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Color-singlet confinement in chromostatics

15 MARCH 1983

Kimball A. Milton and Walter Wilcox
Department ofPhysics, Oklahoma State University, Stillwater, Oklahoma 74078

William F. Palmer and Stephen S. Pinsky
Department ofPhysics, The Ohio State University, Columbus, Ohio 43210

(Received 16 February 1982)

By constructing explicit projection operators for the SU(n) configurations of quark-
antiquark (qq) and quark-quark (qq) systems, we demonstrate that confinement occurs in the
color-singlet state, while the (n —1)-piet of (qqQ and both the (1/2)n(n+1)-piet and the
(1/2)n (n —1)-piet of qq have infinite energy and are hence decoupled from the spectrum.

Recently, a promising formalism has been
developed' describing heavy quark-antiquark (qq)
confinement based on an algebraic representation of
static quark sources ' together with the use of the
one-loop, renormalization-group improved Lagrang-
ian as an effective Lagrangian. The principal
justification for use of the latter is that it implies the
correct trace anomaly. The above formalism ap-
parently implies the following': confinement via
flux-tube formation (presumably a linear potential)
in the color-singlet channel, whereas color-
nonsinglet channels [8 for qq, 3 or 6 for qq in SU(3)]
have positive-infinite energy.

Here we wish to fill in a major gap in the previous
argument by explicitly demonstrating that it is the
color-singlet, and only the color-singlet, channel in
which confinement occurs. We do this through a
modified action expression based on use of the sing-
let projection operator. In so doing it will also be-
come clear that the SU(2) XU(1) "pseudocolor"
symmetry has in fact no bearing on the confinement
issue since the singlet projector annihilates the U(1)
algebra. (It has already been noticed that pseu-
docolor rotations fail to preserve the current com-
mutation relations. )

We start by recapitulating the pseudocolor alge-
bra. This algebra is based on the SU(n) outer prod-
uct

[tl, v]A = fABC( u Bv C+ v Cu )
2

where A,B,C, . . .=1,2, 3, . . .,n —1. In terms of
the orthonormal set [e; I,

e i
———(Q i X I+ I X Qi ),
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-A fABcQB X Qc
P1

e4 ———(2/n')(n' —4)' '(Qi X 1 —1XQ2)

(8/n)(n2 4)
—i/zdABcQB XQ&

where (a =0, 1,2, . . .,n 1)—
Q'=

2
Q'=—

1/2
2

1
2 Pl

(3)

W= f d x W,tt(F ) W,ti(a' )—
Tr I d xc"„(x)j„(x),

where'

represent the two static quarks, we find '

[et ei] =i&p &~ [i j k l = [I» 3I

[e,,e41"=0 .

The qq algebra I e,".

I is obtained by the replacements

Qi XQ~~Qi XQ2

1XQ2 ~1XQ", ,

Qi XI~—Qi X 1,
as well as a reversal of sign of e i. The normaliza-
tion of these vectors is given by

Tre; ej =(4/n)5tj5"

The dynamical effects of the static charges are
described in the development of Refs. 1—4 by the ef-
fective Euclidean action

(2)

W,tt(F )= —,bpF (lnF /tc —1),
bp being the first-order P-function coefficient, and

(8)
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F = Tr[E"JE"'J+BAJB"~]
7l

(9)

the spatial index j running from 1 to 3. In terms of
the potentials, the field strengths are

P =P,
P(Q i X 1+1XQ;)=0,
TrP=1 .

(14)

A'J= —g CA, O+i[CJ, CO]A

B"J=eJ"' 8 c" ——[c",c']"
2

(10)

P'= —,1+Q~i XQ2 ~ (15)

Its complement, 1 —P, evidently projects out the
(n 1—)-piet.

For qq, the projection operator for the
1

—,n (n + 1}-piet is

(Time derivatives do not appear since we are
describing statics. ) Here all colored quantities are to
be expanded in the pseudocolor basis, te; I for qq,
Ie; I for qq.

However, solving the resulting equations of
motion for the prescribed source distribution,

with the properties

P' =P',
TrP'= , n (n +1)—,

Tr(1 —P') = —,n (n —1) .

(16)

jq ——5qo[ Q i X 15(x —x ) )

+ 1 X Q25(x —x2)],
does not describe either the 1 or the (n 1)-p—let of
the n Xn qq state. SU(2)XU(1) gauge transforma-
tions, which are certainly not invariances of the
underlying SU(n) theory, mix these representations
in some nontrivial way. In order to be able to dis-
cuss the singlet-state configuration, the presumed
physical state, separately, let us consider for a mo-
ment how the quark states enter the problem in this
formalism. The outer product space of two quarks
or of a quark and an antiquark forms the basis for
the operators, e.g.,

~ ~

&q qk 1

J'
I qfqi &

= 5(x —x» ' X5«
2

~kl
+5(x —x2)5"XIJ 2

The effect of the singlet projector on the basis vec-
tors is easily seen to be

P(e2+ie3)"=(e2+iei )",
P(e2 iei)"=Pe i

—Pe4 ——0 . ——
(18}

[This apparently demonstrates the irrelevance of the
SU(2)XU(1) pseudocolor gauge symmetry to the
confinement issue, since e4 is the U(1) algebraic ele-
ment. ] Then from the expansion of the charges,

To describe the chromostatics of qq in the singlet
state, we insert P into the trace defining F, Eq. (9),
and into the source term in (7) and remove the now
superfluous 1/n factors. In the source term we
must understand symmetric multiplication to main-
tain Hermiticity:

Tr f d x cJ~& ~Tr f d x c& ,
'

(PJ'&+j &P—) .
n

(17}

0=Jij;kl (12)
3 & —3 & 2 $/p A

Qi X 1=—ei ——,e2 , (n —4—) —e4,
(19)

P= —(2/n)Qi XQp . (13)

The trace operation represents contraction with 5,J.

and 5«, and a sum over all states. The mean-field
potential is determined by the configuration that
minimizes W. It is not obvious, in this formalism,
what the group-theoretic nature of that configura-
tion is. What we suggest here is an alternate, less
ambiguous procedure for identifying the various
physical states by inserting projection operators in
the traces of (7).' It is easy to construct these
operators: In the qq space the singlet projector is

I XQA n -A+ & -A+ '
(

2 4)1/2-A
4e& 2e2 4

we find for the source term (17}

—
4 ¹2(x)[5(x—xi ) —5(x —x2)],1 0

where

N=4(n 1)/n . —

The field part of the action involves

F ~F =TrP(E +B )

(20)

(21)

This operator has the required properties, which
easily follow from the algebra given in Ref. 3: 2

=—(E2Ep+E3E3+B2B2+B3B3). (22)
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A symmetrical set of variables is

c ~ ——c~q+ic~~, (23)

E = —Bjc++ic&c +ic ~c+,
BJ, =ej"'(a„c',+ickc', ),

(25)

and similarly for E and B. Then the field equations
obtained by extremizing 8' are

1

(BJ+icji)eEJ+ ———
z [5(x —xi) —5(x —xq)],

and

e=d&, f(F )/d( ,F )—

CJ '(dk+ici )eB+ =+lciEE+,
(24)

, boln—(EJ—+EJ +BJ+BJ ) K (26)

Ej,cj —EJ cj, =o,
E+c —E c+ e(c ——B+ —c+B )j 0 j 0 jkl k l k l

where

Now it is straightforward to adapt Adler's argu-
ment' to this description of the static singlet sys-
tem. We first minimize 8'with respect to B varia-
tions,

N ~ ~

2W ff E+E =min W,ff (E+E—J +BJ+B ) —W, ff(K )
g2

0 if —EJ EJ+

jeff E~+EJ ——W,ff(K ) if E+E—
(27)

(Ej E& +—BJ BJ )=K (28)

and in the second, W,ff is minimized by setting

since in the first case BJ+BJ fills in to bring W,ff
down to its minimum value, which occurs at

I

where

N p
Dj —— E'Zp Ej Bjcp

2

—bain —E /K, E&K, —z z & z
4 2

'
2

E' =

(32b)

(32c)
BJ,BJ =O. (29) 0, —E &x',z z

EJ+EJ =a,c~+a,c' (CJ )'c'— (30a)

Thus we see "bag" formation —the electric field is
automatically self-quenching.

Inside the bag where (29) holds, (24) implies
ci ——0. Now combining (24} and (25) we find

and

j = ——[5(x —xi }—5(x —xi)] ..p E
4

Since it may be easily shown that'

(32d)

It is consistent with the field equations to further set

c' =0.
1 (30b)

that is, this restriction forms an upper bound to the
action, which is at least a local extremum:

VMp ) i K(N/2)' R (34)

W,ff E ED & —(2/N)—'~ KD, —

the flux conservation argument of 't Hooft" leads to
the following estimate for the mean-field potential:

W;„[Ej+EJ ]& W;„[EJ+Ej ] J.

0 0—= Wmin[5JC+5JC —] ~

which in turn implies ( VMp ———W;„)

VMp[E+E ]& VMp[d c d c ] .

(31a)

(31b)

R being the quark separation. Presumably, exact in-
tegration of (32a) leads to a linear potential similar
to (34).' Note that if we take K as given by recent
estimates for the gluon condensate, '

K =(F ) =2ir (0.014 GeV )

Minimizing W[djc+Bjc ] leads to Gauss's law

~ 0B)Dj——j (32a)

=0.28 GeV

we find for the bound (34)

VMp) (0.6 GeV')R,

(35)

(36)
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(37)

while the effective charges at the two quarks are
(dot denotes symmetric multiplication)

(1—P) Qi ———e, ——,e2 , (n———4) e4,~-A 1 g 1

(38)

which are neither parallel nor antiparallel. The total
flux at infinity, as a consequence, does not vanish,
and hence the canonical energy density

to be compared with the experimentally deter-
mined' slope of 0.17—0.24 GeV . The comparison
here is not particularly striking; however, we remind
the reader that X' here may differ significantly from
the condensate value, and that the linear region may
not be relevant to charmonium spectroscopy. '

We have shown then that this model, which we
hope embodies the essential physics, implies confine-
ment in the singlet channel. On the other hand, the
(n 1—)-piet for qq and both channels for qq are un-

physical because they are infinite-energy configura-
tions. For example, for the (n 1}-p—let up to some
multiplicative factor,

Tr( 1 P)EA,j—EAj1

7g
2

=N[Ei'+E4'+ ,'E+E —]=Esi, —

from which it follows that

n+2
V1 1+ e2

8 8

+ , (n -—4)' e",

Pl g Pl +2V2= +8+8
+ , (n —4)—'~ eq,

1

for the , n (n—+1)-piet, and

(1 P') Q,—= —
e& — ei

8 8

+ (n -4)' —e"

(1—P') Qi ————ei — ei
8 8

+ (n 4-)'~ e—"

(41)

(42)

800 ——e(Es )Es —W,rr(Es ) (39)

P'(ei+ies)"=(ei+ie3 }",
P'(e, ies )"=0,—

' 1/2
n+2
ll —2

82+84
n+2
7l —2

' 1/2

e2+e4

(40}
A

' 1/2
7l +2P' e2-
n —2

e4 ——0,

is infrared divergent when integrated over all space.
As for the two SU(n) configurations of qq, selected
by P', Eq. (15), we find

for the , n (n —1)—-piet. Again, neither pair of
charges is either parallel or antiparallel, and the pre-
vious argument indicates decoupling of these states
by virtue of their infrared-infinite energy.

This algebraic, effective-action approach thus
seems effective in describing the statics of the two-
quark system. Our next challenge is to apply it to
the three-quark system. There, does confinement
indeed occur in the singlet channel'? The affirmative
answer is given in Ref. 15.
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