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We give a formulation of high-energy scattering via path integrals. This nonperturbative

formulation allows the approximate treatment of both fixed-angle scattering as well as

small-angle scattering. The only approximation made is replacing the summation of the

paths of an external particle by the contribution of the classical path —a straight line for
small-angle scattering and two straight lines joined at the origin at an angle for fixed-angle

scattering. In this way, the scattering amplitude is factorized into a product of two ampli-

tudes: the amplitude for the interaction between the external particles and the amplitude for
vacuum-to-vacuum transition in the presence of the external fields produced classically by

the external particles. We show that all of the exactly calculable factors (the eikonal formu-

la, the Sudakov form factor, and the energy-dependent factor of multiphoton exchange for
fixed-angle scattering) belong to the first amplitude and are easily produced by a semiclassi-

cal treatment. The second amplitude is fully quantum mechanical, and no justified approxi-

mation has been found. In the case of small-angle scattering, we deduce, with this formula-

tion, the principle of the equivalence of phase space. For the case of fixed-angle scattering,

we find that there are three time scales: co ', A, , and co, where co is the incident c.m. energy

and A, is the photon mass.

I. INTRODUCTION

In this paper, we give a formulation of high-
energy scattering via path integrals. ' This formula-
tion has the advantage of being nonperturbative.
Furthermore, it treats fixed-angle high-energy
scattering just as easily as small-angle high-energy
scattering.

So that there be no misunderstanding, let us state
at the beginning the approximations involved. Basi-
cally, the behavior of the external particles during
collision, which lasts a relatively short time com-
pared to the time scales of these particles, is semi-
classical. Therefore, instead of summing over all
paths possible for these particles, we take into ac-
count only the classical paths. For example, for
small-angle scattering, we make the approximation
that the incident particles travel along only straight
paths. For fixed-angle scattering, we make the ap-
proximation that the dominant contribution comes
from the classical path which is roughly two
straight lines joined at the origin at an angle 0,
which is the scattering angle. It must be em-

phasized, however, that the process of pair creation
and annihilation should be taken care of throughout
the lifetime of the pair. We shall not make any ap-
proximations on that.

This semiclassical approximation treats the exter-
nal particles as point particles and completely ig-
nores the fact that a hadron is a bound state. We
can only hope that if and when the bound-state
problem is solved, the hadron-hadron scattering am-
plitude can be constructed from the particle-particle
scattering amplitude, in very much the same way
that the deuteron-deuteron scattering amplitude is
constructed from the nucleon-nucleon scattering
amplitude in nuclear physics.

We shall begin with the simplest process in the
simplest gauge field theories: elastic two-body
scattering in scalar QED. Scattering in @CD will be
treated in a future paper. To avoid infrared diver-

gence we give the photon a mass I,. I.et the incom-
ing and the outgoing momenta of the two charged
bosons be p; and p, i =1,2, respectively. Then the
four-point Green s function is given by the path in-

tegral

G (x t ~x 2 ~x 1 ~x2 ) = & o
I
~(4'(x i )0'(x z )4(x i )4(x2 ) )

I
O &

= f &A"&p&pep~(x& )$*(xz)p(x&)p(x2)exp i f Wd x

where T denotes the time-ordered product and
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,'—(a—„A„)(B"A")+, A,—'A +(D„P)'(D"P) m—'Q'P

with

(1.2)

Dp =Op+I'eAq . (1.3)

Also,
~
0) denotes the state of the vacuum. Thus, (1.1) involves integrations over the initial and the final

ground-state wave functions of all harmonic oscillators involved.
Next, we carry out the functional integration over P and P ~, obtaining

G(x1,x2,x1,x2)= f &A"det( D„*D—" m+—ie) 'exp —f [A, A —(B„A„)(B"A")]dx .
2

X [+A(x l,x1)AA(x2, x2)++A(x2 ~x 1 )+A (x 1 »2)] ~ (1.4)

where hA is the Green s function for a charged boson in the electromagnetic field A&. Specifically,

( D„D" —m)b, A(—x,x') =5' '(x —x')

with Feynman s boundary conditions. The S-matrix element for elastic scattering is related to G by
2

S(p'1,p2,p1,p2)= lim g(4E~E )' f g(d x;d x e ' ' ' ')G(x1,x2,'x1,x2) .
t i, t2-+ —oo ~

(1.6)

Similarly, the S matrix P'A for the IGein-Gordon equation with the external field Az is related to bA by

WA(p', p)= lim (4EE')'~ f d x d x'e '& "+'& "AA'(x', x') .
t—+ —oo

(1.7)

Substituting (1.4) into (1.6) and making use of (1.7), we get

S(p1,p2',p1,p2) = f &A"det( D&D" m—+ie) '—exp —f [A.2A2 —(B„A )(B&A ")]d4x

X [~A (p 1 p 1 )~A (p 2 p2 }+~A (p 2 p 1 )~A (p 1 p 2 }]

Extension to inelastic scattering is straightforward. For example, the amplitude for the process
1r++1r+~1r++1r++m++ 1r, where the momenta of the outgoing particles are p1, p2, p 3, and q, respectively,
is (see Appendix A for the derivation}

S(pI,p2,ps, q;p1,p2)= f &A"det( D„'D1' m'+—ie) 'e—xp —f [A,'A' —(B„A„)(QI"A")]dx .
2

X [~A(p1,p1)~A(p2, p2)TA(p3 yq)

+all other permutations of p1, p2, and p3] . (1.9)

In (1.9) TA is the amplitude for pair creation in an external field:

TA(k2, k1)= lim (4E1E2)' f d x d x'e ' ' [bA(x»') —b(x,x'}],
t, t'~ co

(1.10)

where b,(x,x') is equal to bA (x,x') with Az ——0.
So far no approximation has been made, and (1.8) and (1.9) are exact.
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II. SMALL-ANGLE SCATTERING

What simplifications occur in the high-energy limit? Let us first study elastic scattering near the forward
direction. More specifically, consider the limit

Pi~= —P2 =~ ~
with

~—=Pi —
p& =12—Pz

fixed. In this limit P'q takes the eikonal form

6+x
P'~(pi, pi)—= d xidx exp i —bi xi — —A (x+,x,xi)dx+

and (2.1)

X+ ~ p 00

~g (p2,p2) = d'xidx+ exp i — + &i xi ——
A + (x+,x, xi)dx

In (2.1)

x+ =t+z
~ xj =xe~+pey

The amplitudes P'q (pz,pi ) and P'„(pz,p i ), being those of large momentum transfer, give little scattering and
will be ignored. Substituting (2.1) into (1.8), we get

S(p'~,p2,'p~,p2)=—f dx~ dx2+d x~id xiiexp[ —,i(5+x& —b, x2+)]exp[ —id' (xfj xpi)]

A& det —D&D"—m +i@

Xexp i f d"x[ —,A, A ——,(B&A„)(B"'A")—eA (x)5(x —x& )5' '(xJ x]J)

—eA+(x)5(x+ —x2+)5' '(xi —x2i)] (2.2)

Note that we have interchanged the order of integrating and taking the high-energy limit. Since (2.1) is valid
only in the limit co—+oo with A& independent of co, it does not hold if A belongs to a mode with

~
k,

~

compar-
able to co. This means that the fragments with nonzero fractions of the longitudinal momentum are not prop-
erly treated. The treatment of such fragments belongs to the bound-state problem and will not be covered here.

Next, we utilize translational invariance and reduce (2.2) to

~(pl pz pi p2)=(2ir) 5 (pi+p2 p p2) f d ~e (2.3)

where b =x &z
—xqj is the impact distance and

So(b)= f &A" det( DzD" m+ie)— —

Xexp i f d x[—,i' ——,(B&A )(8"A ) —eA (x)5(x: )5' '(xi —b) —eA+(x)5(x+)5' '(xi)]

(2.4)

Recovering the integrations over P and P*, we may show that (2.4) is equivalent to

P

So(b)= f &A&&/&/*exp i f d x[W —eA (x)5(x )5' '(xi —b) —eA+(x)5(x+)5' '(xi)] (2.5)
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where W is given by (1.2). This can be proved by
carrying out the integrations over P and P" in (2.5).
We may further simplify (2.5) by making a change
of variables:

A + (x)~A+ (x)+ V+ (x),
where

V+(x)=2e(CI+A, ) '5(x )5'2'(xi —b)

=e5(x )Eo(A,
~
xi —b

~

)/n.

and

V (x)=2e(a+a')-'5(x, )5~'~(x, )

e5(x+ )Eo(A
~

x J ~
)/Tr

(2.6)

(2.7)

where

W,tt —=——,(BqA„)(B"A )+ —,A, A

+(d„P)~ (di'P) mP ~P—

with

(2.9a)

dq=Bq+ie(Aq+ Vq) (2.9b)

X=——, f Vq(CI+A, ) V"d x

= —e Kc(A,b)/2vr . (2.10)

» (2.7) Eo is the modified Bessel function. Note
that V+ and V are both real. With the substitu-
tion (2.6), (2.5) becomes

S (ob) = e» f &A "&/&/*exp i f d x W,tt

(2.8)

essentially unaffected by the external field V&. Al-

ternatively, we may retain the form (2.7) for Vz and

exclude all harmonic oscillators of
~
k, &co from

the path integral in (2.8).
The formulas (2.3) and (2.8), valid for elastic

scattering, are easily extended to inelastic scattering.
For example, for the process m++ a+~a+
+m.++one pair, the S-matrix element is equal to

(2~)'5"'9 i+ui —6 —pz —ki —k2)

X f d be ' Si(b), (2.11)

where ki and kz are the momenta of the particles
created and Si (b) is equal to e'x times the amplitude
for vacuum to one pair in the presence of the exter-
nal field V&.

The amplitude So(b) given by (2.8) includes the
contributions of diagrams independent of V+ and

V . They are the vacuum diagrams in the original
system and should be eliminated. Also, the dia-

grams involving V+ (V ), but not V (V+),
describe the interaction of one of the external parti-
cles with itself but not with the other external parti-
cle. They contribute to the bound-state effects
which we do not take into account. Therefore, we

want to eliminate them as well. We note that since
in all these diagrams the two external particles are
disconnected, their contributions are independent of
b. Furthermore, since no intermediate state in these
diagrams are on the mass shell and also since V& is

real, these diagrams alter only the overall phase an-

gle of the scattering amplitude but not the cross sec-
tions. This contribution to the phase angles may be
eliminated if we divide the amplitudes by

S, (V+ —0)S, (V =0)/S, (V+ ——V =0) .

We note that the factor exp(iX) on the right side
of (2.8) is the well-known amplitude for multiphoton
exchanges between the two high-energy colliding
particles, while the functional integral is the vacu-

um to vacuum amplitude in the presence of the
external field V&. The scattering amplitude is fae
torized into a product of these two amplitudes. The
multiphoton amplitude is given in closed form,
while the functional integral remains to be evaluat-
ed. In this integral, the effects of the external parti-
cles are represented by an external field generated by
two classical particles traveling with the velocity of
light in the positive-z direction and the negative-z
direction, respectively. Actually, the velocity u of
the incident particles is close to c but not equal to c.
This can be remedied by cutting off the Fourier
components of V&(x) with longitudinal momenta
larger than ~. Thus, the modes of the boson field
and the photon field with

~
k,

~

larger than c0 are

III. PHYSICAL PICTURE
AND THE EQUIVALENCE OF PHASE SPACE

The results in the preceding section can be inter-

preted in a physical way. As a consequence of rela-

tivistic time dilation, the time scale of the external

particles is co/m, while the lifetime of a created pair
is of the order of E/m where E is the energy of the
pair. If the energy E is such that

E/m (~1, (3.1)

then to the external particles the time interval of the
creation process is very short.

During such a short time the behavior of the
external particles is essentially classica/. This can be
understood from the viewpoint of the path-integral
formulation: the classical path is the collection of
stationary points of the path integral. In a very

small time interval contributions to the path integral
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come mostly from the neighborhood of the station-
ary point. Therefore, during the time span of the
existence of pairs with energies satisfying (3.1), the
two incident particles behave like two classical parti-
cles traveling in opposite directions with the velocity
of light and can be replaced by the classical elec-
tromagnetic potential generated by such classical
currents. This potential is given by (2.7), with its
Fourier components with

~
k,

~

&co cut off. Alter-
natively, we may consider the physical system to be
approximated by a collection of harmonic oscillators
with

~
k,

~
&co coupled to the classical electromag-

netic potential (2.7).
The classical approximation for the external parti-

cles fails if the created particles have energies com-
parable to co. The treatment of these particles,
called fragments, belongs to the bound-state problem
and is beyond the scope of this paper.

The picture described above defines the simplifi-
cation as well as the limitation of the high-energy
approximation. To obtain the high-energy elastic
scattering amplitude, we have to obtain the vacuum
to vacuum amplitude for a system of coupled har-
manic oscillators in an external field. In the latter
problem, we can no longer use approximations valid
for short-time collisions. This is because we must
take care of the behavior of the pairs throughout the
time span of their existence. Therefore, we are fac-
ing a fully quantum-mechanical problem. The large
parameter m still remains, but its only role is re-
stricting the size of the relevant phase space. As the
energy increases, more and more harmonic oscilla-
tors enter into the picture. The asymptotic behavior
of the high-energy amplitude is, therefore, related to
the ultraviolet divergence for the system of harmon-
ic oscillators coupled to the external field V„as the
cutoff goes to infinity. This appears to be a formid-
able problem. Since the Fourier component of V& is
approximately independent of k, for

~
k,

~
&&co, the

scattering amplitude is approximately independent
of k, for

~
k,

~
&&co. In other words, two points in

the restricted phase space with the same transverse
momenta are completely equivalent. We shall call
this the equiualence of the phase space.

We give two examples of the consequences of this
equivalence.

(i) Consider the creation of a photon of momen-
tum k. The scattering amplitude is ind~eendent of
k„ thus, the differential cross section o(k) times the
kinematic factor E is independent of k, :

Eo(k)=f(ki) .

Thus, we have

d k
cr(k)d k =f(ki) (3 2)

IV. FIXED-ANGLE SCATTERING

In this section, we study the two-body elastic
scattering amplitude in the limit co—+Oo with the
scattering angle fixed, i.e., s and t both large, with
the ratio s/t fixed. We begin with (1.4) and (1.6),
which are exact. Now hq(x', x) can be expressed by
the path integral

The factor d k/E is the relativistically invariant
phase space, and we may write

=dad'ki, (3.3)
E

where ~= —, ln(k+/k ) is the rapidity. This shows

that the statement of equivalence is more appropri-
ately applied in the rapidity space.

Equations similar to (3.2) hold for processes in
which more than one particle are created as well as
for inclusive processes.

(ii) We have made the approximation of cutting
off the phase space at

~

k,
~

& co. One may estimate
the error involved with such a cutoff. The rapidity
space is of width into. The phase space from k, =co
to k, =co/e, say, is of width unity in the rapidity
space. In other words, the width of the region
where our approximation fails is of the order of
(in') ' smaller than the width of the region where
our approximation holds. Since all points in the
phase space contribute equally, we believe that our
approximation is a good one. Furthermore, since
the dynamics is generated by an effective Lagrang-
ian which is Hermitian, the asymptotic amplitudes
satisfy unitarity —a difficult condition to observe for
high-energy approximations.

In summary, we have made use of the short-time
nature of the collision to make classical approxima-
tions for the external particle. The vacuum to vacu-
um amplitude in the presence of external fields cor-
responds to the elastic scattering amplitude in the
original system, while the vacuum to n-pair ampli-
tude in the presence of external fields corresponds to
the amplitude for n-pair creation in the original sys-
tern. We believe that additional approximations
made in the literature, such as summing leading
terms or utilizing eikonal forms or Regge behaviors,
are models, but not field theory.

b~(x', x)= ——f d~ f, ,
S'xi'exp f du [x +m +2ex A( )x] (4.1)
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In (4.1) x is a shorthand notation for x (u), the path of the boson as a function of u and x—:dx/du. Then, (1.6)
can be written as

~V j ~72 ill ~i 2) h™ (E1E2E1 2)
f),f2~ —ao

I If ),f2 ~oo

I Ix i Ix2
~ 3 ~ 3 ~

—iP„x„+iP„x

n=1

x„(~ )—x

y &A"det( D„'D—" m2+—i « )

&&exp —f [i' —(B&A„)(B"A")—2A (J~+J2)]d"x

+preceding term with p1~p2 . (4.2)

&( f di„ f, ,
&x„"exp ——f du (x„'+m')

J~(x)=q f du 5'"'(x —x„(u))x„", n =1,2 (4.3)

js the cnrrent generated by a particle traversing the path x„(u). Similar to (2.6), we make the change of vari-
ables

(4 4)

W"=(Clyde, ) 'J"

with

JIJ JP +JP ~

then (4.2) becomes

(4.5)

g(p),p2,'p),p2)= hm (E1E2E'1E2)
f),f2~ —oo

1 If ),f2 —+oo

n ~~ n

~ II Ix i~ Ix2 ~ ~ I I
~ 3 ~ 3 ~

—tP„.x„+iP„x

n=1

co

X ff f dr„ f, ,
&x„"exp ——' f du(x„'+m')

n=1
x~{7~) =x~

yexp —— d x J"—-- ~ So
E 4 II

2

+preceding term with p1+-+p2, (4.6)

(4.7)

with
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In (4.7}, we have recovered the functional integra-
tions over P and P ~.

Equation (4.6) is still exact. We shall now make
high-energy approximations. Since the collision
lasts a very short period in the time scale of the two
external particles, we shall treat these particles semi-
classically. Therefore, we shall make stationary
phase expansions around the classical paths of the
two external particles.

The classical path for high-energy fixed-angle
scattering is very different from that for high-energy
small-angle scattering. In classical mechanics, the
path of a high-energy particle with a given impact
distance b&0 is essentially a straight line. This is
because if the particle is of very high kinetic energy,
the direction of its momentum is not altered appre-
ciably by its interaction with the other particle.
Such a straight path of b+0 has a very small
scattering angle. On the other hand, if the impact
distance b=0, the interaction during the close en-
counter may alter the direction of the momentum by
a fixed angle. More specifically, for a particle in a
Coulomb potential, the impact distance of the classi-
cal path of fixed-angle scattering is of the order of

'. For each scattering angle 8, there corresponds
but one classical path associated with this small
value of b. Roughly, this path resembles two
straight lines joined at the origin at an angle 8. The
high-energy fixed-angle scattering amplitude is
given by the WKB expansion around this path.

In a stationary-phase calculation, factors of the
integrand not sensitive to the variation of the path
can be taken out of the integral. For example, in the
limit 5~0,

f exp[if (x)/5]g(x)dx -=g(xp) f exp[if (x)/5]dx,

with

n =cos8e3+sin8e &

for the first external particle and

x2= —xi (4.10)

for the second external particle.
The electromagnetic potential generated by the

path (4.9) is determined to be

and

Vo=U+ W,

V=Ue, +Wn,

(4.11)

(4.12)

where

d 4k —ik.x
U(x)=ie f (2n. ) (k A+i—e)(,kp kz ——ie)

(4.13)

and

Similarly, the classical electromagnetic potential
generated by the classical particle which traverses
the path x2 is

Vo ——U'+ 8", (4.15)

d4k —ik x
W(x) =ie f (2ir) (k A,'+ie)(——kp+ n k —ie)

(4.14)

where xp is the stationary point defined by

f'(xp}=0 .

V'= —U'e, —8"n ',
where

(4.16)

x& ——te3, t g0,
=tn, t &0, (4.9)

The quantity Sp in (4.7), describing the interaction
of the fields with the potential M&, is such a factor.
This is because a small variation of the path only
leads to a small variation of M" and hence of Sp.
Therefore, we may, in the evaluation of Sp, replace
x„by the classical potential generated by the paths

U'(x, t) = U( x,t), —

W'(x, t)= W( —x, t) .

We mention that V& and V& are complex.
As we have discussed, we may replace M„by

V&+ V& in (4.7). Then, Sp becomes independent of
the variables x, (u) and r„, and (4.6) is simplified
into

S(p &,pz,p&,p2)=S(p'i, p2',pi,pz)Sp+preceding term with pi~p2, (4.18)
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2

S(pi,p2,'pi, p2)= g hm (E„E„')' ' f d'x„d'x„'e
n=1 n

f~ ~ooI

T

&& f d~„ f, ,
Nx„"exp ——' f 'du(x„+m )

&&exp ——f d x(Ji+J2}1'W„ (4.19)

and

So——f O'A"&/&/~exp i f W'd x (4.20)

with

W'= ——,
'
(a„A„)(a~A")+—,

' X2A2

+ [B„P* ie (A +—V+ V')„P~][dl'P+ie (A + V+ V'PP] m—P~P . (4.21)

(4.22)

where

Xi=———, f d x J~i(2+A, ) 'Ji„, (4.23)

We note from (4.19) that S(p i,p2,p, ,p2) is the elas-
tic scattering amplitude without charged-particle
loops. The contributions of the charged loops are
contained in So, the vacuum to vacuum amplitude
in the presence of the external fields V„and V„'. We
also note that just as in the case of small-angle
scattering, the fixed-angle scattering amplitude is
factorized into a product of those two amplitudes.

To calculate S(pi,p2,pi,p2), let us call

X—:——, f d x{Ji+J2)„W"
—X$ +X2+X3

and

X2= —
2 f d x J2(I-I+A, } J2~,

pi= —f d x J~i(CI+A, ) 'J2q .

(4.24)

{4.25)

The quantity X, (X2) describes the effects of the
emission of photons for t &0 and the reabsorption
of these photons for t &0 by the first (second) elec-
tron, while Xi describes the exchange of photons be-
tween the two external electrons.

We shall make the approximation of replacing Ji
and J2 in (4.23)—(4.25) by their classical currents.
Such an approximation for S is not entirely justified,
and we shall discuss afterwards the corrections for
the approximation. We get

d k pi'pi
(2ir) (k A+ie)(p—i .k ie)(pi k—ie)— (4.26)

The integral in (4.26) is divergent at infinity. However, since the energy of the incident particle is ei, which is
large but not infinite, we may introduce an ultraviolet cutoff

~
k

~
& co in (4.26). Alternatively, we may modify

(4.26} into

d4k 4pi'p}

(2m) (k —A, +ie)(2pi k k ie)(2p'i —k k— ie)— —
which is a convergent integral. Similarly,

d k p2'p2

(2n. ) (k A, +ie)(2p2 k —k ie)(2p2 —k k— ie)——

(4.27)

(4.28)

i(X)+X2) .Since U and 8'are complex, it is found that X~ and X2 are dominantly imaginary. Thus, e is small in
magnitude.

Similarly, substituting (4.11},(4.12), (4.15), and (4.16) into (4.25), we get, after some algebra,
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d k pi pI3=
(2sr) 2p, k+k'+ie 2pi k —k' i—e

p2 p2

2p2 k —k —ie 2p2 k+k +is
(4.29)

where, as before, we have modified each of the denominator factors by adding k to ie.
How good is the semiclassical approximation we have made? Basically, there are, for e esc-attering at high

energy and fixed angle, three, not two, time scales: co, l(, ', and co '. The scale co is the I.orentz dilated time
scale for a particle of energy co. The formation of the wave functions of the external particles is of this time
scale. The dynamics involved is essentially quantum mechanical, and we have not taken care of it in the
present approach. The scale co is the time scale for hard scattering —scattering which leads to momentum
transfer of the order of co. The semiclassical method also fails during this time period, although the scale is ex-
tremely short. This is because the hard scattering always occurs near the turning points, where the WKB
method breaks down. (For an example, see the treatment of potential scattering in Ref. 2.} Relatively un-
known is the scale I, , which is the range of interaction between the two external particles. During the time
co

' « t «A, ', the interaction between two charged particles gives the scattering amplitude a factor strongly
dependent on co/A, . A familiar example of this is Coulomb scattering (for which A, =O), where there is an infin-
ite phase shift. Another familiar example is the Sudakov form factor, which is contributed by the interaction
within this time scale. This time scale, although long compared to that of hard scattering, is short compared
to that of the external particles. Thus, its effect can be calculated by the semiclassical approach.

The high-energy and fixed-angle electron-electron scattering amplitude has been calculated by a diagram-
inatic approach. A comparison of the results shows that exp(iXs} gives precisely the energy dependence of the
rnultiphoton exchange amplitude, while exp[i (Xi+Xz)] gives the product of the Sudakov form factors

2

exp(iXi) =exp(iX2}—=exp — ln s
8~

Indeed, the expression exp[i(X&+X2+X&}] contains all of the exactly calculable factors of these amplitudes.
[To take care of charge renormalization, we need to replace e by the running coupling constant e (k ).] The
other factors obtained in the diagrammatic approach are (i) the wave-function renormalization constants, (ii) a
function of 8 and the running coupling constant. The first factor represents the contribution of fragments not
taken into account in the present treatment. The latter function is equal to So defined in (4.20) and the rest of
the factors of the path integral (4.19) not included in the semiclassical approximation, representing the ampli-
tude of hard scattering. Thus function cannot be calculated in closed form. Fortunately, quite unlike the case
of small-angle scattering, So (as well as the hard scattering amplitude} does not have infinities as the length of
the rapidity space goes to infinity, since the equivalence of the phase space no longer holds. Thus, it is a func-
tion of 8 and the running coupling constant but not of co. The strong energy dependence of the scattering am-
plitude is therefore given by exp[i (X,+Xz+X&)] and the wave functions.
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