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We consider the effective potential in models in which supersymmetry breaks at a scale p
but the Goldstone fermion couples only to fields of mass M pgp. We show that all large

perturbative logarithms are removed by taking the renormalization point to be 0(M). This
makes it possible to calculate the effective potential at large X in those inverted-hierarchy

models where the Goldstone fermion couples only to superheavy fields. A general formula

for the one-loop logarithm in these models is given. We illustrate the results with an SU(n)

example in which the direction as well as the magnitude of the gauge symmetry breaking is

undetermined at the tree level. For this example a large perturbative hierarchy does not
form and the unbroken subgroup is always SU(n —1)&(U(1). In an appendix we show that
O'Raifeartaigh models with just one undetermined scalar field always have a decoupled

Goldstone fermion when the undetermined field is large, but that this need not be true in

more general inverted-hierarchy models.

I. INTRODUCTION

Several authors' have recently considered
models in which supersymmetry is broken at a scale

p midway between the superheavy scale I and the
weak scale -Jls /M. In these models the Goldstone
fermion may couple directly only to superheavy
fields, so that supersymmetry breaking in the low-

energy theory is suppressed by powers of I/M. In
Ref. 6, Susskind and the author have analyzed the
low-energy physics of these models by integrating
out the superheavy fields to obtain effective super-
symmetric interactions involving the Goldstone fer-
mion and the other light fields. The three-scale
structure is found to be stable in most cases.

The method used in Ref. 6 can be applied to the
calculation of the vacuum energy in these models.
Models with broken supersymmetry (SS) typically
have many degenerate vacuums at the tree level.
Perturbative corrections to the energy determine
which is the true vacuum of the theory. In a model
with multiple scales, perturbation theory can lead to
large logarithms of the ratios of scales. In Sec. II,
we will show that the special structure of the
theories considered here leads to a simple result:
There are no large logarithms in the order-p piece
of the effective potential when all fields and cou-
plings are renormalized at the scale M.

The original motivation for this work was to con-
trol the large logarithms in the effective potential
for inverted-hierarchy models. These models are
studied in Sec. III. For those inverted-hierarchy
models in which the Goldstone fermion couples only
to heavy fields, the result of Sec. II makes it possible

to obtain the effective potential at large X by using
the renormalization group. The X dependence of
the vacuum energy is governed by the P and y func-
tions of the theory above the scale X. From this a
general formula for the coefficient of the one-loop
logarithm in the effective potential can be derived.
Our general formalism is illustrated with an SU(n)
model in which the direction of the symmetry
breaking as well as the magnitude is undetermined
at the tree level. It is found that this particular
model does not develop a large perturbative hierar-
chy for reasonable couplings, and that the one-loop
effective potential determines the unbroken symme-
try to be SU(n —1)XU(1).

Section IV briefly discusses supergravity, which
can make a significant contribution to the effective
potential, some recent papers ' " on the effec-
tive potential in inverted-hierarchy models, and the
extension of the results to hierarchy models in
which the Goldstone fermion does not decouple. An
appendix derives some general results about the sca-
lar potential in O'Raifeartaigh models. ' We show
for simple O'Raifeartaigh models (those with only
one undetermined scalar field) that when the scalar
field is large the Goldstone fermion couples at tree
level only to superheavy fields. In more general
inverted-hierarchy models (those with multiple un-
determined fields or D-term SS breaking) this need
not be true.

II. THE EFFECTIVE POTENTIAL

Start with a general supersymmetric theory, with
chiral superfields A; having components (A;,g;,I't)
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and gauge superfields V, with components
(V,",A,,Q, ). The Lagrangian is'3

+ g —,[D,(A,A')]', (2.2)

(2.3)

One is interested in the radiative corrections to
U(A) at values A; of the scalar fields such that the
tree-level potential (2.2) is minimized. ' For con-
venience we restrict our attention to the case that '

D, (A,A ')=0. (2.4)

The Lagrangian may be expanded in terms of the
shifted superfields,

(2.5)

The Goldstone fermion superfield is identified as

X= gF; A,'/f, (2.6)

where

—,(W W~)p+(A e~A)D+ I[W(A)]p+H. c. j

+g, ( V, )D, (2. 1)

where W(A ) is the superpotential, and g„ the coef-
ficient of the Fayet-11iopoulos term, may be nonzero
only for U(1) components of the gauge group. The
tree-level scalar potential is

U' '(A)= y(W;(A))'W;(A)

X=8 E~,

L„=e'I'I, (2.8)

The effective action then consists in the usual
fashion of superspace integrals of products of super-
fields. ' For example, the tree-level SS effective po-
tential is

U ( A,X,L(, Vl ) = —(X X)g)
—( L(~L; )D

&gg Ag——,(WL WL~)p

+[(X)F+(X )p~]f

(2.9)

respect to the heavy fields takes the place of explicit-
ly minimizing the effective potential for these fields.
Extremizing U(A, F„,FI,DI') with respect to the
auxiliary fields then leads to the scalar potential
U(A ). This gives the same result as would have
been found by working with the dynamical com-
ponent fields from the start. In the latter case one
does not extremize the potential with respect to the
auxiliary fields, but the set of 1PI diagrams is corre-
spondingly largeI', since a graph which can only be
divided by cutting an auxiliary field propagator is
1PI when written in terms of the dynamical fields.

Supergraphs can be used to best advantage by
writing U(A, F„;Fr., DI'. ) as U(A, X L;, VI'. ),
where

F; =—[W;(A )]*,
F,'

(2.7a)

(2.7b)

where the ellipsis represents terms such as [L;Lf]~
which vanish for the values (2.8). The form of the
linear term in (2.9) follows from (2.6) and (2.7).
From (2.9),

It is shown in the Appendix that X is massless at the
tree level. For the models to be considered here the
V' and the remaining linear combinations of the A,'
divide into heavy gauge and matter superfields VH

and H;, and light gauge and matter superfields VI
and L;. From (2.4) and (2.6), the only nonvanishing
auxiliary field at the tree level is F„=f. Fields of
mass 0 (p), 0 (p /M), and zero have been grouped
together as "light". The models considered here and
in Ref. 6 are required to have the property that at
the tree level X couples only to the heavy fields.

To find the scalar potential, first obtain the full
effective potential U( A, F„,FI,DI') for all the light
scalar fields, dynamical and auxiliary. This is de-
fined by summing all graphs with external F„, FL, ,
and Dl' fields [recall that A has already been shift-
ed away in (2.5)] and which are one-particle irredu-
cible (1PI) with respect to X, VL, and L;. Including
graphs which are one-particle reducible (1PR) with

U( A', F„,F,',Dg ) = F'„*F„F,'*F,'— —

, Dl'DJ'+ (F„+F—„'}f,
(2.10)

which extremizes to

U(A )=f (2.1 1)

reproducing (2.2}. It will be shown below that the
only significant radiative contribution is to the coef-
ficient of F„*F„ in (2.10) (except when X can mix
with other light fields). This would follow immedi-

ately, by dimensional analysis, if we had only graphs
with internal heavy lines, but it is necessary to give
some attention to graphs with internal light lines.

Radiative corrections to the effective potential are
restricted by the Grisaru-Rocek-Siegel (GRS)
theorem' to be D terms (the result of Ref. 16 was
for 1PI graphs, but it can be readily extended to any
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M
(XLL )D, (2.12)

plus operators of higher dimension suppressed by
further powers of 1/M. %ith this effective vertex
the contribution of the graph to I t is of the form

FIG. 1. One-loop contribution to I 1 d4q
(2.13)

graph that contains a loop). This means that any
correction to (2.9) must be at least quadratic in F or
linear in D. For gauge symmetries which remain
unbroken below p, the linear D term cannot be in-
duced. ' ' lt may be induced at O(p) for gauge
symmetries broken at that scale, but it can always be
removed by a small [O(p)] shift in the scalar fields,
leaving the vacuum energy unchanged. ' Thus, ra-
diative corrections to Eq. (2.10) are at least quadrat-
ic in the auxiliary fields.

Let us first consider radiative corrections involv-

ing only external X fields. Figure 1 shows a one-

loop correction to the coefficient of (X X)D, I t, in

the supersymmetric effective potential. This graph
gives rise to ln(A /m ), where A is the renormaliza-
tion point and m is the mass of the field circulating
in the loop. Since X couples only to superheavy
fields, there will be no large logarithm when A-M.
It is clear that if X coupled to lighter fields as well,
no single choice of A would remove all large loga-
rithms.

Higher-order contributions to I g will not con-

tain large logarithms as long as all internal lines are
superheavy and A-M. The potentially dangerous
graphs are those such as Fig. 2 with internal light
lines. Since all external momenta vanish, this graph
could have a singular dependence on the light inter-
nal masses from the region where the internal
momentum q, is much less than M. In fact, this
does not happen. In the small-q region the heavy
blobs can be replaced with

FIG. 2. Typical contribution to I"
y with light internal

fields. The blobs are general superheavy subgraphs.

for q «M. This is quadratically convergent in the
infrared and gives an O(1) contribution only for
q-M. [Recall that we are studying O(p") in the ef-
fective potential, so we need keep only O(1) in
I t .] This is true as well as for all other I
graphs with internal light lines. Absorbing all heavy
lines into effective vertices, there will be at least two
dimension-5 vertices or one dimension-6 vertex cou-
pling the external X to the light internal lines. This
makes the infrared behavior of the graph under uni-
form scaling of the light line momenta at least two
powers better than the canonical logarithmic diver-
gence for I t, as seen in Eq. (2.13) for the example

of Fig. 2. Thus, the dominant contribution comes
when the light line momenta are scaled up until at
least one is O(M); the line may then be absorbed
into a hard vertex and the argument repeated until
all light line momenta are O(M). The conclusion is
that in graphs contributing to I y, all lines are ei-

ther heavy or at large momentum. Other regions are
suppressed by powers of q/M. From this it follows
that

(a) there can be no large logarithm in the O(1)
part of I t, when all fields and couplings are re-

normalized at A-M,
(b) the dependence of I' t on the O(p) dimen-

sional couplings must bring in a power of p/M.
I'

g may be evaluated with these couplings set to
zero. These properties will be referred to as (a) and
(b) throughout the paper.

The next correction to the effective potential is
(X XD X)D-F„*F„. This is of dimension 6 and
any graph with all internal lines superheavy must
give a coefficient -1/M . The whole term is then
of order p /M and can be neglected. Analysis
parallel to that used for I t shows that this contin-

ues to hold true when there are internal light lines.
All higher terms with only X fields externally are

suppressed by powers of M as well. There are some
infrared divergences, but they do not affect this
conclusion. For example, Fig. 3 generates
(X XD X D X)ii-(F„F„) with a coefficient of
1/M times a large logarithm. The whole term is
then of order
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U(A, F„F',D')= —I' t (Ao)F„'F„

+(F +F )f (2.16)

so that

U(A')=f2/r t (A') (2.17)

Li& N(L

= SF

(IG. 3. Infrared-divergent contribution to
(x xa'x'D x),.

8

ln(M /lM ),M4
(2.14)

which is negligible. Other terms have greater in-
frared divergences, but these are spurious, resulting
from multiple insertions of operators such as

AAf A
~

(XL L)D into a light line. Summing these insertions
into the propagator just gives a field-dependent loga-
rithm, ln (M /F„'F„), in (2.14) and leaves the second
derivative of the effective potential, I t, essentially

unchanged [by the same logic as (b)]. To summarize
the only significant radiative correction found thus
far is to the coefficient of F„'F„ in (2.10), and this
correction satisfies (a) and (b).

Consider now terms in the supersymmetric effec-
tive potential with external light fields but no ex-
ternal X. One knows that (a) and (b) need not hold
for these terms. However, since they must be qua-
dratic in the light auxiliary fields, they can never
drive the extremum away from its tree-level value

Fg ——DL ——0 . (2.15)

Thus, by themselves they do not contribute to the ef-
fective scalar potential.

Finally, consider terms involving both X and the
other external light fields. Contributing graphs
must involve at least one effective hard vertex cou-
pling X to the other fields. Suppose first that there
is no light field which is allowed, by the symmetries
unbroken at 3;, to mix with X. Then the effective
vertex of lowest dimension is (XL L)i2, of dimen-
sion 5: this has coefficient 1/M. All terms involv-

ing X plus other light fields are thus suppressed by a
power of 1/M and do not contribute at order p .
Then (2.15) holds to order lit and the relevant part
of the SS effective potential is just

and the absence of large logarithms in the scalar po-
tential follows from (a).

If X can mix with a light field, say Y, the term

(X Y)D F„Fy—— (2.18)

appears in the effective potential unsuppressed by M
and drives a nonzero value for F~. (There is no
dimension-4 gauge-invariant SS operator which con-
tains F„DI' and so can mix X with a light gauge
field. ) If it happens that Y is also decoupled from
the other light fields, the argument applied before
can be extended. For example, Eq. (2.18) becomes

U(A )=f'(I' '(A )),t, , (2.19)

as I is now a matrix. This often happens in
inverted-hierarchy models, as will be seen iri the next
section. If Y couples to light fields, the effective po-
tential will contain large logarithms at some order
(though not before three loops). ' These logarithms
do not make perturbation theory invalid, but one
must work harder. The heavy fields are integrated
out with A-M, and then the effective couplings are
run down to the appropriate scale to evaluate other
terms in the SS effective potential. Incidentally,
such Goldstone-fermion mixing was also the one
case found in Ref. 6 for which radiative corrections
could induce large SS breaking for the light fields.

III. INVERTED-HIERARCHY MODELS

In Witten's inverted-hierarchy models, SS breaks
at the tree level and a scalar field X (or perhaps
several scalar fields) is undetermined. The one-loop
correction to the effective potential

Pone looP(X) g rrt (X)41n[rtt (X)2/A2]
64~

breaks the tree-level vacuum degeneracy. For some
values of the parameters, the one-loop effective po-
tential decreases as X grows, so the stable minimum,
if it exists, lies at X»p, p being the typical scale in
the Lagrangian. Thus, one would like to determine
the behavior of the effective potential at large X.
Factors of ln(X /A ) make simple perturbation
theory invalid in this region. On the other hand, if
one knew that factors such as ln(I2, /A ) did not ap-
pear in the effective potential, choosing A -X
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would make perturbation theory valid as long as
couplings were small.

Banks "observed that in simple examples of the
inverted hierarchy the Goldstone fermion coupled
only to heavy fields. In the Appendix, this is shown
to be true in all O'Raifeartaigh models with a single
undetermined scalar field. For models in which the
Goldstone fermion decouples from light fields, the
analysis of the preceding section makes it possible to
apply the renormalization group to the effective po-
tential. Take first the standard renormalization-
group equation

8—Yg(X)yg~ U(X;,A,g) =0, (3.2)'aX,

where g includes both dimensionless and dimen-
sional couplings. Here U(X~, A,g) is a "reduced" ef-
fective potential —a function only of X;, which are
the undetermined scalar fields and those superlight
(mass -p /M) fields with which they can mix. The
effective potential has already been minimized with
respect to the heavy fields and those mass -p fields
which can mix with the X; (see Ref. 21). These
(dependent) fields have been designated YI,(X). The
Yl, are all 0(p) or less, while the 8/BXJ each bring
in a factor of 1/M (by reasoning parallel to Sec. II),
so the term proportional to Yl, (X) in (3.2) can be
neglected. When the conditions of Sec. II are met,
Eqs. (2.17) and (2.19) show that U(X;,A, g) depends
on f, which is a function of the couplings but not of
X; or A, and on I, which by (b) is a function of X;
and A but not of the dimensional couplings. Thus,

U(X;,A,g) = U(X;/A, X~/Xj, g)+0(p5/M) .

(3.3}

Combined with the standard equation (3.2), this
gives to order p

=ming
~

Wl, (A,g)
~

A
(3.5)

To this same order, we may use the one-loop P func-
tion and neglect the y,j in (3.4). This does not
change the qualitative behavior of the effective po-
tential or the 0 (1/g ) part of ln (X;„/p) if there is
a minimum; to get the 0(1) part of ln (X;„/p)
would require going to higher order. The solution
to (3.4) is now

U(X;,A,g)=e' ' g —, 1n+X; /A (3.6)

(3.4), is given simply by running the couplings. For
inverted-hierarchy models without a decoupled
Goldstone fermion this is not the case. For these
models the potential depends on ratios of the dimen-
sional couplings with XI or A, and Eq. (3.3}does not
hold.

The P functions which appear in (3.2) are always
those for the unbroken theory above X, not those
which apply between X and p. This would seem to
conflict with the idea that p is the "fundamental"
scale of the theory, but it must be so. One way to
see this is to note that g (X) would be obtained from
g (A0), with A0 »X, by using the P functions of the
unbroken theory. As X varies, g(AQ) is essentially
constant. (It is defined, for example, in terms of a
Green's function at Euclidean momenta -Ae, and
depends on an external field X only as powers of
X/A0). Thus, the change in g(X) is given entirely
by the P function. On the other hand, g(X} would
be obtained from g(p) with the low-energy P func-
tion, but as X varies so does the initial value g(p).
The point is that p is not really the "fundamental"
scale, as we continue to apply local field theory
down to much shorter distances.

The initial value of U(X;/AQ;/Xjg) may safely
be calculated for A =+X;, by (a). Again, this
would not be true if the Goldstone fermion coupled
to light fields. To leading order it is just the tree-
level energy

e' '(g)=min U' '(A, g)

X;(5;J+y;~) U(X;,A, g)' ()X,

= g I3 U(X~, A, g} . (3.4)
a

a

Thus, the variation of U along certain curves in con-
figuration space, defined by the left-hand side of

I

where

—g (t)=p (g(&)) .d
dt

There is a general one-loop formula for the right-
hand side of (3.4). We have

g~ min

g p~ ~
&' '(g)= g p~ +p~ g O'I, (A,g)

a ~a a Sa Sa ~i g mlI1(g)

(3.7)

where A '"(g) is the point where (3.5) is minimized. The relation between coupling-constant and wave-
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function renormalization' ' implies

g P~ W( A,g) =Agyj W( A,g)
a = a (3.8)

or

y p~ W /, (A,g) =A/yfj W k(A, g)+ykj W j(A,g) .
8 8

(3 9)

Combining (3.7) with (3.9) and using the fact that A;„ is an extremum,

g P~ e'"(g) =Fk(y,'k+ Ykj }Fj
a ~ga

With the cubic term in the superpotential normalized to be 3 g JkA AJAk,

1
Ykj [gklmgjlm e (C2)kj]

8~

Thus,
r

X
U(X;,A, g) =FI Fj~ 5jk+ [gki g&l

—e (C2)kj]ln

(3.10)

(3.11)

(3.12)

This reproduces the one-loop results found in Refs. 9 and 26 from Eq. (3.1).
We now consider an SU(n) example with adjoint fields A and Y, singlet Z, and superpotential

W(Z, Y,A)=A,Z —gZtr(A )+m tr(AY) (3.13)

with phases chosen to make all couplings real. For SU(2), this example was considered in Refs. 6 and 26; for
SU(5) it was considered in Ref. 17. The tree-level scalar potential is

U' '(Z, YA)=m tr(A~A)+tr(m Y—2gAZ)(m Y~ —2gA~Z~)+
~

A, —g tr(A )
~

e+—tr([A, A*]+[Y, Y'])' . (3.14)

For all values of the couplings the minimum satis-
fies

[Y,Y*]=0,
A =m Y/2gZ,

(3.15a)

(3.15b)

t(Y')= g —2 Z'
m

(3.17a}

(3.17b)

In this case, up to an SU(n) rotation, Y is an arbi-
trary real traceless diagonal matrix, with magnitude
given by (3.17b). There are many possible unbroken
subgroups. The vacuum energy is

and Z is arbitrary (it can be made real by an R rota-
tion). For m & 2gA, , there is the further condition

(3.16)

which fixes the minimum except for the arbitrary
value of Z. For m & 2g ji,, the condition is

m )2gjjt

e' '(A, ,m, g}= m2)(, m~
z (3.18)

Pl (2gA, .
g 4g2

The potential in directions which violate (3.15) by
significant amounts is large [O(Z ) or O(Z p )],
while that in directions which violate (3.16) or (3.17)
is small [O(p )]. In fact, radiative corrections
make the effective values of the couplings in (3.17b)
a function of Z, so the trough in the potential,
straight at the tree level, actually bends in the F-Z
plane due to radiative corrections. It can even
change from the form (3.16) to (3.17) as
m (Z) —2g(Z)A(Z) changes sign. We should there-
fore verify decoupling for all configurations which
satisfy (3.15). Then Z is real and arbitrary, Y is
an arbitrary complex traceless diagonal matrix, and
A is fixed by (3.15b); Z and Y are taken to be
»p. The shifted superpotential is
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(3.19)

W(Z ', Y',A ') = —gZ tr(A ') +m tr(A 'Y')

+mZ 'tr(A 'w )+gZ tr(A ')

+Z'[A, —(m /2g) tr(w ) ]
—(m /Zg)tr(Y'w ),

where m = Y /Z . The Goldstone-fermion super-
field X is identified as that linear combination of Z '

and Y' which appears linearly in (3.19). It has cubic
interactions and small [O(p )] mixing with the
heavy A field, consistent with decoupling. It also
has interactions with gauge fields from the Y kinetic
term. X is neutral under the gauge symmetries un-
broken by Y, so the argument of (A24) shows that
the gauge couplings of X all involve heavy gauge
fields. X can mix with the neutral components of Y,
which also decouple by (A24). The conditions of
Sec. II are thus met and Eqs. (3.3) and (3.4) apply.

The renormalization-group improved one-loop en-

ergy is

Xc

(c)

Xc

FIG. 4. (a) U(X) in the asymptotically free case; (b)
U(X) with g(X) diverging at X,; (c) U(X) when the
minimum is perturbative.

6"'(X)=E'o'(A(X), m, (X),g(X)) .

The P functions are

X de e

16m

X dg g'
(D~+»— e

g dX 8 4~'

Xdm g e

m dX 8~2 4 2

XdA, g D

(3.20)

(3.218)

(3.21b)

(3.21c)

(3.21d)

second derivative at an extremum is

2 (&) 4

X
2

=
& &(gD~ —4ega~c~2d6 m 4 9

dX,„„32~g

—e C„). (3.23)

g2 3'
e 2' +4 (3.24)

Equations (3.21) and (3.22) are readily integrated.
We shall give the qualitative results. There are two
general behaviors for the dimensionless couplings e
and g. If initially

where Dq and Cz are the dimension and Casimir in-
variant of the adjoint representation. The ratio
m (X)/2g(X)A, (X) decreases monotonically, so that
(3.16) holds at sufficiently small X and (3.17) at suf-
ficiently large X. The energy satisfies

de'" g'~'D~
X = for m (X) &2g(X)A(X)

dX

m'Xe' m'e' m4
Cg+ 2 2 Cg+ 2'4~g 8m g 16m

for m (X) &2g(X)A(X) . (3.22)

The energy and its first derivative, as well as the
scalar vacuum expectation values (VEV's) are con-
tinuous at m (X)=2g(X))t,(X). By (3.22), an ex-
tremum can only occur for m (X) & 2g(X)A, (X). The

then g /e decreases monotonically and both cou-
plings are asympotically free. If the inequality
(3.22) is reversed, g /e grows monotonically and at
some scale the positive term in (3.21b) dominates
and g diverges. For the asympotically free case, the
energy always has the behavior shown in Fig. 4, ris-
ing to a maximum and then falling asymptotically.
One may check that for (3.24), the second derivative
at the extremum, Eq. (3.23), is always negative. Ac-
tually, Fig. 4 applies only for Z &&p. The scale p,
may lie anywhere along the curve of Fig. 4(a), de-
pending on the initial values of the couplings. Only
the part of Fig. 4(a) to the right of p then applies.
Our analysis does not apply to X(p; e(X) should be
approximately constant in this region,

For the nonasymptotically free case, the potential
resembles Fig. 4(a) until g(X) begins to grow, then
turns up as shown in Fig. 4(b). This may occur any-
where along the curve, depending on the parameters.
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When it occurs to the right of the maximum, a
minimum forms, but in most cases this occurs when

g(X) is large and perturbation theory is not valid.
The only time the minimum is perturbative is when
it is quite close to the maximum, as in Fig. 4(c), and
then one sees that for a large hierarchy the
minimum will not be absolute. [Only for a, quite
small, 0(10 ), do the couplings run sufficiently
slowly to put many decades between the maximum
and minimum in Fig. 4(c}.] The superpotential
(3.13) does not, then, lead to large fixed perturbative
hierarchies. Rather, depending on the parameters,
the large-X potential has one of three general
behaviors:

(a) it falls indefinitely, with both couplings
asymptotically free, leading to a time-dependent
hierarchy;

(b) it rises until g(X) diverges, so the minimum
must lie at X-p, [this is when g(X) diverges to the
left of the minimum in Fig. 4]; or

(c) it falls until g(X) diverges [as in Fig. 4(b)], so a
large hierarchy may form but only at a scale where
the theory is strongly coupled.

As a final exercise with this model we may deter-

A
heovy

Z Y

~r

Y Y

(o) (b)
FIG. 5. (a) Radiative ~rrection to (Z Z')&, (b) Radi-

)ative correction to ( Y~

mine which subgroup is unbroken when the
minimum is perturbative, ignoring the fact that it is
only a local minimum. Equation (3.1) may be used

directly, but we will do it in a way which illustrates
the formalism of Sec. II. We have
Y' =diag( Yi, . . ., Y„) with Y; complex and

g Y; =0. We shall start by assuming the Y; are all

different, so that the unbroken subgroup is
[U(l)]„ i. This is the most general case, as the
maximum number of fields (Z' and all diagonal
components, Y/, of Y') can mix. After the one-loop
corrections of Fig. 5, the SS effective potential for
these fields is

U(Z ', Y )=(Z Z )D 1 — ln8'' A'

2

+ $[(Y —Y' )(Y —Y')]D 1+ lnJ & J 16 2
f,J

(

YO Yo(2

A

+(Z')p A, — ltd foal

0, g(Y, )' —
0 g(Y,"

)p Y;, (3.25)

which is accurate as long as A-Z —Y; Extremiz. ing (3.25) with respect to F, and F~,

U(Z, Yi )= A, —
r

m +(Yo)z 1
g &a

1
2g(Z )

2g(Z ) 81T' A'

m4e' I yo yoI2
&~Y~( —Y

~

ln
64m. g (Z ) . A

E,J
(3.26)

One can now see that as two or more Y; become
equal, although some terms in the SS effective po-
tential (3.25) diverge, the scalar potential (3.26} is
well behaved. This is an illustration of decoupling
at the one-loop level. The same holds in the limit
that all F; vanish.

The perturbative corrections to (3.26) are even in
Im(Y; ), so the tree-level result, Im(Y; )=0, remains
true at the minimum. The direction of SU(n) break-
ing is determined by the last term of (3.26). Exten-
sive experimentation (we have no general proof) in-
dicates that this is always minimized, at fixed

l

Q /Y; /i, for
SU(n —1}XU(1}.

the unbroken subgroup

IV. CONCLUSIONS

We have shown that the radiative corrections to
the leading, O(p ), part of the effective potential are
dominated by the scale M. This will not be true, in
general, for the nonleading terms, which are impor-
tant in determining the realization of the low-energy
symmetries. In a11 cases, though, the effective po-
tential should be calculable. It is useful to keep the
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auxiliary fields explicit for as long as possible, as in
(2.10), so as to take advantage of supersymmetry
and nonrenormalization theorems. One must then
carefully determine the scales which dominate the
radiative corrections to the various terms in the SS
effective potential.

Supergravity fits into the formalism developed
here and in Ref. 6. Supergravity has two effects of
comparable magnitude to those in the pure matter
theory. s It gives rise to additional terms (M terms}
in the tree-level scalar potential, and it gives addi-
tional interactions between the Goldstone fermion
and other light fields, of the same form as those
from the matter theory, both at the tree level and in
loops. The analysis of Sec. II should then continue
to hold, while detailed conclusions such as those for
the model of Sec. III may be changed with the in-
clusion of the contributions of supergravity.

While this paper was in preparation we received
several papers dealing with the effective potential in
inverted-hierarchy model. Yamagishi, Einhorn and
Jones, and Frampton, Georgi, and Kim' have
worked out the one-loop term (3.1) from the mass
matrices for general models, in agreement with Eq.
(3.12) from the renormalization group. References 7
and 9 study also the renormalization group for the
effective potential and investigate the SU(5) example
of Ref. 8, finding it to be more favorable for
developing large hierarchies than the example stud-
ied in Sec. III. Reference 9 makes interesting obser-
vations about the nature of the scales in inverted-
hierarchy models. It should be noted that all of
these general analyses need the fact that large loga-
rithms are removed by choosing A-X. %e have
found that this is true in inverted-hierarchy models
in which the Goldstone fermion decouples from the
light fields, and that this decoupling is the case in
simple inverted-hierarchy models (see the Appen-
dix). However, it fails already at one loop in more
general models, as can be seen from the discussion
of Fig. 1, and then even (3.12) no longer holds. In
the derivation of (3.12) from (3.1), decoupling is
needed in order to make the replacement lnX for
1nm;: it is necessary that only fields of mass O(X}
contribute to the sum. For inverted-hierarchy
models without decoupling, a generalization of
(3.12) is obtained by keeping only those one-loop
graphs for I p which contain a heavy line. In
(3.12) one replaces gkl~ with gkl~, and (C2)kI with
(C2)k~, where

r

gkI if any of k, l, or m have mass O(X),
0 if all of k, l, or I are light,

( C2 )kl = 4 g Cm rml (4.2)

where the sum in (4.2) runs only over superheavy
gauge fields. Again, in these models it should be
possible to control the large logarithms to arbitrary
order by renormalizing the various terms in the SS
effective potential at appropriate scales.

Very recently we have also received the paper of
Banks and Kaplunovsky, "which also discusses the
SU(5) model of Refs. 7, 8, and 9 and touches upon
many of the same questions as the present paper,
and the paper of Hall and Hinchliffe, 29 which ar-
gues that this SU(5) model in fact develops a large
hierarchy only for finely adjusted values of the cou-
pling constants.
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APPENDIX A: A THEOREM CONCERNING
O'RAIFEARTAIGH MODELS

U(A)= W;(A)[W;(A)]*

+ —, g D. '(A,A*), (A2)

(A3)

The result to be shown is the following.
Suppose the potential (A2) has a minimum (it

In many examples of the inverted hierarchy, the
supersymmetry breaking is decoupled from the light
fields. This decoupling occurs because trough in the
scalar potential is straight and parallel to the auxili-
ary f&eld VEV. It is possible to show that these
features are true in all models of O'Raifeartaigh (F-
term) supersymmetry breaking. Some of these re-
sults have also been obtained by Banks and Ka-
plunovsky, "and Zumino.

Consider a supersymmetric Lagrangian with
superfields A;,i = I, . . ,n, supe. rpotential 8'(2), and
gauge group defined by

5,A; =ig, ~,j'AJ. (Al)

(repeated indices are summed, except for gauge
group indices). Here the possibility of a semisimple
group, with several couplings, is included. The
gauge group may include U(1) factors, with Fayet-
Iliopoulos terms g,D, in the Lagrangian. The sca-
lar potential is
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need only be local) for a certain value A; of the sca-
lar fields, such that

D, (A,A ')=0,
W;(A')= (F;—)*,

with g F; F; ' =f &. 0. Define A" by

AJ" AJ +——xFJ /f ..

Then for arbitrary complex x,
(i) D, (A",A"*)=D, (A,A ') =0,

(A4)

(A5)

(A6)

Oe a 0 Oe a 0F, wgJAJ —0—A; w~FJ

The first-order term is

(A8)

W,J(A )v;kAk F; *rgq ——0—. (A9)

The condition that A be an extremum of the poten-
tial (A2) is

F; Wij(A )=0. (A 10)

Contracting (A9) with FJ and using (A10) gives

0+ a 0
Fg wJFJ ——0 . (Al 1)

From (A8) and (A 1 1 ), it follows that the x-
dependent terms in D, (A",A"") vanish.

Proof of (ii): For this it is convenient to redefine
the superfields. First shift away the scalar VEV:

A =A; —A;. (A12)
A A

Now choose new linear combinations X,B of the A

such that

X=A F; "/f (A13)

and the BI,l =1, ,n —1, are orthogonal linear
combinations. The transformed superpotential is

W'(X,B)=W(A) . (A14)

Equation (A5) is now

(ii) W„(A")= W;(A') = F,.'".—
Thus, the scalar potential is constant along the line
defined by (A6).

This has a simple corollary: Suppose that x is
much larger than any mass scale occurring in the
Lagrangian or any other scalar field VEV. Then
any vertex involving the supersymmetry-breaking
auxiliary field also involves at least one field of mass
O(x).

Proof of (i): Gauge invariance of the superpoten-
tial implies that

W;(A )vgj'AJ ——0 .
I

Expanding in powers of A'=A —A, the zeroth-
order term is

W,'x(0 0)= —Fx' = f— (A15a)

W'I(0, 0)= FI—=0 .

Thus, X is the Goldstone-fermion superfield. State-
ment (ii) becomes

W'x(X, O) = f, —

W'I(X, O) =0 .

(A16a)

(A16b)

The parameter x of (A6) is seen to be scalar field X.
The form of W' is quite restricted. From (A15),

the linear part is just

nr~"" linear

In terms of the new fields, (A10) is

W'xx(0, 0)= W'xI (0,0)=0 .

(A17)

(A18)

Thus, X does not appear at all in the quadratic part
of W'. Consider now the quadratic part of the sca-
lar potential (A2), which by assumption is non-
negative. From (A17), (A18), and the proof of (i), it
has the form

2 fW,'xxxX +fW,'xxP'4 +O (B ) + H c.

(A19)

From (A20), (A16) immediately follows. We have
assumed a renormalizable, cubic, superpotential, but
this argument may be extended to gerieral polynorni-
al superpotentials. Zumino has proven (ii) for gen-
eral polynomial superpotentials by more elegant
means.

To see the corollary, note that X couples to the
chiral fields B through the vertex

—,W'xI (XBIB )F, (A21)

while the large, 0 (X), part of the mass matrix is

, XW'»„(B,B~ )F .— (A22)

Going to a basis in which the mass matrix is diago-
nal, it is clear that in (A21) X couples only to fields
which have nonzero mass at O(X). X also couples
to the other fields through

[A i (e )'k(Fk/f )X]D (A23)

W'xxx must vanish, or else (A19) could be made
negative by taking BI——0 and varying the phase of
X. But then 8'X+I must also vanish, for if it did
not (A19) could again be made negative, by taking B
sufficiently small that the O(B) term dominates the
O(B ), and again varying the phase of X. In all,
then, W' must have the form

W'(X,B)= fXi0(B')+O(X—B')+O(B ) .
(A20)
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Expanding the exponential, every interaction term
has the structure

a a 0
( )Jgg V rgk'Fk (A24)

Since Fk (being parallel to the large scalar VEV) is
neutral under the subgroup unbroken at 0 (X), (A24)
vanishes for any gauge field which is not su-

perheavy. Thus, all vertices involving X involve
fields of mass 0 (X) as well.

This decoupling can be avoided either by having
nonzero D fields or by having additional flat direc-
tions in the scalar potential beyond that required by
the theorem and choosing the large VEV in a dif-
ferent direction. ' This simplest way to arrange ei-
ther of these is to have one O'Raifeartaigh model to
provide the large VEV, plus a separate sector of ei-
ther 0 Raifeartaigh or Fayet-Iliopoulos type giving
additional SS breaking but no large scalar VEV.
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