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Scaling of the elastic differential cross section in high-energy collisions of hadrons
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We investigate the existence of scaling of the elastic differential cross section with tb(s)
as the scaling variable, where b(s) is the slope of the diffraction peak. High-energy
elastic-scattering data over a wide range of energies exhibit scaling with the above scaling
variable. We also note that t (lns)' is not a good scaling variable.

I. INTRODUCTION
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Auberson, Kinoshita, and Martin' were the first
to investigate the scaling of the scattering ampli-
tude F(s, t). The following is shown from ax-
iomatic field theory:

(i) F(s, t) is holomorphic in the disk
~

t
~

& to for
any s in the cut s plane, where tp is a constant, less
than or equal to the t-channel threshold.

(ii) F(s,t) is bounded by Cs for
~

t
~

&to and
s~ ao, X is a finite constant independent of s.

(iii) F(s, t) satisfies unitarity in the s channel.
(iv) F(s, t) satisfies the bound

' 1/2

s lns

In fact, insofar as (2) is satisfied, the above scaling
property applies to any scattering amplitude.

Soon after, assuming that the modulus of the
forward symmetric and antisymmetric scattering
amplitudes f+ (s, t) for large energy are of the type
const Xs(lns) +, Cornille and Simao studied the
possibility of extending the results of Auberson
et a/. ' for other forward high-energy behavior of
the scattering amplitude. In particular, they as-
sumed (i) ) f+ (s, t)

~
is bounded for t & 0 and (ii)

there exists one zero of the type

~

t
~
=const X (lns ) 7, where y is such that the

maximum number L» of partial waves which ef-
fectively contribute to the scattering amplitudes
near t =0 is of the type Lm»-const Xs'~ (1ns)r~ .
Then defining

Xexp[(
~

t
~
It() )'r2lns] .

Using (1) Auberson, Kinoshita, and Martin showed
that the crucial relation' in determining the ana-

lytic property of the Pomeranchuk-theorem-
violating amplitudes in the high-energy limit is

s(lns) '
& Co for s &so,2 ImF(s, O)

iF(s,O)
i

where Co is a positive constant. Using (1) and (2)
they demonstrated that for a sequence of (s„)~ ao,
limf(s„. r(lns„) ) exists and is a nontrivial func-

1tion of r, f(r), which is entire and of order —,,
where

—ln (s t)
d dtr"
dt ~=0

2
OT

& const)&
Oel

C(s) l[b (s) j & const,

r= tg (s),

they tried to find g (s) such that, at fixed r,
»m, „f(s„,rg (s„))exists and is a nontrivialS~~ oo

function of r. Their analysis showed that
lim, „f(s„,rg '(s„))=f(r) exists for g=(lns)r.
If, in particular,

g (s)=(lns )',
~ ~ 1

then f(r) is an entire function of order —, in the r
plane. Subsequently, considering collisions of par-
ticles of arbitrary spins, Cornille and Martin
demonstrated that conditions

f(s, t)=F(s, t)/F(s, O),

r=t(lns) (4)

where b (s)=slope, C(s) =curvature, and
da /dQ(s, t) =differential cross section (the super-
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script A denotes that the cross section is purely ab-
sorptive), together with some positivity properties
of the scattering amplitude allow one to show the
existence of a scaling limit for the differential
cross section for an elastic reaction in the nearly
forward direction. On the other hand Mahoux
proved that the absorptive unpolarized differential
cross section for the elastic scattering of particles
of arbitrary spin must obey the representation

d(r"
( )

d(r" (,0)

b(s) cc(lns) (10)

00 2t= g (2l+1)a((s)P( 1+ (9)
1=0

where 0&at & l. Equation (9) is a fundamental
consequence of unitarity. The importance of this
result for scahng properties was exploited by Au-

berson and Roy. They deduced bounds on slope
and curvature of the diffraction peak and further
observed that ~=tb (s) can be chosen as a scaling
variable provided b (s) saturates the unitarity

bound qualitatively, i.e.,

geometric scaling seems to hold down to about
P),(,——100 GeV/c, below which a,(/a& starts to
rise and b/err starts to fall. Thus geometrical
scaling is apparently a property of the dominant
diffractive contribution (Pomeron term), since
secondary Regge-exchange terms are not expected
to have this behavior. It is especially remarkable
that the scaling of do /dt seems to hold' even

through the dip region, where do /dt has fallen by
six orders of magnitude and should be sensitive to
small corrections.

With the scaling phenomena thus qualitatively
well established we proceed to give in this paper a
simple proof of the existence of a scaling function

and then analyze the world data on pp, pp, E—+p,

and m-+p scattering with the new scaling variable

proposed by us. The plan of the paper is as fol-
lows, Section II contains a summary of relevant

previous work as well as our arguments regarding
the existence of a scaling function. Analysis of the
slope-parameter data and the behavior of diffrac-
tive cross section under the new scaling variable
are presented in Sec. III. In Sec. IV we analyze
some relevant models in the framework of our re-

sults and give our concluding remarks.

and the scaling function is again an entire function
1

of order —, in the complex ~ plane.

Dias de Deus' proposed the hypothesis of
geometric scaling, " namely that

T(s,B)=T(B/R(s)),

where T is the elastic amplitude, defined in the

impact-parameter B space by

II. SUMMARY OF PREVIOUS %ORK

Defining

f (s, t) = — (s, t) — (s,O),
dH da"
dt dt

several results follow immediately:

(19)

Z (
2is(B)

1 ) /i. (12) (i) f(s,O)=l (20)

and R (s) is a radial-scaling parameter, containing
all the s dependence. Equation (11) further im-

plies' that

(ii) Due to positivity of ai of Eq. (9),

0&f(s, t) &1 . (21)

=R f(R t),
dt

O.z o.R 2

ge] o(: R 2

2
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t0~R

b(t=0) ccR

(15)

(17)

(iii) If t; is a zero of f(s, t), so is t;*. This result
is due to the fact that a~ are real.

(iv) Auberson and Roy have further shown that
for complex values of

~

t
~

& to, f (s,t) is bounded

from above as

(f(s, t)
i

(Io(co(s)[
f
t

i
/(t() —e)]'i ), (22)

where Io is the modified Bessel function of order
zero, and

where t0 is the position of any dip or maximum in
der/dt and b is the usual slope parameter. The
first test of geometric scaling i.e., o.d/o ~ and
b (t =0)/or remain constant, showed that

$2
a)(s)—:ln

(der" /dt )(s,O)

Note that it follows from the Froissart bound and
the Jin-Martin lower bound that
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(2—e)lns & co(s) & 141ns .
S~ ao S~ ce

(24) where

Defining the slope and curvature, respectively, as

and

It f&x (36)

b(s) = f—(s, t)
dt

d
C(s) =

z lnf(s, t)
dt

(25)

(26)

C;g0.
Using r=t(lns) we then get

I
f(s r)

I
& C exp[C2i

I
r

I ] (37)

2

b (s) & [to(s)] (27)

and deriving bounds'" on the number of zeros, nr,
of f (s, t) within the disk

I
t

I
& r & to e=R—, one

of us has shown' recently the following:
(i) b(s and C(s) are bounded as

f(s,O)=1 . (38)

for complex r. Thus the sequence fi(s, r),
f(s2,r), . ..,f(s„,r) with s„—+ ao constitutes a set of
bounded equicontinuous functions and according to
the Arzela theorem, there is a subsequence ap-
proaching a limit E(r). It is not zero since

32
C(s) &

2 [a)(s)]
16R

(28)

Unfortunately, at present we are unable to show

that the scaling function is nontrivial.

(ii) If b (s)=[to(s)] for s large, and all zeros, t;
off (s, t) lie in a domain Imt; & e

I
t; I, e being

some s-dependent and arbitrarily small positive
number if

then

5

4 QA(2, (29)

r= tb(s)

is a scaling variable
Remark: If we choose r=t(lns), then

f(s,r)=—f(s, r(lns) ) scales, i.e.,

lim f(s,r) +E(r)—
S~ ao

(30)

(31)

f(s, t) =E(s,t)/E(s, O),

where E(s, t) is the scattering amplitude. Then

I f(s, t)
I

&const

for

(32)

(33)

te[ —X,O], (34)

where X is finite and 7~0. Using (33), (34), (35),
and the bounds on the Legendre polynomials we
obtain

I f (s, t) I
&Ciexp[v'

I
t

I
C2(lns) ~ ], (35)

for a sequence {s„~ao ]. The argument is as fol-
lows.

Following Cornille and Simao we define f (s, t)

III. ANALYSIS OF SCATTERING DATA

Our arguments for the existence of a scaling
function coupled with the sufficient condition of
scaling in the form of (29) and (30) under the par-

ticular distribution of zeros lead one to analyze the

world data on slope parameters and test whether

the differential cross section actually does scale or
not with r= tb (s) as the scaling variable. To this

end we parametrized b(s) as

b (s)=C +iC (lan)s

and made a least-X fit to the data for b (s) (Ref.
15) of pp, pp, IC +p, and a~p sc-attering. The best

parameters of our fit are given in Table I.
Table I clearly shows that the slopes for the

various processes analyzed favor a value of a
which is consistent with the condition (29) and

thus satisfies the requirements of scaling. It is im-

portant to note that a seems to saturate its lower

bound and does not necessarily saturate its unitari-

ty bound as is expected from the earlier works. '5 9

Hence as far as the analyzed processes are con-

cerned, tb (s), where b(s) =Ci+ C2(lns) should be
the right scaling variable and if we use r=t (lns),
then the data should show deviations from scaling.
In Figs. 1 to 12

dO dCT
(s, t) (s,O)

dt ' dt

is plotted vs r=tb(s) and also vs r=t(lns) for the

processes under analysis and the plots confirm our
observations.
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TABLE I. The values of the parameters (in GeV
units) for the slope of the diffraction peak for various

processes. The slope is parametrized as b(s) =C1
+C2(lns) .

Process

pp
pp

I( +p
K p
m+p

7T p

8.7230
12.29
3.6
5.0378
8.2801
9.02

C2

0.3694
0.035
0.5
0.5448
0.0592
0.127

1.15+0.3
1 45+—0.63

1.3+0.002
1.16+0.1

1.5+0.07
1 3+0.015

~ —0.03

The several models that exist in the field to
analyze the experimental data of pp, pp, I(. +-p, and
m

—+p scatterings use some assumptions which are
reflected in the expressions for scattering ampli-
tudes and differential cross sections obtained from

IV. ANALYSIS OF MODELS AND CONCLUSION
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FIG. 2. Plot of f(s, t) vs t (Ins )2 (t,s in GeV2 here
and in subsequent figures) for pp scattering.

the models. We will refer here to only two such
models on pp scattering and analyze them to see
what possible conclusions one can arrive at by
imposing on them our observations that ~
= t [CI +Cz(lns) ] is a good scaling variable with
a close to 1.2S. These conclusions are supposed to
demonstrate the validity of the assumptions used
in the models.

(i) In a recent model by Schrempp and

Schrempp, ' the concept of hadrons as extended
objects (bags) has been used to give a space-time
description of hadronic interactions. ' Introducing
the shape of the interaction region as a general
variable they have obtained the diffraction ampli-
tude as

-6
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0
t b(s)

I

10 15

JI(Riv —T )
~~2l

R,v t—
This leads to

FIG. 1. Plot of f(s, t)=(do/dt)(s, t)/(dtr/dt)(s, O) vs
~=tb(s) for pp scattering. b(s)=Ri /g (40)
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purely imaginary in the eikonal-type models'8

we represent' it as

/I (s, t) =i f [1—S(b)]Jo(bv' —t )b db .

and

C(s) 1

b (s) 3
(41)

Assuming further that

[1 S(b)]-e —b",
we obtain the amplitude as

(44)

It was shown in Ref. 13 that

(42)=O((ins )' '),
b'(s)

and with —, &a &2 one obtains that (i)

C(s)/b (s)=O((lns) ) when a=—, and (ii)

C(s)/b (s)=O(1) for a=2. Thus C(s)/b (s)~0
in the first case and it is bounded by a constant in
the second case. Thus Eq. (41) as obtained from
this model is consistent with Eq. (42). However, in
this model the s dependence of R& corresponds to
a=2 and not a=1.25. So the b(s) values ob-
tained from this model are expected to show slight-
ly higher values in the near-forward direction as is
actually manifested in Fig. 2 of Ref. 7.

(ii) Assuming the scattering amplitude to be

I ((n +2)/2)
2[g](a+2)/2

)& exp — IEI ——,'1;—— (45)
t n t

Now using the normalization of Ref. 18, )I, is
determined to be

/22/(n +2) (46)

where

2n I((tt +2)/2)
CTT

(47)

Then the slope and the curvature of the diffraction
peak are given by
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Note that if o z increases with energy, as the ex-
perimental situation indicates, then the Cornille-
Martin criterion for scaling,
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proved to
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FIG. 6. Plot of f(s, t} vs t (Ins }~ for E+p scattering. if oz' saturates to Froissart bound, otherwise (48)
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will violate the unitarity bound. However, if the
eikonal-model amplitude has zeros [note that
iFi( n/2;l; t—/A, ) is a pol—ynomial in t for even
values of n], then one can make the bound (52)
more defined by imposing the bounds of (29) and
obtain

V

Q

0
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lO I I 1 I I 1 I

0 O.l 0.2 0.3 OA 0.5 04 0.7 08

FIG. 13. Plot of f (s, t) vs t for X p scattering.

0(n &1.2. (53)

Since our analysis shows that the existing experi-
mental data prefer the lower bound of a, n should
be close to 1.2 and this is expected to put strong
constraints on the structure of (1—S(b)t and
therefore on the form of the amplitude.

In conclusion, we note that in recent times there
have been various phenomenological attempts to
describe the high-energy differential cross section
in the diffraction peak in terms of a single vari-
able. On the other hand, using techniques of ax-
iomatic field theory scaling could be established' '

if err behaves like (lns) . We attempted in this pa-
per to establish a correspondence between the two
types of efforts in the sense that following heuris-
tic procedure we tried to show the existence of a
scaling function. Then we proposed a scaling vari-
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able r=t[C&+C2(lns} ] consistent with our obser-
vations. We proceeded to make a phenomenologi-
cal fit to the data for various scattering processes
and determine C~, C2, and a. We further demon-
strated that t(lns) is not a good scaling variable
even at E, =62 GeV. In fact, it looks obvious
from the figures that as higher and higher energies
are reached, deviations from scaling will be en-

hanced if one will use t(lns) as the scaling vari-
able. However, insofar as our proposed scaling
variable is concerned we note that for s„~ ao,

r=t[C|+C2(lns} ] C2t(lns)

On the other hand, at the energies considered by us

tC, is the dominating term (Table I) compared
with the tC, (lns) term. Hence one may possibly
conjecture that just t may be a good scaling vari-
able at the energies we have considered. We have

made illustrative plots for the E p process only
with t as the scaling variable (Fig. 13) and also
with t (Ins )o as the scaling variable (Fig. 14). It is
heartening to note that the scaling is better for the
variable r=t [C, +C2(lns } ] as seen in Fig. 7 than
in Figs. 13 and 14. But we do agree that the ener-

gy regions where the values of (lns) will be com-
parable to C~ /C2 will be the regions where the

universal validity of our scaling variable can be
tested. However, the figures optimistically demon-
strate that t[C~+C2(lns) ] perhaps will be a good
scaling variable at those energies also. One of the
important conclusions from our fit is that a satu-
rates its lower bound, i.e., 1.25. We then demon-
strated that this observation not only can be useful
to investigate the validity of models of diffraction
scattering insofar as the scaling properties of their
amplitudes are concerned, but it also can impose
constraints on the form of these amplitudes.
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