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Decay widths for metastable states. Improved WKB approximation
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We present improved %KB approximations, based on two-turning-point connection for-
mulas, for the decay width of any metastable energy level in a one-dimensional potential.

I. INTRODUCTION

The possibility that the Universe in its evolution
may have existed (or now exists) in a metastable con-
figuration' ("false vacuum") has stimulated interest
in calculations of virtual-state decay widths. '

Functional-integral techniques have been used be-
cause simple WKB methods are not available for
systems with many degrees of freedom. In order to
establish the validity of these saddle-point methods,
the authors have typically applied them to a one-
dimensional quantum-mechanical potential and
demonstrated that they agree with something which
is always called the %'KB result. However, these
WKB approximations are sometimes quite different.

Langer, who was interested in models of first-
order phase transitions such as droplet condensation
in a vapor, was the first to carefully consider the de-
cay width (of the lowest metastable state) by both
%KB and path-integral methods. His approach was
generalized and applied by Coleman and Callan ' to
the problem of false-vacuum decay in field theory.
They sought to dominate the Euclidean functional
integral for the generating function by the so-called
"bounce" solution and its quadratic fluctuations.

Recently Patrascioiu, motivated by work of Lev-
it, Negele, and Paltiel, has questioned the Callan-
Coleman result, arguing that in order to agree with
the WKB answer other complex paths besides the
real "bounce" configuration must be included. Very
recent work by Lapedes and Mottola also supports
this claim.

As this brief summary makes evident, it is impor-
tant to have a standard result to which the path-
integral techniques can be compared. Ideally, one
would like to know which integral approximation
corresponds to each of several WKB-type results of
increasing accuracy.

As the first step in this program of establishing
the relation between WKB and functional-integral
approximations, the present paper is devoted to a
study of simple and improved WKB calculations for
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FIG. 1. Quartic potential for a one-dimensional
metastable system.

the decay width of a virtual energy level in a one-
dimensional potential. For explicitness, we shall
consider an unstable potential of the form treated by
Langer and shown in Fig. 1, but the techniques can
be directly applied to other cases.

Our goal is to derive an expression for the decay
width of any level, not just energy states at the bot-
tom of the well. Such a result will also be useful for
other applications, such as the decay rate of an un-
stable system at finite temperatures or the probabil-
ity of induced (rather than spontaneous) decay of a
false vacuum.

The semiclassical techniques which we shall use
are not new: nearly all are at least 20 years old.
Many physicists, however, seem to be unfamiliar
with the powerful method of comparison equa-
tions' which can produce uniform approximations
valid in regions containing one or two turning
points. We shall also employ reversible connection
formulas, a procedure which though it seems very
natural from the point of view of comparison equa-
tions is highly controversial and nonrigorous. Past
experience with similar problems has shown that the
answers derived in this way are likely to be correct
and agree with those obtained by methods which
maintain a stricter control over the errors. (We dis-
cuss the reversibility question further in Sec. II.)
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II. SIMPLE %KB APPROXIMATIONS
FOR THE DECAY WIDTH

p(x) = I2m[E —V(x)]]'~ (2.1)

We introduce some definitions which will be use-
ful in all of our work below:

where

j(x)= . 1l*(x) —11(x)
d d '

2ml dx dx

(2.9)

(2.3)

(2.5)

C

exp[iu (c}]=exp i f ~ p ~

dx

which corresponds to a wave moving to the left;
whereas for an allowed region to the right of a turn-
ing point (x ~ c), the same

Z

exp[iu(c)]=exp i f ~p ~dx

corresponds to a wave moving to the right. (In both
cases the wave moves away from the turning point. )

For the potential pictured in Fig. 1, we define

u(c)= A' ' f p(x'. )dx' (2.2)

v(c)= A' ' f ip(x') idx'
d

W, (c,d)=A' ' f p(x')dx', (2.4)
d

Wz(c, d)=Pi f, lp{x )
I
dx

where the arguments (c,d) refer to classical turning
point, i.e., values of x for which p (x)=0. Note that
u and v are also functions of x. We have defined u

and v in order to write the connection formulas [see
Eqs. (2.18), (2.19), (3.5), and (3.14)] in the simplest
possible form with no need for an explicit descrip-
tion of the analytic structure of p (x) in the complex
x plane or E plane. The form of the one- and two-
turning-point connection formulas which we shall

present are valid when the real scattering energy lies
between the bottom and top of the (real analytic) po-
tential well or barrier, and these formulas may be
used whether an allowed (p y 0) or forbidden

(p &0) region lies to the left or right of a turning
point. Note that some case is required in interpret-
ing the resulting expressions. Thus, in an allowed
region to the left of a turning point {i.e., x &c), we
have

Identifying in the usual way, —ImE= —,I {E),and

integrating equation (2.8) from x
~ to x2

z2
I {E)=fi[j(x2)—j(x~ )] f p(x)dx . (2.10)

I'=2fij(x2) f p(x)dx . (2.11)

If we now restrict our consideration to a virtual
bound state which is deep enough in the well so that
the tunneling probability is small, then we can ig-
nore p(x) outside of the well, and write

a
I 2trij(x ) f p(x)dx .

Staring with an outgoing" WKB solution in re-
gion III (x &b),

(2.12)

1it(III)=Ap '~ ex [pi u(b)+im4/], . (2.13)

we determine f(x) in region II (a &x & b) from the
standard single-turning-point connection formula (as
given, for example, by Landau and Lifshitz' }

P(II)=A ~p ~

'~ exp[v(b)]

=A
I p I

'
exp[ Wz v(a

(2.14a)

(2.14b)

Finally, assuming that we are far enough from the
bottom of the well that the bound states in the well
can be approximated by a "large-n" WKB wave
function, we have (from a standard connection for-
mula' )

We can use this exact expression to derive a very
simple WKB approximation for the decay width.
For the symmetric double-hump potential (Fig. 1)
centered at x=0, we choose —x~ ——x2~b. Then,
imposing the purely outgoing-wave boundary condi-
tions appropriate for a decaying resonant state,
j(x&)=—j(xz) and

W)(a', a ) = W),

Wz(a, b ) = Wz .

(2.6)

(2.7)
g(I) =2Ap 'r exp( W2)cos[u (a) n /4] . (2—.1S}

In the symmetric case, W2(b', a') = W2.
There are several equivalent ways for I, the decay

width, to be defined. Proceeding from the
Schrodinger equation to derive the continuity equa-
tion for the probability current density, but allowing
the energy eigenvalues to be complex, we find

Then

f p(x)dx= f, ~y(1)~'dx

=4~A
~

exp(2W2) —, f p x

= ~A ~I'exp(2W2)m 'T(E), -
( —2/fi)lmEp(x) = j(x),d

(2.8)
where we replaced cos 0 by its average value and
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T(E)=2 f, — =[v(E)] (2.16)

I'(E)=2k'v(E)exp( —2') . (2.17)

For the case of the quartic potential of Fig. 1 the
quantities v(E), ReR'i, and 82 can each be ex-
pressed in terms of complete elliptic integrals. We
give these results in Appendix A.

The simple result of Eq. (2.17} is intuitively very
appealing: exp( —28'2) is the familiar tunneling
probability, v(E) is the frequency at which a classi-
cal particle strikes the barrier, and the factor of 2 is
due to the double-hump structure of the potential.
Recall also that the derivation of (2.17) depended on
assuming that the energy level was not too near ei-
ther the top or bottom of the well.

We next calculate I'(E) by a scattering method'
which will be employed (in Sec. III) when we consid-
er improvements in the basic &KB result. Again, it
will be assumed that we are not too near the ex-
tremes of the well so that we can use single-turning-
point connection formulas and simple WKB solu-
tions away from the turning points.

The only new ingredients which we add at this
time are reversible connection formulas. The first
uniform approximation, i.e., a single solution valid
for a range of x which included a turning point, was
given by Langer. ' Murphy and Good' and Miller
and Good' derive the "reversible" connection for-
mulas which we shall use below by finding an exact
solution to the differential equation in the neighbor-
hood of the turning points and then regarding the
asymptotic behaviors, which follow from expanding
this exact solution on opposite sides of the transition
region, as being reversibly connected. From this
point of view, the decreasing exponential term in a
connection formula has meaning, even in the pres-
ence of an increasing exponential term, in order to

I

is the classical period of a particle with energy E in
the well, and v(E) is the corresponding classical fre-
.quency.

Now (2.9) and (2.13) imply

j(III)=(p/m) ~Ap

and hence, from Eq. (2.12),

In what follows we shall freely use these relations
(and any linear combination of them) without regard
to direction.

We now shall calculate I (E) by looking for reso-
nances when a wave is incident from the left (region
III') on the potential well of Fig. 1. Using a linear
combination of (2.18) and (2.19), an outgoing wave
in region III,

g(III) =Ap '~ exp[iu (b)+ in /4],
connects to

(2.20)

g(II) =A
~ p ~

'~ exp[v(b)]+ exp[ —v—(b)]
2

Rewriting this as
(2.21a)

maintain a one-to-one correspondence with the exact
solutions and any linear combination of exact solu-
tions. Those who vehemently oppose the notion of
reversibility' properly emphasize the irrefutable
fact that just knowing the leading asymptotic
behavior in one region does not in general allow us
to pass in a unique way to the asymptotic behavior
of the solution on the opposite side of a turning
point, since the precise identity of the exact solution
in question cannot be fixed by the incomplete
asymptotic information available. Sometimes a pre-
cise specification of the boundary conditions re-
moves the nonuniqueness. Nevertheless, even in
cases where the errors are not strictly controlled
(which can be done using methods such as those of
Froman and Froman' or Olver' ), the use of rever-
sible connection formulas leads to generally reliable
results. Further study is necessary before the long-
standing controversy over reversibility will finally be
settled. '

Murphy and Good's linear (one-turning-point)
connection formulas' (using our notation) are

2p '~ sin[u (c)+n./4]~
~ p ~

'~ exp[ —v(c)],

(2.18)

p
'~'

cso[ u(c) +n 4/]~ ~p ~

'~'exp[v(c)] .

(2.19}

g(II) =A
~ p ~

' Iexp( W2)exp[ v(a)]+—(i/2)exp( —W'2)exp[v(a)] J,
we use (2.18) and (2.19) to obtain

P(I) =Ap ' [2exp( W2)sin[u ( )a+~ 4/]+(i/2)exp( —W2)cos[u (a)+w/4]J
Writing

sin[u(a)+m/4]=cos[u(a) —n/4] =cos[8'i —u(a') —n/4]

=cos Wi cos[u (a') +n /4]+ sin Wi sin[u (a'}+m /4]

(2.21b)

(2.22)
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and making a similar manipulation of cos[u (a) +n l4], we have

P(I}=Ap '~ tB(E)cos[u(a')+m/4]+C(E)sin[u(a')+m/4]J,

where

B(E)=2 cos Wi exp( W2) —(i/2)sin Wi exp( —Wi),

C(E)=2sinWiexp(Wi)+(i/2)cosWiexp( —Wi) .

Again we use (2.18) and (2.19) and find

f(II') =A
~ p ~

' IB(E)exp[U(a')]+ —,C(E)exp[ —v(a')] I

=A
~ p ~

'~ IB(E)exp( Wz)exp[ U(b—')]+—,C(E)exp( —Wz)exp[v(b')]] .

Connecting to region III', we have finally

f(III')=Ap ' I2B(E)exp(W2)sin[u(b')+m/4]+ —,C(E)exp( —W2)cos[u(b')+m/4]j .

(2.23a)

(2.23b)

(2.24a)

(2.24b)

(2.25)

At resonance we require purely outgoing waves and thus set the coefficient of the incident wave to zero. From
(2.25) this implies

—,C(E)exp( —Wz)+2iB (E)exp( Wz) =0 . (2.26a)

Using (2.23b) and rearranging, this becomes

exp(2iWi) = —[1+—, exp( —2W2)+ —„exp( —4')][1——, exp( —2W2)+ —„exp(—4')]
Recall

1/2

W, =A-' f'p(x)dx=A 'f', -2m E„——'r(E„)—V(x)

(2.26b)

Expanding for I' «E„,we have

Wi-A' ' f, [2m [E„—V(x)] I
'~idx (i/4A)f'(E—„)T(E„)= W'i(E„) (i/4)I'(E—„)lAv(E„), (2.27)

where we have introduced the complex resonance
energy

E=E„—iI'(E)/2

and

T(E)= 1/v(E)

is defined by Eq. (2.16}. Using (2.27), the real and
imaginary parts of (2.26b) imply

Wi(E„)=(n+ —, )m (2.28a)

and

I'(E„)=2iriv(E„)in[1+exp( —2 Wi )

+ —, exp( —4W2)], (2.28b)

where terms of order exp( —6W2) have been ignored
in the argument of the logarithm. For
exp( —2W2) « 1, this reduces to Eq. (2.17),

I (E„)=2A'v(E„)exp( —2W2) .

Equation (2.28a) is the usual Bohr-Sommerfeld

quantization condition for energy levels in a poten-
tial well.

III. IMPROVED WKB APPROXIMATIONS

The derivations of I in Sec. II assume that the
simple WKB solution is valid between turning
points. This is true when the potential does not
change rapidly. We also assumed that the turning
points are well separated. Obviously, both of these
conditions fail for energies near the top or bottom of
the well. To derive improved %KB results which
will be valid even for these extreme cases, we shall
use the two-turning-~oint uniform approximations
of Miller and Good which allow us to connect
solutions on both sides of a region containing two
turning points.

A. Method of comparison equations'

The idea is to obtain an approximate solution of
the differential equation
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d (x) +f(x)f(x)=0
dx

in terms of known solutions of

d (cr) +G(0)y(0) =0 .
der

(3.1)

(3.2)

B. Decay width for E„near the bottom of the well

To find improved solutions which will also be
valid for low-lying states in the potential well, the
appropriate comparison equation' is

d P(o) +(t—cr )P(cr)=0. (3.3)
do

g(x) =
dx

L

P[o(x)]

in Eq. (3.1), if G(o ) has been chosen appropriately,
then cr(x) will be a slowly varying function. This
implies

=[f(x)/G(0)]'

which gives us the relation between the new and old
independent variables, and thus P(x).

G(cr) is chosen to be similar to f(x) in basic proper-
ties (e.g., shape) but simpler so that the solutions of
(3.2) are known functions. Substituting

With t chosen so that

2rrt=fi ' f p(x)dx=Wi ——f ~ (t cr~)'nd—cr,

(3.4)

the independent solutions of (3.3) are the parabolic
cylinder functions

p(cr) =Di, iin(+v 2tr) .

Miller and Good'0 use the asymptotic expansions of
the resulting uniform approximations for P(x) to ar-
rive at the two-turning-point (or parabolic) connec-
tion formulas which can be expressed in our nota-
tion as

Iai IP I

' 'exP[U(a')1+sinWi IP I

' 'exP[ —U(a')]l ~ ys(Wi)(~') 'nD( —i)n(~2a)

and

'nexp[ —U(a) lxi+ op

~ p ~

' exp[ —u(a')] ~ yz(Wi )(cr') ' Di, iin( —~20)

(3.5a)

where

Iai ~p ~

'~ exp[v(a)]+sinWi ~p ~

'~ exp[ —U(a)]],
X~+oo

(3.5b)

and

a i
——2az( Wi )cos Wi,

as(Wi)=(2m) ' (en/Wi) ' I ( —, + Wi/m),

(3.6a)

(3.6b)

ys( Wi) =2' (en/Wi ). (3.6c)

(See Appendix B for a discussion and evaluation of as.) We shall use these parabolic connection formulas to
join solutions in region II to region II'. We connect II (II') to III (III') using the linear connection formulas,
Eqs. (2.18) and (2.19).

The outgoing wave in region III, Eq. (2.20), thus connects to P(II) given by Eq. (2.21a) and (2.21b). We now
must match this to the appropriate linear combination of (3.5a) and (3.5b) which, for large positive x, equals
g(II). Referring to Eqs. (3.5a) and (3.5b) as P and Q, respectively, we have

p(II) =A(biQ+b2P),

where

b i ——,ia i 'exp( —W2—),

1

bz ——exp( Wq) 2ia i 'sin—Wiexp( —W2) .

Inserting the large-negative-x behavior of P and Q in Eq. (3.7a), we have

(3.7a)

(3.7b)
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p(II') =A
~ p ~

'/
lb 2a&exp[u(a')]+(b2sin Wi+b&)exp[ —U(a')]J .

Finally from (2.18) and (2.19), P(II') connects to

g(III') =Ap ' [2b2a|exp( W2)sin[u (b')+ a /4]+ (b2sin W| +b & )exp( —W2)cos[u(b')+n/4] J.

(3.8)

(3.9)

Requiring that the coefficient of the incident wave
vanish at resonance, we find

I

Thus (3.10b) reduces to (2.17) in the appropriate lim-
it.

2ib2a~exp(W2)+(b2sinW&+b&)exp( —W2)=0 .

Using Eqs. (3.7b), (3.5b), and (2.27), this implies

Wl (E„)=(n+ , )n—. (3.10a)

and

I (E„)=2k'v(E„)in[1+as 'exp( —2W2)],

(3.10b)

I'(E„)=2% (Ev„)a s'exp( —2 W2 ) . (3.11}

In Appendix 8, we note that a~ ' equals 1.08, 1.03,
1.02 for the first three levels and approaches 1 as n

increases,

as '-exp[+(24n) '] .

where we have ignored the small imaginary part of
as [which contributes a correction term to Wi(E„)]
and have dropped terms of order exp( —4W2) since
Eq. (3.10b) is not to be used near the top of the well

when 8'2 is small.
Near the bottom of the well, 8'2 ))1, and

1= ——7Tt
2 (3.13)

the independent solutions of (3.12) are the parabolic
cylinder functions

i'(rr) =Di+;g ~)/2(~2oe' ') .

These yield a uniform approximation for g(x) in a
region including the top of a barrier. From the
asymptotic expansions, Miller and Good' derive the
two-turning-point connection formula (written in
our notation and applying it to one of the barriers in
Fig. 1):

C. Decay width near the top of the we11

Near the top of a potential barrier, the appropri-
ate comparison equation' is

d (0) +(t+o2)P(o) =0 .
d(T

With t (real (0 for energies below the top of bar-
rier) chosen so that

~] ~1/2

[aT( W2)exp( ——,W2)p
'/ exp[ —iu(a)]+e ' / p

'/ exp[iu(a)] I ~ }rT(W2)(o') '/ Di;, ,~/2(v 2oe '
)

where

aT( W2)=(2/~)' (W2/ne) ' I ( —, iW / 2—)c2rsho( —W2)

and

( W ) (2e in/2)1/4( W
—e3'in/2/~e )' 2

p '/ exp( —W2)exp[iu(b)], (3.14)

(3.15a)

(3.15b)

(See Appendix C for further details on aT.) The complex conjugate of Eq. (3.14) yields another independent
connection formula. By joining two of these two-turning-point relations, we are able to cover the whole range
of x. (No one-turning-point formulas are used. )

Starting with an outgoing wave in region III,

g(III) =Ap '/ exp[iu (b)],
Eq. (3.14) implies

p(I) =Ap ' jaz.exp( —,W2)exp[ iu (a)]+e '—exp(W2)exp[iu(a)]I

=Ap ' IaTexp( —, W2 }exp( i W )exip[iu ( )—]a+e ' exp( W2)exp(i W~ )exp[ —iu (a')] I .

(3.16)

(3.17a)

(3.17b)
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From Eq. (3.14) and its complex conjugate (applied now to the other, barrier) we form the linear combinationa'
which has the behavior of (3.17b) in region I. Then, assuming fi

~ p ~

dx = Wq, we have

P(III')=&p ' '(a&exp( —,W2)exp( —iW~)[arexp[ —iu(b')]exp( ——,W~)+e ' "exp[iu(b')]J

+e ™/2exp(2W2)exp(iW&)[e' exp[ i—u(b')]+arexp( ——, W2)exp[iu(b')])) . (3.18)

exp(2iW~) = —ar exp( —W2) .

Using Eqs. (CS) and (2.27), (3.19) implies

W, (E„)=(n+ —,)rr+P(E„)

(3.19)

(3.20a)

For resonance, the coefficient of the incident wave
vanishes,

exp(iW~ )exp(2W2)+ar exp( —iW~ )exp( W2) =0,
and thus

V(x) =a~x —a4x

For the low-lying energy levels, a closed-form ex-
pression is given for I (E„)in Eq. (A14).~0

It will be very interesting to determine which
functional integral methods can reproduce the im-
proved WKB approximation, including the correc-
tions near the top and bottom of the well.
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APPENDIX A
These results are similar to those of Drukarev,
Froman, and Froman. ' In Appendix D, we show
that although the classical period T(E„) logarith-
mically diverges at the top of the well, the denomi-
nator in (3.20b) remains finite. Away from the top,
the BPIBE term can be neglected.

IV. CONCLUSIONS

Equations (3.10b) and (3.20b) give an improved
%KB approximation for the decay width of any en-

ergy level in a potential well of the general shape of
Fig. 1. Thus, except near the very top or bottom, an
excellent approximation is simply

I'(E„)=2A'v(E„)in[1+exp( —2')] .

Obviously, the techniques we have used can be ap-
plied to other potentials.

In Appendix A we have calculated v(E„) and W2
(in terms of complete elliptic integrals) for the case
of a quartic potential of the form

V(x) =aux —a4x

p(x)=[2m(E„—a2x +a~ )]'

=(2ma }' [(x —a )(x —b ))'

(Al)

(A2)

where x=a, b are the turning points and a'= —a
and b'= b for the symm—etric potential of (Al) and
(A2) implies

a '+b'= (a2/a4)

and

a b =E„/a4.
(A3)

Now,

In this appendix, we give explicit expressions for
v(E„), W~(E„), and W2(E„) for a quartic potential
of the form shown in Fig. 1. We expand these exact
results to obtain I (E„) for E„near the bottom of
the well. With

[v(E„)] '=T(E„)=2f, =2m f dx/p(x)
U En

=4(m/2a~}'/ f dx[(b x)(a x)] —'/ =4(m—l2a4)'/ b 'F(m/2, a/b),

where F(n l2,alb):E(alb) is a comple—te elliptic integral, and we are using the notation of Gradshteyn and
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Ryzhik ':

Wi(E„)=i' ' f p(x)dx =(2/iri)(2ma4)'/2 f [(x —a )(x —b }]'/ dx

=(2/iri)(2ma4)'/(bl3)[(a +b )E(ir/2, a/b) (b—a—)F(n/2, a/b)], (A5)

where E(n/2, a. Ib ) =E(a Ib ) is another of the complete elliptic integrals of Ref. 21. From the definitions, one
can relate Wi(E„) and T(E„):

8 Wi (E„) T(E„)
(A6)

Finally,
b a' —1 1 2W2(E„)=A' ' f [p )dx=fg ' f ~p ~dx=A' '(2ma„)'/ f [(x —a )(b —x )]'/dx

i(2ma4)'/ (b/3)[(ai+b )E(ir/2, q) —2a F(m'/2, q)],
where q=(1 —a /b')'/.

Near the bottom of the well, a lb « 1, and thus (from Ref. 21)

E(a/b)~ —,ir[1+ , (alb)—+ ], E(a/b)~ —,@[1—, (alb) +—.. ],
E(q)~ln +—ln —1 (a/b) +, E(q)~1+—ln ——, (alb) +4b 1 4b 1 4b

a 4 a 2 a

These imply

T(E„)~(4lb)(ml2a4)'/ , ir(1+a—/4b ),

Wi(E„)~ (2ma4)'/ (m/2iii)a b, Wi(E„)~ (Zma4)'/ (b3/3A) 1 —(3a /2b )ln
4b

a

where, for a /b « 1,

a =E„/az, b =a2/a4.

Combining (A9), (A10), and (2.28a), we have

E„=(n+ —,)A(2az/m )
'/

(A7)

(A8)

(A10)

(A11)

near the bottom of the well, corresponding to the energy levels of a simple harmonic oscillator. Equations
(A9)—(A 1 1) imply

T(E„)~ ir(2m la2)'/ [1+(n+ —, )fux4m '/~(2a2) 3/i],

27/2O, 3/2~ 1/2

W2(E„)~ (2m )' ai (3Ra4) ' ——,(n+ —, )ln
(n + , )fia4—

Then, the barrier penetration factor becomes

(A12)

exp( —2W2)=

n+1/2
27/2~ 3/2~ 1/2

Q2 Pl m' (2a }Ptl CX2

exp
R(n + —,)a4 3fia4

(A13)

From Eqs. (A12), (A13), and (3.11), we find

n +1/2
27/2~ 3/2~ 1/2

I (E„)=2%(m'as ) '(a2/2m )'
fi(n+ —,)a4

1/2(2 )3/2

exp (A14}
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APPENDIX 8

We discuss the quantity as( Wl ) which was intro-
duced in Eq. (3.6). Using the quantization condition
on 8'&,

W, (E„)=(n+ —, )m. ,

we can write

This can be explicitly evaluated for any n, e.g.,

ag ' (n =0)=(m/e)'~ =1.075,

as ' (n =1)=1.027,

ag ' (n=2)=1.017, etc.

For large n, we can use Stirling's formula for the I
function to show

a~(E)=ay(E„)

=(2m) '~ [e/(n+ —,)]"+'~'I'(n +1),
as ' — exp(1/24n ),

and thus a~ '~ 1 for large n

(B3)

or

a '= (2~)'~ [(n+ I/2)/e]" +'~1

pz T

(82)

APPENDIX C

We discuss aT(Wq) defined by Eq. (3.15a). (See
also Connor' who introduces a related quantity. )
Using standard identities,

+T( W2) (2/~) cosh( W2)
I
I ( ~ W2/~)

I
exp[&0( Wz)],

where

1 8'p 8'p
{((W, ) =argl ( —, i 8;/—~)+ ln —1

7r

For large 8'z,

P( Wz)~ —(rr/24') .

Since

I
I (-, —~Wz/~)

~

=[m/cosh( —W, )]'

we have

aT( W&) = [2cosh( —Wq )]' exp[i%( Wz )]= [exp( —Wz)+ exp( Wz )] exp[i/( Wz)] .

Hence,

&T ( Wz) =exp( Wq)[1+exp( —2Wz )]exp[2ig( Wz )] .

Expanding P( Wz) near the resonance energy,

y( W, )=y(E„)+(E E„)(By/BE)~—
=y(E, )—(&/2)l'(E„)(By/BE)g

Inserting this in (C3), we have

az (Wq)=exp(Wz)exp I (E„)2 B{(} [1+exp( —2')]exp[2ig(E„)] .n

(Cl)

(C2)

(C3)

(C4)

(C5)

APPENDIX D

We examine equation (3.20b) for I (E) near the
top of the well and show that I remains finite and
nonzero as we approach the top.

Write

BWz

BE BWg BE
From
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1
2 ~ E 1/2

a

1 b —1/2= ——I m [2m ( V E)—) dx .
BE A' a

For E near V,„,we find

8' =(mlth')(m /
I

V"
I

)'i ( V,„E)—
and, hence,

=—(sr/R)(m/I V"
I

)'~,

where
I

V"
I

is evaluated at V,„. From (Cl),

t) 1 1 . Wz 1 W2= ——Ref — i — +—ln
r) W2 tr 2 m'

where

P(z) = lnI (z) .=B
Bz

(D2)

(D4)

(D5)

for E„near V,„. Putting (D4) and (D7) into (Dl),
we have

=—(1/&)(m/I V'I )' '
BE E

xln ( V,„E„)——(m I
I

V"
I

)'~

(D8)

very close to the top of the well. From Eq. (A4),
one can show that near the top of the well

T(E„)=—2(m I I
V"

I
)'r'in[( V,„E„)/6—4V,„] .

(D9)

Thus, (D8) and (D9) when inserted in the denomina-
tor of Eq. (3.20b), imply that as we approach the top
of the well,

Since Wz approaches zero at the top of the barrier,
we can expand

i ———=y( , ) (i-/~—) W&P'(-, )+ . .[

2

and thus

T—2' ay
BE

I

~ 2(m/
I

V"
I

)'~

)&1n —64V,„(m/I V"
I

)'i

Re/ —, i —=lb( —,}= —1.9635 .

Using (D3) and (D6), (D5) implies

=—(1/m )Q( —,)+—ln( Wz I~)ay

2

=—ln (V ..—E.)—(m/I V"
I

)'"

(D6}
(D10)

and hence PE„) remains finite and nonzero. For
the quartic potential

V(x) =a2x —aux

(a&'/4«) and
I

V"
I
=4az

(D7)
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