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A simulation method for the calculation of properties of lattice field theories is studied.

This method involves the numerical evaluation of projection operators onto low-lying quan-

tum states, It is an alternative to the standard Monte Carlo evaluation of path integrals or

the trace of the partition function and has many advantages. As an illustration, it is applied

to a one-dimensional many-fermion system.

I. INTRODUCTION »m &~le ' Qe ' l0&

The numerical simulation of lattice field theories
has important applications to a wide variety of prob-
lems in high-energy and condensed-matter physics.
In this paper we present an approach to this prob-
lem which involves the numerical evaluation of pro-
jection operators onto low-lying quantum states.
This approach is an adaptation to lattice field
theories of the Green's-function Monte Carlo
method which has been applied with striking success
to a variety of nonrelativistic many-body systems. '

It was inspired by the recent work of Kuti on sto-
chastic methods of matrix inversion and multiplica-
tion. 2'3

We begin by briefly outlining our approach. In
Sec. II, we will illustrate it by studying in detail a
model of interacting fermions.

Let H be the Hamiltonian of interest. Then for
sufficently large P, e ~ can be used as a projection
operator onto the lowest energy state of a given sym-

metry or set of quantum numbers. For example, if
E is the smallest eigenvalue of H whose eigenvector

f& is not orthogonal to the trial states
~
P& and

X&, then

Similarly, the expectation value of an operator Q in

the state
~ g& is given by

and the correlation function by

&y
~
g( )g(o)

~

tp&

4l 'Q -Hg. -' iy&=lim, (3)
P &y

~

e (2P+r)H i(b&—

where

g( ) eRH E)g 'H E)— — —

Equations (l)—(3) form our starting point, and our
objective is to numerically evaluate the various ma-
trix elements appearing on their right-hand sides.

The first step is to break up P into L subintervals
of width hr=P/L. Then, following the recent work
of Hirsch, Scalapino, and ourselves, we write H as
the sum of two Hamiltonians

H =H) +H2,

selected so that the matrix element of the operators

U(k)=e " (k=1,2)

are easy to evaluate. The choice of H& and H2 of
course depends on the particular system under con-
sideration. %e next note that
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'"=U(1)'~'U(2)U(1)'~'[1 ——,(4r}'(—,[II„[H,,H, ]]——,[H„[H„H,]])+ . .
j

= U(2) U(1)[1——,(i),r) [H2,H i ]+.. j . (7b)

In most cases it is possible to replace the terms in curly brackets on the right-hand side of Eqs. (7a) and (7b) by
the unit operator. That is the case for the models we study here. We shall make use of Eq. (7b) because it is
somewhat easier to work with. It should be noted that U(2)U(1) and U(1)'~ U(2)U(1)'~ have the same
eigenvalues, so there is no loss in accuracy in using Eq. (7b) rather than (7a) to compute energies. We do lose
an order of hr in the computation of correlation functions and expectation values of operators, but this can be
compensated for by working with sufficiently small values of br.

We now write

Y(P)= &X
I

e ~
I y& =—&X

I
[U(2}U(i)]

(&
I 22L+i & &i2L +i I

U(2)
I i2L & &'2L I

U(1)
I i2L —i & &i2

I
U(1)

I
'i & &'i 10) . (8)

Similar expressions hold for the other matrix ele-

ments in Eqs. (1)—(3). In the last step of Eq. (8) we
have introduced 2L + 1 complete sets of states
which are to be chosen so as to simplify the matrix
elements of U(1) and U(2) ~ For example, for a
single-particle Hamiltonian of the form
H=p +u(q), we might choose Hi ——p, H2 ——u(q),
and Iii) to be the eigenstates of the momentum
operator for j odd and the eigenstates of the coordi-
nate operator for j even. Quite different breakups of
H will be discussed in Sec. II.

We will perform the sum over intermediate states

by applying the Monte Carlo method with impor-
tance sampling. We follow the recent work of
Kuti ' and write

(i
I
U(k)1 j)=SJ(k)P2(k),

where the P j(k) are positive semidefinite and

QP,J.(k)=1.

The exact form of the PJ(k) is at our disposal, and

they can be chosen to optimize the rate of numerical

convergence as will be discussed in Sec. II. The
PJ(k) give the probability of making a transition
from the state

I j) to the state Ii) through the
operator U(k). We shall refer to SJ (k) as the score
for this particular transition.

Our procedure for evaluating matrix elements

such as Y(P) is as follows. We choose a specific
state

I
i i ) with a probability proportional to

I
&ii

I 4& I
We then c"oose a specific

I
i2) with a

probability P;; (1) and Ii3) with a probability

P, ; (2), etc. Having generated a specific set of
l3l2

values for i ~, i2, . . . , i&~ +~, we assign it a weight

W'(l2L+1 ~l2L~. . . ~ l2, /i)

= (X
I i2L+i )S;, , ;, (2) S;, ;,(1)s, (11)

where s=+1 depending on the sign of (ii lg).
Clearly, if we carry out this procedure N times, then

Y(p)= lim g 8'(i2L+i, i2L, . . . , i2,ii), (12)
X—moo

where the sum is over the E different sets of values

of i &, . , i 2& + &
that are generated. Formulas

analogous to Eqs. (11) and (12) hold for all other
matrix elements in Eqs. (1)—(3). Of course, in prac-
tical calculations, both N and P must be finite, but
we have found rapid convergence in the mode1s
studied to date.

We believe that the approach we have just out-
lined has a number of advantages over standard
Monte Carlo procedures. If the Hamiltonian de-

scribes a lattice field theory, then the intermediate
state

I
ij ) could describe the field configuration at a

particular (imaginary) time slice. In our procedure
one need only store the state (field configuration} at
that one time slice while in the standard Monte Car-
lo calculations one must simultaneously store it at
all time slices. Thus, for a problem in three space
and one time dimensions, one must store data from
a three- rather than a four-dimensional lattice.

Even more important is the fact that each sweep
through the lattice, i.e., each determination of the
states i ~, . . . , i 2z + ~,

'
yields a completely indepen-

dent set of data. In the standard Monte Carlo
method, one must sweep through the lattice a num-

ber of times to obtain independent field configura-
tions on which to make measurements.

The present approach appears to be particularly
useful for calculating vacuum expectation values

and correlation functions, such as single-particle fer-
mion Green's functions, which are difficult to study
with standard Monte Carlo techniques. It cannot be
used to study systems at finite temperature.

In Sec. II, we develop our formalism in detail for
a system of interacting fermions in one space dimen-
sion. In Sec. III, we present numerical results for
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the ground-state energy, gap, and correlation func-
tions. In Sec. IV, we discuss our results and the ex-
tension of our method to other problems.

II. AN ILLUSTRATIVE EXAMPLE

To illustrate our approach we consider a one-
dimensional model of interacting fermions with the
Hamiltonian

H = J dx 2tgt(x)o„—f(x)+A/ (x)o,P(x)
1

l Bx

—2 V[gt(x }0,$(x)]

where 0. and o, are the usual Pauli spin matrices,
and P(x) is a two-component spinor field operator.
For 6=0, H is the Hamiltonian of the Gross-Neveu
model with one flavor, while for V=o it simply de-
scribes free, massive fermions.

For numerical calculations we must put the
theory on a lattice. If we do so naively by writing (j
denotes the lattice site)

H = g [ it/, cr„(g,—+, g, , )—+&mojo, P;

H= ghjj+|
J

with

jjest =
—t(ci cj+i+CJ+ic )

~ V(cj CJ Cj+tcj'+]) (18)

Following Ref. 4, we choose the breakup of Eq. (5)
to be

exponentially to zero as V—+2t+. For 0& V &2t
chiral symmetry is unbroken.

For our numerical calculation we work with a fin-
ite lattice with M spatial points. It is convenient to
use periodic boundary conditions when an odd num-
ber of fermions are present, and antiperiodic ones
when an even number are present. Of course, most
quantities of interest are independent of the boun-
dary conditions for sufficiently large M.

It is useful to write the Hamiltonian in the form

2, V(Pj&.f—j—+4j+t,~.fj+i) ] (14}
H'I —g /l jj+ ]

j Odd

(19)

(j odd) .g =( i)—J Cj

cJ and cJ satisfy the usual anticommutation rela-
tions and are, respectively, the creation and annihila-
tion operators for a fermion on the jth lattice site.
In terms of these operators the Hamiltonian takes
the form

H= g [ t(c, c;+,+cj+—,c, )+4(—) c, cj
J

then we encounter the well-known spectrum-
doubling problem. To avoid it we adopt the Kogut-
Susskind procedure of placing the upper com-
ponents of gz on even lattice sites and the lower
components on odd ones by choosing

Cj

pj ——( i }j 0
—(j even},

(15)
0

H2 ——

j even

Thus, both H& andH 2 are given by a sum of com-
muting two-site operators, and U(1) and U(2) are
each a product of two-site operators.

This type of breakup is useful for any problem
with only nearest-neighbor interactions. If we
choose the intermediate states in Eq. (8} to be ones
in which the fermions are localized on specific lat-
tice sites, then in generating the state

i ij+&) from
iij ) we need only consider one pair of lattice sites

at a time, and we need only solve a two-site problem
to calculate the matrix elements of U(1} and U(2).
We denote by

i njni+, ) the state with nj (nj+ i ) fer-
mions on site j (j+1). Then with

JJ+l—r&h . .
J

we find
—

~ V(CJ CJ
—Cj+ icj+ & ) ] ~ (16)

For V=O, this model can, of course, be solved
analytically, so we have a check on our numerical
results. For 6=0, the model is equivalent to the
XXZ model whose properties are well understood.
For V g2t, there is spontaneous breaking of chiral
symmetry with a gap and order parameter that go

U, io,o) = io,o),

U, i1,1)=
i 1,1),

Uj I 1,0&=~,+ i1,0)+u, [0,1),
Uj I

0 I & =+o
i
0 I)++i i

1,0&,

(20)
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where

u~o ——e' ' [ch+( —)'(6/2e)sh],

u i e' ——a'~(t /e)sh,

( t2+g 2/4 )
1/2

ch =cosh(Are),

sh=sinh(Ere) .

(21)

We are now in a position to perform the sums
over intermediate states in Eq. (8). We work in the
occupation number basis and denote by

~
ninz . nit ). The state in which there are n i fer-

mions on site 1, nz on site 2, etc. Of course the n;
can only take on the values 0 and 1. We choose the
initial configuration of the fermions with probability
proportional to

~
(ninz nit

~ P)
~

. For example,
if we wish to obtain the ground state of the half-
filled band, it is convenient to take

The procedure is identical except the appropriate
pairs of sites are (2,3), (4,5), . . . . In this way way we
generate all the intermediate sites of Eq. (8); howev-
er, at any one time the computer need only store one
fermion spatial configuration.

As long as we are interested in translationally in-
variant states, it is convenient to take the state

~
X)

to be the sum over all occupation number states with
equal weight. Then, no matter what the final con-
figuration is, (X

~
iz+i) will have the same value,

which can be chosen to be unity.
It only remains to determine the hopping proba-

bility. It is important to keep in mind that only the
product of the score and the probability is deter-
mined by the matrix elements of U(k). The hopping
probability itself can be chosen at our convenience
so long as the scores are suitably adjusted. I.et us
focus on sites j and j+1, and assume that j is occu-
pied and j+1 is not. From Eq. (20) we might be
tempted to choose

~
$) = [ ~

1010 )+ ~0101 )]
2

(22)

since this is a translationally invariant state which is
unlikely to be orthogonal to the ground state. We
choose as our starting configuration each of the
states on the right-hand side of Eq. (22) with equal
probability. In order to calculate the fermion mass
we need the lowest-energy, zero-momentum state
with one more fermion than the half-filled band.
We would then modify each term on the right-hand
side of Eq. (22) by adding one extra fermion, locat-
ing it on each empty site with equal probability.

In applying the operator U(1) to the initial con-
figuration, we start with sites 1 and 2. If they are
both empty or both filled, Eq. (20) indicates that no
change is possible and the score is unity. If one of
the sites is filled, the fermion may hop to the other
one. We must choose the hopping probability, P,
and its corresponding score so that their product is
ui. Similarly the product of the probability and
score for the fermion to remain at its original site
must be uo with the sign depending on whether the
fermion is on site 1 or 2. We will discuss the choice
of the hopping probability in a moment. Assuming
that it has been fixed, we generate a random num-
ber, r, between zero and one, and have the fermion
hop if r ~P and remain in its original position if
r &P. We do not need to save the scores for each
pair of sites, merely the total number of times each
different score occurs. We next move on to sites 3
and 4, and repeat the procedure. After we have fin-
ished sites M-1 and M, we have the fermion configu-
ration corresponding to the intermediate state

~ iz)
of Eq. (8).

We are now ready to apply the operator U(2).

P=(t/e)sh ch+sh t+ ( —)j
2p

(23)

HTU;
~

1,0) =guo+
~

1,0)+g 'ui
~

0, 1),
OT U; ( 0, 1)=g 'uo

~
0, 1)+gu,

~
1,0),

where

1

g=exp[ —, hrVT(nt i—nJ+z)]. —

(25)

(26)

We use Eq. (25) to determine the probabilities. If
site j is initially occupied, we take the hopping prob-
ability to be

P=g 'ui/(guo +g (27)

and the corresponding score is g uo +u~. If site
j+1 is initially occupied, we use Eq. (27) with the
substitutions g~g ' and ( —)t~( —)t+'. The trial

However, we mould then be ignoring possibly impor-
tant repulsive effects due to the Pauli principle and
the interaction, which would arise if there were fer-
mions on sites j—1 and j+2. To estimate how such
effects would influence the matrix elements of in-
terest, we multiply U(k) on the left by the operator

HT expI ——zbrVr[(cicj —nj i)—1

+(c +ic +i n+z) ——1]I . (24)

Here nj i and nj+z are the occupation numbers for
sites j—1 and j+2 (1 if they are occupied and 0 if
they are not), and Vz is a trial parameter that is at
our disposal. The operator OT helps to "smooth
out" the breakup of K into Ki and Kz. The last
two lines of Eq. (20) now become
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(28)

The symmetry that is spontaneously broken when Q
obtains a vacuum expectation value is chiral invari-

ance, which in the Kogut-Susskind formalism corre-
sponds to translation by a single lattice site. Let 0
be the operator corresponding to this translation.
Then

OHO '=H,
OQO '= —Q .

(29)

Of course, there can be no spontaneous symmetry
breaking on a finite lattice which is why it is difficu-
lt to make a good measurement of the VEV of the
order parameter by standard Monte Carlo methods.
For large lattices the two lowest energy states will be
nearly degenerate. We expect them to have opposite
parity under 0 so we denote them by

I
t/r+ ) with

o
I 1(+ & =+

I y+ ) . (30)

parameter Vr is adjusted to optimize the rate of nu-
merical convergence. One can, of course, make
more elaborate parametrizations of the hopping
probability, but the present one is quite sufficient for
this problem. Note that P depends on Vz but not on
V.

When the infinite system has a degenerate ground
state, which is the case for when b, =0 and V & 2t,
then one of the interesting quantities to calculate is
the vacuum expectation value (VEV) of the order
parameter. In our model the order parameter is

Q=~ '~'gy, g„yJ..=M '~'g( )c,c—, .

Vacuum expectation values of other quantities
that are odd under 0 can be obtained by similar ma-
nipulations. Note that all these quantities can be
measured with the same set of runs by keeping
separate scores. The same set of matrix elements
give us a direct measurement of E+ E—, thereby
allowing us to make an approximate determination
of where degeneracy occurs.

III. NUMERICAL RESULTS

In this section, we shall apply our proposed
method to the model worked out in the previous sec-
tion. The results will be compared to the exact
values where known, and to previous calculations
using the canonical distribution approach, where ap-
propriate. Most of the numerical results are from
computer runs with 4000 data passes to collect the
scores for the numerators and denominators. This
was then repeated and the data averaged.

The first comparison will be to energies and gaps.
For most of the following calculation we have
chosen b,r= —, and will give some results for other
hr values. In Table I, the results for V=O and
5=0,0.5, 1.0 for two lattices are given. Since this is
a free massive fermion problem, the exact results are
known and are also given. The energies are energies
per site, while the gap is the total energy difference
between the half-filled band and the state with one
extra fermion of mass b, .

To explore the Ar and P ( =LED) dependence of
the numerical results for the ground-state energy
density, values of Eo(2L, br, P) for different choices
of hr and 2L were computed for b, =O, V=O. Con-
sider first the P dependence at fixed hr,

I$+)= [I 1010 . )+ I0101.. )]1

2
(31)

Now (g I Q I P+) will be finite on a finite lattice,
and it will approach the VEV of the order parameter
as the lattice becomes large. To calculate this quan-
tity it is convenient to make use of two initial trial
states

Ep(4, —,, —, ) = —0.668 8(3),

Ep(8 4 1)= —0.651 7(3)

Ep(16, ,2) = —0.6442(5),

Eo(32, —,,4) = —0.642(1)

(35)

(32)

where

(33)

so that 0
I P+ ) =+

I P+ ). It is then easy to see that

1(0- I Q I @+& I'= lim
D

and

Ep(8, 8, —, )=—0.673 3(6),

Eo(16,—,, 1)= —0.652 5(5),

Eo(24, —, , —, ) =—0.6462(3),

Eo(32, 8,2) = —0.643 9(5),

(36)

and

D(P) = (X I

'~
I y ) (X

I
Qe

(34)

whereas Eo(exact) = —0.640 7. The numbers in
parentheses are the statistical fluctuations in the last
figure given. The Ar dependence at fixed p is illus-
trated by the set
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Ep Gap Gap

TABLE I. Energy density and gaps. The ground-state energy density of the half-filled
band, Ep, and of the half-filled band plus one extra fermion, E1, for the Hamiltonian of Eq.
(16) with V=0. The gap is the difference in total energy of these states as measured on the
finite lattice. The numbers in parentheses next to the Monte Carlo results are the statistical
fluctuations in the last figure given.

MC results

E1 —Ep

0
0.5
1.0

0.655(1)
0.712(2)
0.840(3)

M =8, 21. =16
0.606{1) 0.40(1)
0.633(2) 0.63(2)
0.713(3) 1.02(3)

0.653
0.707
0.840

0.604
0.633
0.713

0.40
0.59
1.02

0
0.5
1.0

0.644{1)
0.706(2)
0.841(3)

M=16, 21. =16
0.629(1) 0.24(2)
0.674(2) 0.51(4)
0.775(2) 1.06(6)

0.641
0.702
0.839

0.628
0.670
0.776

0.20
0.51
1.00

Eo(4, —,, 1)= —0.654 9(8),

Eo(8, 4, 1)=—0.6517(3),

Eo(16,—,, 1)=—0.652 5(5) .

(37)

TABLE II. Correlation function. The correlation
function C(J) defined in Eq. (39) for the Hamiltonian of
Eq. (16) with 5= V=O. The subscripts EX and MC refer
to exact and Monte Carlo results, respectively. The num-
bers in parentheses next to the Monte Carlo results are the
statistical fluctuations in the last figures given.

We have also computed the ground-state energies
for the XXZ model with 6=0 and V=1,2. The re-

1
suits for I=16, 21.=16, and hr= , are—

E( V= 1)= —1.404(1),

E( V=2) = —2.254(3) .

The numerical results using the method of Ref. 4
for the above values of the coupling V are
—1.410(2) and —2.240(4), respectively. These were
computed from the canonical distribution and hence
are the average thermal energies rather than the
ground-state values.

We turn now to a measurement of the correlation

function of the "staggered" order parameter, Q, of
Eq. (28). We are interested in

{Q(r)Q(0))={Q(Jhr)Q(0))—:C(J) . (39)

6=0
0.8—

-6,= I/2

0.6—

G{k)

0.4—

0.2—

This function can be computed for the free field
case of V=O, any h. The result of this comparison
is given in Table II for M=16, 21. =32, and 6=0.
The correlation function does not rise past the mid-
point of I. as it does when using the (periodic)
partition-function method.

As a final example, we turn to the evaluation of
the single-particle Green s function and its Fourier
transform. This is a function that is difficult to
evaluate using the standard partition-function ap-
proach but is quite straightforward using the projec-
tion method. s Defining the equal-time spatial

C(J)MC

0.507(10)
0.276(12)
0.168(38)
0.113(31)
0.095(25)
0.055(25)
0.039(44)
0.030(30)

CEX(J)

0.500
0.276
0.167
0.110
0.078
0.058
0.044
0.035

0-
I II l3 (5

FIG. 1. The Fourier transform of the single-particle
Green's function, G(k), defined in Eq. (41) for the Hamil-
tonian of Eq. (16) with V=0 and 6=0,—,1. The curves

are exact results. The triangles are the Monte Carlo result
for 6=0, the solid circles for 5=—,and the hollow cir-
cles for 6=1. %hen no error bars are given, the statisti-
cal errors are smaller than the symbols.
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TABLE III. Green's function. The single-particle Green's function G(J) and its Fourier

transform G(k) defined in Eqs. (40) and (41) with 6=0. The subscripts EX and MC refer to
exact and Monte Carlo results, respectively. The numbers in parentheses next to the Monte
Carlo results are the statistical fluctuations in the last figure given.

GEX (V=O,J)

0.320
0

—0.112
0
0.075
0

—0.064
0

GMc (V=O J)
0.322(5)
0.000(4)

—0.120(5)
0.003(5)
0.078(5)
0.000(3)

—0.065(5)
0.000(3)

GM, (V=1,J)

0.293(10)
0.006(13)

—0.090(3)
0.003(4)
0.063(2)
0.001(4)

—0.047(1)
0.001(5)

GMc ( V =2,J)

0.24(5)
0.01(1)

—0.05(1)
0.004(2)
0.017(2)

—0.003(3)
—0.014(3)
—0.001(2)

1

3
5

7
9

11
13
15

GEX (V=O, k) GMc (V=O, k)

0.998(28)
0.998(7)
1.010(7)
1.022(15)

—0.012(8)
—0.019(20)
—0.007(12)

0.010(10

GMc (V= l, k)

0.97(5)
0.94(3)
0.95(1)
0.93(3)
0.11(3)
0.05(2)
0.04(1)
0.02(1)

GMc V(=2,k)

0.93(9)
0.91(8)
0.84(7)
0.70(2)
0.28(2)
0.13(6)
0.10(9)
0.11(11)

Green's function as

G(J)=M 'g (c;+Jc;)

and its Fourier transform

(40)

(41)

the operator Q between the ground state and the
lowest state that it connects to. For V&2, these
states become degenerate and (g I Q I 1(+) is the
order parameter. The numerical results for M =16,
2L =16 are

the calculation proceeds as outlined in Sec. II. The
Green's function will be evaluated for M=16,
2L = 16 and for various 4 and V values.

With the definition of Eq. (41) the exact G(J)
vanishes for J even. This provides one test of our
numerical results. Let us first examine the test case
V=O at various b, . The numerical results for the
case V=0=k are given in Table III, and are in
good agreement with the exact values.

Now consider the results for the Green's function
for 6=0 and V=1,2 given in the right-hand
columns of Table III. As V increases, G(k) becomes
rounded at the Fermi surface. When V =2, the crit-
ical value at which a mass gap starts to develop,
G(k) begins to look more like the Green's function
for a finite fermion mass h. The numerical results
for G(k) for the values 5=0, —, and 1 are given in

Fig. 1 and compared to the exact values.
Finally, we have computed the matrix element of

V

1

1.5
2
2.5

I&@-IQ IW+&I'

0.06(2)
0.10(1)
0.15(1)
0.18(1)

(42)

which are in good agreement with the results of Ref.
4.

IV. CONCLUSION

The projector method presented here appears to
be a fast, stable, and efficient way to compute the
properties of the lowest states of a quantum system.
It is particularly convenient for computing energy
gaps and fermion Green's functions which are some-
times difficult to extract in conventional Monte Car-
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lo calculations.
The method has a number of advantages. (i) It is

simple to implement. Each Monte Carlo step re-
quires a minimal number of lookups and algebraic
operations. (ii) It requires less starage space then
conventional Monte Carlo evaluations of path in-

tegrals because it is only necessary to store the state,
or field configuration at a single (imaginary) time
slice. (iii} Each sweep through the lattice (i.e.,
through the 2L-time steps} is statistically indepen-
dent, and yields useful data. It is not necessary to
make a number of passes through the lattice to ob-
tain independent configurations as in standard
Monte Carlo calculations. (iv} The trial parameters
in the operator Oq can be chosen to improve the rate
of convergence. One can introduce knowledge of
the physics into the transitions probabilities while
keeping the calculation exact by using correct values
for the scores. The initial state

~ P& can be used as
variational trial function and adjusted to speed the
convergence.

As we previously noted, the hopping probability is
independent of the coupling constant in the model
studied in this paper, and it can always be chosen so
in more general models. The dependence on the
coupling constant comes in only through the scores.
This means that one can directly evaluate deriva-
tives of the energy and of matrix elements with
respect to the coupling constant (or other parameter
appearing in the Hamiltonian) without the loss of
accuracy associated with numerical differentiation.
Another advantage of the independence of the hop-
ping parameter of the coupling constant is that one
can evaluate energies and matrix elements for a
range of couplings from a single set of configura-
tions. Of course, it may not be possible to obtain sa-

tisfactory statistics for the entire range of couplings

of interest from a single set of trial parameters, but
in the present model, one value of the trial parame-
ters did suffice for a considerable range of cou-
plings. The important point is that one spends far
more computer time generating configurations than
computing scores, so it always pays to compute
several observables for a particular configuration.

One can also use the Feynman-Hellmann theorem
to compute derivatives of the energy with respect to
parameters occurring in the Hamiltonian, i.e.,

d~(g)/dg=(y(g)
~

a~/Bg
) @(g)&,

where the expectation value is computed directly.
Presently, we have programs running for two

quantum spin models in two space dimensions.
These are the anisotropic Heisenberg (spin- —,) model

and the Ising model in a transverse field. For these
cases, the data rate is extremely fast compared to
standard Monte Carlo techniques. The energy in the
Ising model has been studied recently using the sto-
chastic method by Kuti and Polonyi. A full discus-
sion of our results for these problems will appear
elsewhere.
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