

In the standard model (cf. Ref. 1), let us regard v
as quarks and L as leptons. The gauged group is
SU(3)¢ X SU(2) X U(1) and the unbroken subgroup is
SUB)c X U(1)g, where U(l)g is generated by electric
charge. In the quark sector, there is only one H, &,
and it is the 34 3* representation of SUQ3)¢; it is
also equal to the associated G§V). Since the latter is
anomaly-free, constraint 1 is fulfilled. The U(l)g
anomaly in the ¢ sector due to SU(2) gauge bosons
has zero topological charge since SU(2) is broken,
while there is no U(l)g anomaly due to elec-
tromagnetism. Thus constraint 2 is also fulfilled.
This means that there is a consistent effective La-
grangian description of 1 condensates in interaction
with SU(2) X U(1) gauge bosons.

B. The first two hypotheses

Let us divide the fermions into two sectors 1 and
L each transforming under a definite (possibly redu-
cible) representation of the gauged group. The
anomalies cancel between the two sectors.

We now make the following two hypotheses.

H1: The 1 sector can decouple from the L sector
only if the measure du(, W) exists.

If ¥ condenses and L does not, then it is reason-
able to expect that the condensed sector admits a
consistent effective Lagrangian description. We
turn this expectation into a second hypothesis.

H2: If the 9 sector condenses and the condensates
have little admixture from the fermions L, then there
should exist a consistent effective Lagrangian
description for the \ condensates in interaction with
gauge bosons which correctly reproduces the
anomalies.

If there are fermions in the condensed ¥ sector,
their contributions to the anomalies are of course to
be included in the effective Lagrangian approach (cf.
Remark 1, Sec. VI).

The existence of the effective-Lagrangian descrip-

tion and the existence of du(y, W) are equivalent.
Both require the fulfillment of the two constraints.

We note that H2 is supposed to be valid even if
the ¥ condensates have admixtures from the gauge
bosons (and perhaps other bosonic fields like Higgs
fields). What is not allowed are admixtures from
other fermionic sectors.

We now discuss QCD and the SU(5) model under
these two hypotheses.

C. QCD and SU(5)

We consider QCD in the absence of weak and
electromagnetic interactions. According to our con-
ventions, the left quarks qL=%(1+‘ys)q transform
as 3+3* of SU(3) while gg =%(1—7/5)q are sing-
lets. We denote the fields in 3 by ¢ and the fields in
3* by L. There are anomalies in the 1 and L sectors,
but they mutually cancel. The group G acting on ¥
is the 3 representation of SU(3)¢.

We now consider the case where the 9 sector con-
denses. This is perhaps not very realistic, but it pro-
vides an illustration of the general ideas. In this
case, by constraint 1, either Hg is trivial or it is
SO@3), ¥ and L transforming under the three-
dimensional irreducible representation of this SO(3).
(A model with such an unbroken symmetry group
has been considered in the literature.!®) If Hg is
SO(3), then H, is absent since SO(3) is a maximal
subgroup of SU(3). If on the other hand Hy is trivi-
al, H, is contained in the maximal Abelian sub-
group U(1) X U(1) of SUB3)¢.

These considerations are also valid if ¢ is to
decouple from L. There is however no simple way
to introduce a large mass scale for ¥ and attempt
such a decoupling when the group is SU(3)c. Let us
therefore consider the case where the color group is
SO(3). Then a color-invariant Majorana mass p can
be introduced for ¥ and we can discuss the limit
u— . Since SO(3) is anomaly-free, the 3 sector
can very well decouple from the L sector without a
breakdown of the symmetry (in so far as the two
constraints are concerned).

In the SU(5) grand unification model (cf. Ref. 1),
the left fermions 9 and L transform as 5* and 10 of
SU(5), respectively, and the anomalies cancel be-
tween ¥ and L. In this model, there can be no
decoupling of the two sectors or condensation of ei-
ther sector without a breakdown of SU(5). Hg can
be trivial or isomorphic to SO(3), where under this
SO(3), 5* reduces to the five-dimensional irreducible
representation. If Hy is trivial, H, is contained in

U(1)xU(1)xU(1)xU(1)CSU(5) .

In the contrary case, its generators are a commuting
set which commute with any element in the Lie
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algebra of SO(3).

Veneziano'” has considered condensation of both
sectors together in an SU(5) tumbling scheme. The
Bohr-Sommerfeld condition is satisfied for this pro-
cess.

D. Hypothesis 3

This third hypothesis resembles the one intro-
duced by ’t Hooft.3

Consider an anomaly-free gauge theory of fer-
mion fields ¢ with gauged group G’, gauge bosons
W' and flavor symmetry group G with no
anomalies. The third hypothesis amounts to requir-
ing a sort of stability of this theory when G is
gauged as well and may be stated as follow:

H3. The gauge theory of Y and W' is a candidate
for a physical theory only if the following is true: (i)
The fermion functional measure is well defined when
the flavor group G is gauged. (ii) If there are con-
densates in this theory, then there is a consistent ef-

Sective Lagrangian description which correctly exhi-’

bits the anomalies when G is gauged.

As noted by 't Hooft,> spectator fermions L can
be added to cancel the G anomalies (which may arise
when G is gauged) if it is so desired. Further the
coupling constant e associated with G can be made
arbitrarily small. The effects of the new interaction
on the symmetry-breaking patterns of the undis-
turbed theory (with e =0) is therefore expected to be
marginal.

We now reexamine QCD in the absence of elec-
troweak interactions, assuming it fulfills (i) and (ii)
above. The results are striking.

E. QCD once more

The unbroken flavor group G is
[U(Ng) XU(N£)g1/U4(1)
if we assume zero bare quark masses. Thus
G=G"eGMeU(1)/Z (7.1)
where Z is a discrete group and
Gs”'=SU(Nj),, v=L,R . (7.2)

When G is gauged, there are anomalies associated
with G{. By constraint 1, it follows that in the un-
disturbed  theory (e =0), the flavor group
SU(Ns)p XSU(Ng)g must be broken.

Constraint 1 also gives information on the unbro-
ken subgroup

H=H5®HA/ZH ’ (7.3)

where Zy; is a possible discrete group.

To be concrete, let us discuss the case Ny=6.
Then there are three possible SU(2) [or SO(3)] sub-
groups of SU(6), of interest to us; we denote them
by SUQY, (=5, 1, 3). The subgroup SUQ), is
identified by the requirement that the 6 representa-
tion of SU(6), splits into a direct sum of spin-j rep-
resentations under this SUQ)Y,. Now we can have (i)
a trivial Hg or (i) Hg=SU(2),®SU(2)%, or (iii)
Hs-_an SU(Q2) or SO(3) subgroup of SU )
®SU(2)%. [That is, Hg can be SU(2),, SUQ), or
the group generated by the sums of the correspond-
ing generators of these two groups. These genera-
tors of SU(2), and SU(2)% must of course fulfill
similar commutation relations.]

The presence of Hg endows the quarks with some
sort of generation structure. If j =k = in (ii), this
generation structure is the usual one.

The possible H, can be classified by routine
methods once Hg is fixed. The generalization of
these considerations to arbitrary N is also straight-
forward.

Note that the generations can be distinguished,
for example, by the presence of a U(1) subgroup in
H , the corresponding U(1) charge being distinct for
each generation. (Such symmetries have been con-
sidered before.'®)

It is interesting that some sort of generation struc-
ture emerges from such formal considerations as
ours. Unfortunately, these do not suggest any tech-
nique for the computation of mass differences be-
tween generations.

F. Composite models

’t Hooft® has suggested that the Wigner realiza-
tion of chiral symmetries may be used to guarantee
the masslessness of composite fermions in gauge
theories. Independently of the anomaly-matching
conditions which he imposes, the Bohr-Sommerfeld
condition provides further restrictions on possible
models. As an example we consider the model pro-
posed by Yamawaki and Yokota.!®

In this model hypercolor (HC), color (C), and
weak (W) gauge forces are grouped into the category
of “flavor” interactions with respect to a subcolor
(SC) gauged group SU(Q)sc. These forces are
characterized by energy scales Agc, Axc, Ac, and Ay
which are assumed to fulfill Agc>>Apc>>Ac Aw.
The basic fermions all belong to a 3 representation
of subcolor and in addition each of these fermions is
assigned to a representation of the HC =SUQ)y,
C =SU(3)c, and W =SU(2)y groups, respectively.
In an obvious notation the three representations are
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(2,0,0), (0,3*,0), and (0,0,2).

At energy scales A >>Apyc one expects that the
gauge interactions associated with H =SU(2)c
X SUB)c X SU(Q2)w will be weak and an approximate
(classical) flavor symmetry G =SU[(7)
X SUR(7)XU,4(1) will emerge. In this case one may
ask if the breaking G—H is consistent with the
Bohr-Sommerfeld condition for G. Constraint 1 im-
plies that as there are anomalies associated with glo-
bal transformations in G and H is not of the re-
quired form, such a breaking is inconsistent with the
global action of G.
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APPENDIX A

We assume without loss of generality that the
field 4 is left handed. Let {L(a)} be a basis for the
Lie algebra G of G, they are matrices which act on
¥. The anomalies can be written as'"!®

|
Ay (W)= 4 > TrL(a)e"* ™, (W, W, + 5 W, WiW,) , (A1)
where W, =WL (a). It is evident from this expression that A,(W) transforms like the component of a vector

in the adjoint representation when W), is transformed globally.

It is trivial to manipulate (A1) to the form
Ao(W)=d,gapg, (W),
where
dopy=TrL (a){L(B),L(7)} ,

apy=3,8 %y,

A 1 1
ah,= pre Tre* ™3, (WS, W+ WE W), W17},

[WM Wp]E[ W}\.’ Wp]YL ('}’) .

(A2)

Equations (B2) and (B3) in Appendix B follow easily from (A2). '

APPENDIX B

Following the discussion of Sec. VI, we prove constraint 1 in this appendix.
If {¢(a)} is a basis for the Lie algebra H of H, then combining (6.11) and (6.12) [cf. (A2)] we get

B(n,W>=fS,Tm{t(a>,t<b>}a¢;,,ds,, .
The form of 4%, on this S is [cf. (A2)]

#, =conste®"P? {(h ~'3,h),[h ~'8,,h ~'3,h], +a<>b} , (B2)

where h (x)EH and we have assumed that W, be-
comes a pure gauge i~ 16 h at infinity. The remam—
ing notation is explained by

h='3,h=t(a)(h~"'3,h), ,
(B3)
[h~'8,h,h =19,k ]1=t () 1 ~'3,h,h ~'3,h], .

[Thus, in this notation, ¥, is the component of yE H
in the direction ¢(a).]

If h is Abelian, &4, is zero. Therefore let # € Hy.
In that case, we find, from (6.11) and (A2.1),

[
(@), T(b)}@%,dS, =0, (B4)

f Trn

where €G Y’ and {T'(a)} is a basis for the Lie
algebra Hg of Hy.
To simplify (B4), we write

T(a)=6T""(a), (B5)
where {T'”(a)} act only on the index a, in

Yaa,- - a,--- and span the Lie algebra H g @ of HY.
Then, for o,0'#v, we have
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Trp{T“Na), T\ (b)} =Try Tr{T'"(a), T'" (b))
(B6)
and this is zero since Try=0. Similarly if ov.
Try{TNa), T™(b)} =TrT'"(a){ T"(b),n}
=TrT'a)Tr{TY(b),1}
=0, (B7)

since TrT'"(a)=0 (for H{"' is a representation of
the semisimple Hg). Thus, (B4) becomes

f Trn{T™a), T(b)}4%dS, =0 . (B8)

If G is anomaly free, this equation is empty Let
us therefore consider the case where G§” has
anomalies. In this case, GS" is a representation of
SU(M) for some M >3.2%2! Further, the tensor
structure of the anomalies and hence of the trace in
(B8) is governed by its expression in the fundamen-
tal representation."?? Thus let {L(a)} be a basis
for the Lie algebra G of G and let LYa),
T "(a), and 7 be the representatives of L™(a),
T™(a), and 5 in the defining M-dimensional repre-
sentation of SU(M). Then

TrL“”(a){L“”(B),L“”(y)}
=£TrL () (L Y(B),L V(7))
(B9)
(€ being independent of a, 3, ¥) and so
Trp{T™a), TY(0)} =E TrH {T V(a), T V(b)} .

(B10)

By assumption, G§’ has anomalies which by (B9)

means §540. Therefore
fssTrﬁ{f“"(a),f(")(b)}é‘abdsu=0. (B11)

The analysis of this equation can proceed as fol-
lows: %) is any traceless anti-Hermitian matrix and
therefore

A —- AA —_ AN _1 A
fs3e""""h 13,k k 13,k ~'3,hds,,
= multiple of 1, (B12)
where we have used (B2) and  is the representative
of h in the defining representation of SU(M). Now
let 4" be an arbitrarily small neighborhood of a

point p on S3. We can choose h such that h ~'dh
has support in .#" and such that up to leading terms

h~ldh=3 T™i)dé (B13)
i=1

in .#". Here € are arbitrary functions with support

in 4 and TW() (i=1,2,3) are three arbitrarily
selected linearly independent generators. For this
choice, (B12) is equivalent to

enT VHOTVGHT Y(k)=A1, (B14)

where €5 is the Lev1 Civita symbol which comes
from the volume on S3 and A is a number.

The sufficiency of constraint 1 should now be ob-
vious. For with constraint 1, there are only three
linearly independent T *”s and they can be written
as

TOi)=¢,4L; , (B15)
where

det{£0, (B16)

[Li,L;j]=€Ly - (B17)
Thus

eijkf(v)(i)fv(v)(j)f(v)(k)
_ %Q’jkf (v)(i)[f(v)(j)’f (v)(k)]
=det§L,~L,~ . (B18)

Equation (B18) fulfills (B14) due to constraint 1.

We now prove the necessity of constraint 1. We
first point out that it is in fact quite plausible. For
(B14) implies that its left-hand side is an invariant
for the group generated by {T¥(i)}, but it involves
only three of the generators. This suggests that
there are altogether only three TV(i), in which case

HY is homomorphlc to SU(2).

Let Y s ! denote the group generated by {T "(a)}
and let H " be its Lie algebra. If we write

[T @), T 0)]=f e T¥0) (B19)
it follows from (B19) that
icfial VDT V(a)=2A1 . (B20)

In what follows, i,j,k; will run over 1,2,3, and
a,b,c will run over 1,2,... dimension of H .
Below we introduce indices r,s,t whose values are re-
stricted by 7,s,2 >4, One of our tasks is to show
that dimension of H Y’=3 and therefore that there
are no generators with indices r,s,z. We will also
hereafter drop the superscript v on the generators
since it plays no role in the following.

Let
8ia =€ijkS jka - (B21)

Then
g T()T(a)=2A1 . (B22)

This expression is also valid (with a possibly dif-
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ferent A) if T(a) are replaced by
f(a)-{—Sa,f(r) , N0 summation on r . (B23)
Therefore,
g,~,f(i)f(r)=2A’1, no summation on r
(B24)

for some A’. Replace a by i and r by j in (B23) and
substitute the new 7'(i) in (B24) to find

gj,T(j)T(r):ZA”]l , N0 summation on j and r .
(B25)
Since we can assume without loss of generality that
TrT (@) T(b) =5, , (B26)
we also have
A"=0. B27)

There are three ways to fulfill (B25) and (B27): (a)
T( J) T(r)=0, (b) gj»=0, or (c) there is no generator
with index r.

As for (a), along with its Hermitian conjugate
equation, it 1mp11es that

[T(), T(r]=0. (B28)
Further

[T, T()=fipT(k), (B29)

[T, 1) ]=fr (1), (B30)

since the trace of the left-hand side of (B29) [(B30)]
with T(r) [T(i)] is zero by (a). Thus

HY'=K 8K, , (B31)

where the Lie algebras K; and K, have bases {f( N}
and {T( r)} , respectively. But a product like
T(j)T(r) where the factors are in distinct Lie alge-
bras cannot be zero unless one of the factors is zero.

We chose T(i) in Sec. V so that they are linearly i 1n-
dependent and hence not zero. So (a) means T(r)=
which is equivalent to (c).

Next, to analyze (b), introduce the 3 X3 antisym-
metric matrices L (i), F(r) where

L (l)j =€jjk » (B32)

F(r)jk=fjk, . (B33)
Then (b) says

TrL (i)F(r)=0. (B34)

Since L (i) is a basis for 3 X3 antisymmetric ma-
trices,

F(r)=0. (B35)

We thus conclude from (B19) that {7(i)} is a basis
for a subalgebra. Since the choice of these three

T(i) was arbitrary, (b) implies that any three linearly
independent elements in ay Y is a basis for a
subalgebra. This is not poss1ble without (c). For
without (c), the rank of H Y is larger than 1 and in
the Cartan notation, the generators E,, E_,, and
H'sconst X a'H; do not form a basis for a subalge-
bra.

Thus we are left with only the choice (c). H fg") is
therefore of dimension 3. Since it is also semisim-
ple, it is necessarily isomorphic to SU(2), the Lie
algebra of SU(2).

Now TrT(l)[T( ,T(k)] is totally antisymmetric
in i,j,k and hence proportional to €. Since it is
also proportional to f;; by (B26), (B(22) reduces to

T(z)T(t):constl (B36)

[in view of (B21)] and this is true in the whole repre-
sentation space of SU(M). It follows that on reduc-
tion, the fundamental representation of SU(M) con-
tains the same irreducible representation of H ol
with a suitable multiplicity.
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