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Recent interest in the finiteness problem of the vacuum energy density (VED) in finite

QED has motivated us to reexamine this problem in the light of an analysis we have carried
out earlier. By a loopwise summation procedure, supplemented by a renormalization-group

analysis, we study the finiteness of the VED with o,, the renorm: sized fine-structure con-

stant, fixed in the process as the (infinite order) zero of th eigenvalue condition
Fl'l(x)

~

„=0",and with the electron mass totally dynamical of origin. We propose a
possible finite solution for the VED in QED which may require only one additional eigen-

value condition for a.

I. INTRODUCTION

Recent interest' in the finiteness of the vacuum
energy density (VED) in finite quantum electro-
dynamics (QED), first studied in Ref. 2, has
motivated us to reexamine this problem in the light
of our earlier analysis, By finite QED it is meant
here that all photon self-energy subgraphs in renor-
malized QED are summed loopwise with a, the re-
normalized fine-structure constant, fixed in the pro-
cess as the (infinite order) zero of the eigenvalue
condition: F('}(a)=0"[p(a)=0"], and with the
electron mass totally dynamical of origin. That is,
for the latter, the anomalous mass dimension '" 5(a}
is assumed to be strictly positive —a result well sup-
ported by low-order perturbative calculations. Here
F('}(a) denotes the coefficient of the "single" loga-
rithm of the single-closed-fermion-loop contribution
to the renormalized photon self-energy part, and
p(a) denotes the Callan-Symanzik function. Un-
fortunately, the analysis in Ref. 1 did not lead to
constructive suggestions for the finiteness of VED.
Our earlier paper, however, contains basic in-

gredients for a more complete discussion of this
problem. We propose a possible solution which is
completely finite and may require only one addition-
al eigenvalue condition for a. A significance of the
finiteness of the VED on the vanishing of the
(electro-) magnetic form factors at large momentum
transfer is also discussed. Some repetition of our
earlier work is unavoidable. However, to make any
repetition minimal, we urge the reader to consult the
just-mentioned reference while reading this paper.

II. VACUUM ENERGY DENSITY

write the Lagrangian density in the form
W =Wp+A Wt where the mass term mogul is in-
cluded in Wt, and Wp is the free Lagrangian densi-

ty of QED with massless particles. From
Schwinger's dynamical principle one then obtains
the well-known expression

exp( i QS')—= (Oout
~

Oin)x='/(Oout
~

Oin)x=p,

where Q denotes the extension of space-time to be
ultimately taken to be infinite (Q—+Do). g' is the
VED due to the dynamics with the mass of the elec-
tron totally dynamical of origin. Let m denote the
renormalized mass of the electron. The anomalous
dimension 5(a) may be defined through

m [1+5(a)] '=mp m
amo

and 5(a) is cutoff independent, and at least low-
order perturbation theory results show that '

5(a) & 0. Schwinger's dynamical principle also
yields

mp 8'=i Tr[mpS(p)],
8 . dp

8mp (2~)~

where S(p} is the full unrenormalized electron prop-
agator. A standard renormalization-group analysis,
at the eigenvalue, then shows directly from (2) by
formally cutting off the integral in (2) at p &A
that the general structure of 8' is

5(a)

ai(a)A +a2(a)m A +
A2 —+ oo A

Let (Oout
~
Oin) denote the vacuum-to-vacuum

transition amplitude in the sense of Schwinger. We where the dots denote less singular terms of the
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form O(m A (m /A } ). Clearly if 5(a) & 1, then
(3) implies that 8' diverges at worst like

5' — a, (a)A
h2 —+ oo

The condition 5(a) & 1 is not ruled out and it will be
assumed in our analysis. The implication of this
condition on the vanishing of the (electro-) magnetic
form factor at large momentum transfer will be dis-
cussed later. The result in (3} could have been writ-
ten down by inspection from the following analysis.
To this end we note that a well-known "second
Legendre transform" method shows that 8' may be
expressed as a functional solely in the exact electron
and photon propagators (see, e.g., Appendix B in
Ref. 2). We also make the following observations.
Since 8' is gauge invariant [see, e.g., Eq. (5)], we

may work in particular in the so-called generalized
Landau gauge ' in which the electron propagator is
finite at the eigenvalue. We then note that (at the
eigenvalue) any mass corrections to the photon prop-
agator [see Eq. (23) in Ref. 7] and to light-light
scattering graphs [see Eq. (23) in Ref. 2], and the
electron propagator (multiplied by m) ' vanish, at
worst, like (mz)'+ ' ' for m~0. Accordingly if
5(a) & 1 then by dimensional analysis we learn that
any mass contribution to 8' should vanish. (Note
that, from power counting, the possible quartic
divergence appears as a result of the overall integra-
tion in 8'.) This explains the origin of the second
(third, . . . ) term(s) in (3). Accordingly we may as-
sume that, at the eigenvalue, to obtain the expression
for 8', we may formally set m =0 in its expression.
This leads to the study of 8' in massless QED and
leads to the result stated in (4).

To study the nature of the coefficient a, (a), we
have divided the subgraphs contributing to 8' into
two classes (a) and (b). Class (b) contains those
graphs which are four-or more-photon line irreduci-
ble. That is, class (b) graphs in 8', expressed as a
functional of the exact photon and electron propaga-
tors, contain light-light scattering subgraphs and
may be broken into two or more disconnected
graphs by cutting four or more photon lines. Class
(a) contains all of the remaining graphs. In particu-
lar class (a) contains no two-or more-photon line ir-
reducible subgraphs since the photon lines are exact.
Suppose that one replaces all the (exact) photon
propagators multiplied by ao (—=eo /4m. ), the un-
renormalized fine-structure constant, by x/q, and
one omits all closed fermion loops contributing to 8'
(except of the overall one defining 8') and one re-
places the electron propagator by its free massless
counterpart. The resulting expression 8'(') for 8'
would then correspond to the single-closed-
fermion-loop contribution to 8' in massless QED

FIG. 1. Some graphs contributing to class (a) of
graphs. It is argued that at the eigenvalue and with an
anomalous mass dimension 5(a) & 1, only graphs within

this class may possibly give a contribution to the coeffi-
cient a)(a) in Eq. (4).

with a coupling (renormalized =unrenormalized)
equal to x. According to the above discussion class
(b) graphs cannot possibly contribute to the coeffi-
cient ai(a), at the eigenvalue, due to the vanishing
(and rapid damping) of light-light scattering graphs
for m —+0 [see Eq. (23) in Ref. 2]. Some graphs con-
tributing to class (a) and class (b) are shown in Fig. 1

and Fig. 2, respectively.

According to the above discussion we may restrict
our study to the graphs in class (a) to extract the net
coefficient ai(a). The following summation pro-

FIG. 2. Some graphs contributing to class (b) of
graphs. This class consists of all graphs which are four-
or-more-photon-line irreducible. The graphs in this class
together with the graphs in class {a) consist of all the
graphs appearing in the definition of the vacuum energy
density O'. At the eigenvalue and with an anomalous
mass dimension 5(a) & 1, it is argued, due to the rapid
damping of light-light scattering graphs for m~0, that
the graphs in class (b) cannot give a contribution to the
coefficient al(a) in Eq. (4).
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cedure is assumed to study the nature of the coeffi-
cient a i (a). We sum the diagrams in class (a) loop-
wise, fix a as the infinite-order zero
F(')(x) i» ~=0" in the process, and set m =0 in
the expression for S' when summing over the closed
fermion loops to extract the net coefficient a 1 (a).

Schwinger's dyamical principle leads to

ao S'
Bao

1+ao1T g ao& g, 5
2 (2m)

where n(q )
.is defined through the vacuum polari-

zation tensor

ir„„(q)=(g„„q —q„q„)~(q') . (6)

In the single-closed-fermion-loop contribution to
(5) we have [with S'~S', '), m(q )~n(' (q ),.
aorta]

8 @(i) 3i (dq) (il( 2)
Ba 2 (2ir)

f&3
3m,2 an+1

dq2a ( 2) (8)
2(2m. }4 o n +1

by formally cutting off the integral at A . We use
the well-known fact '

a„(q2) —c„+b„ ln(q2/A'2),
m —+0

(9)

where c„and b„are constants, and A' is some ultra-
violet cutoff. We note that the logarithmic factor in
(9) may give ambiguities in the evaluation of the in-
tegral in (8). We argue below, however, that this
logarithmic factor will not contribute to S'~(') (or to
S'). We rewrite (8) as

By making an expansion n(')(q }=g„oa"a„(q ),
we then obtain from (7)

3~2 an+1 f »q dq I[a„(q )—c„]+c„I, (10)

or equivalently as (m ~0)

gI"(a) f q'dq'
2(2n. ) 0

g[1]( ) f q2d 2 f

where

~n+1
AI')(x)= g c„,„„n+1"'

(12)

We conjecture that due to the infinite-order-zero na-
ture of F ' (x) at x =a [i.e., (d/dx}JF ' (x)=0,
x =a, j=0, 1,2, . . . ] the integral of F(')(x) evaluat-
ed at x =a is also zero. For an interesting exam-
ple ' where this indeed does happen suppose that

F(')(x)= —(C/3) Ix exp[ —3/(a —x)]}dx

C Cx——+ exp[ —A/(a —x)],
(a—x)

g x"c„=C( l(x) g x b» F( l(x (13)
n&o n&p

where we have identified the second sum with the
standard notation F(')(x). We argue that the coeffi-
cient Af')(x} is zero at the eigenvalue x =a, and
hence the ambiguous second term in (11) does not
contribute. We note from (12) and (13) that A j')(x)
may be expressed as

A[ l(x)= f dyF(')(y) . (14)

We also recall that, if 5(a) & 1, then any "correc-
tion" due to mass insertions should make any corre-
sponding contribution vanish (for A —+00} as dis-
cussed above. We write

n+1aI"(a)=, g c„.
64m' „&p &+&

(17)

where A ( & 0}and C are some constants. This exhi-
bits the infinite-order-zero nature of F( l(x) at x =a
and leads to the expression

Af')(x)= —(C/A)x exp[ —A/(a —x)], (16)

and the latter does indeed vanish (with an infinite-
order zero) at x =a. This may possibly lead to the
only consistent solution as there are ambiguities in
the evaluation of the second integral in (11) [unless
one imposes an additional eigenvalue condition for a
through Af')(a)]. With such a conjecture we will
see that only one additional eigenvalue condition for
a is to be imposed. We may extract the single-
closed-fermion-loop contribution a i' (a) to a i(a) to
be
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Now we generalize the above analysis to the mul-

tiloop contribution aI)(a) to ai(a) and obtain the
expressions for A I') (a ) and A P (a ). The above con-
jecture will be consistent if we can show that A P (a }
is still zero for 1&2. This will indeed be the case.
At the eigenvalue we may write

&o[1—aors(q }] I =o=q(a)
= gq '(a) (18)

lp0
where q(a) is a finite constant depending on a, and

q (a) contains exactly I closed fermion loops, with
q( )(a)=a. We note that a photon line 1/q in the
expression for A;('} appears in the form x/q . Ac-
cordingly, we may replace each of the x's in x"+',
as appearing in (11) and (12) by q

' (x),q( (x), . . . ,
using elementary combinatorics, to obtain the exact
I-closed-fermion-loop contribution to a i(a). For ex-

ample, in the two-closed-fermion-loop contribution,
I

we have the following substitutions in (11)and (12):

x"+'~x"+'(n + 1)q(')(x),

and we obtain

Ap)( ) ~ x"(n+1) (il( )
n)0 n+1

(19)

=q(')(x)C(')(x), (20)

Apl( )= y ""'"+"
q( l(.)b„X g X

=q(' (x)F(')(x), (21)

and at the eigenvalueA[ (a)=0.
In general we obtain from an analysis as in (19)

and in Ref. 2

AI')(x)=

AP(x) =

j.=0
l

~ ~ ~

1 t

j ~ ~ e j
E —1

j =0

[q" (x)] '
. . . [q

' (x)] '
C(i)

e1! e!

[q
' (x)] '

[q
' (x)] '

+(i)
el! etl

(23)

j1'''Jt

ai(a)= & a(' (a) = f dx C(')(x)q'(x)
l)1 64~2 0

—=G(a) . (25)

Accordingly to have a completely finite VED it
may be necessary to impose one additional eigen-
value condition for a:

G(a)=0. (26)

for I &2, where the prime on the summation signs
means a sum over all positive integers

e1, . . . , e„j1, . . . , j, such that all the j; are distinct
and e'iJ'i+ +e,j,=l —1. Using the infinite-
order-zero nature of F ' (a) we obtain from (23)
that A P (a)=0. In particular we note that' irrespec-
tive of the conjecture we may write for all /

AP(a)=S" f ZxS(')(x), (24)
0

due to the infinite-order-zero nature of E(')(a). The
summation over I then may be carried out in a
standard manner from (17}and (22} and the defini-
tion of C(')(x) in (13) to obtain

The constant G(a) may be computed from pertur-
bation theory and by a formal integration [Eq. (25)],
by using in the process the perturbative expressions
for C(')(x) and q'(a). To lowest order, for example,
we have computed

T

G(a)= —
2

—+O(a ) .11 cx 2

384m'
(27)

[The minus sign in (27) should be noted as it may
lead to the physically undesirable property that 8' is
unbounded below (A ~ 00 }.] In the next section we
summarize our method of study and our findings
and make some further comments.

III. DISCUSSION

We have shown that if the anomalous mass di-
mension 5(a) & 1 then, at the eigenvalue, the VED
may at worst diverge quartically, the coefficient of
which we have denoted by ai(a) [see Eq. (4)]. Due
to the vanishing (and rapid damping) of light-light
scattering graphs and mass corrections for the prop-
agators for m ~0, we have argued that to study the
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I

nature of the coefficient a &(a), it is sufficient to car-
ry out a study in massless QED at the eigenvalue
[see also Eq. (3)]. Proceeding loopwise we have con-
jectured, due to the infinite-order-zero nature of
Fl'l(x), at x =a, that the integral [Eq. (14)] of
F(')(x) at x =a is also zero, and an example of this
has been given where this happens. We have seen
that the VED is completely finite if we impose only
one additional eigenvalue condition for a through
G(a)=0 [see (25) and (26)]. The constant G(a)
may be in principle computed. This is unfortunately
a formidable problem [as is the situation for F(')(a)]
as only low-order computations are possible at this
stage [Eq. (27)]. This possible solution not only
leads to a finite expression for VED but also gives

the physically very desirable result that 8'=—0. Fi-
nally the assumption that 5(a) & 1 has an interesting
consequence on the vanishing of the (electro-) mag-
netic form factor GM(Q ) at large momentum
transfer (Q ~ oo ). We have shown in an earlier in-
vestigation [Eq. (36)] that at the eigenvalue
[P(a)=0"]we have with 5(a) & 0 that

~G (Q )~ ( C(Q )
—"+s'~

Q~~ co

[The notation Po(a)/2 for 5(a) was used in Ref. 7.]
The condition 5(a) &1 then implies the interesting
property
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