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Strong gravity: An approach to its source
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We study the source of strong gravity. In the first part we find analytic expressions for a
hadron source, in which an electric charge and a scalar field are assigned to it, thus obtain-

ing an extended Reissner-Nordstrom-scalar-field solution to strong gravity. %e then show
the correspondence of a massive charged scalar-field wave equation with a generalized
Gross-Pitaevskii equation for superfluidity. This allows us to relate the parton-parton aver-

age (gluonlike) potential strength U with the overall (confining) strong-interaction strength
a. Hadron structure arises, in our model, unlike QCD, from the interplay of two different
strong-coupling constants.

I. INTRODUCTION

Some progress has been achieved in the theory of
strong gravity as formulated in its original f-g
form'.

(a) Short-range solutions were obtained in its
asymptotic limit. These solutions were shown to
resemble Yukawa's potentials for the nuclear
force.z'i

(b) Exact solutions for the potentials were ob-
tained. These solutions where shown to be of long-
range nature, and were called. type I, in order to dis-
tinguish from the solutions mentioned in (a), which
were called type-II solutions.

A new start was made in a recent work, in which
simpler field equations were solved:

C

where the Riemann tensor and scalar are written in
terms of the tensor field for strong gravity fa„, both
the cosmological constant Af and the coupling con-
stant Gf have values given by strong-interaction
physics to be discussed below. In other words, a
geometrical background was assumed for strongly
interacting matter, and an attempt was made to
understand the energy-momentum tensor for had-
ronic matter:

T~& =Puault+(P/c )(uauii —fait) .

This classical source was studied in connection with
type-II solutions, in the limit of vanishing f-meson
mass. Two options are presented to us: Either we
try to construct more realistic sources in a semiclas-

sical approach by bringing in gradually quantum
features of the hadronic source, therefore generaliz-
ing the well-known Reissner-Nordstrom solution,
or alternatively we may study the question of wheth-
er hadronic matter could show some correlations of
the type which occurs in superfluidity, and hence a
source such as Eq. (2) may be a reasonable starting
point for strong gravity. These two questions shall
be touched upon in this work. Clearly, the alterna-
tive to our approach is to proceed with a full quanti-
zation of strong gravity. This, however, is beyond
the scope of the present work, which in both options
mentioned above studies the semiclassical problem
of a hadronic source in a classical background of
Riemannian geometry.

The remaining part of this paper proceeds as fol-
lows. In Sec. II, we take the hadronic energy-
momentum tensor as

H Y EM
~ap Tap +~ap

We shall consider the hadron in first approximation
as a point particle placed at the origin of the polar
system of coordinates producing spherical symme-
try, somewhat like the Born-Oppenheimer approxi-
mation to the atomic nucleus. %e assign the hadron
an electromagnetic (EM) and a massive scalar Yu-
kawa ( I') field. We complete this section with a dis-
cussion of the scalar as well as the Maxwell field. In
Sec. II, we present an exact first integration of the
generalized Reissner-Nordstrom-scalar-field dif-
ferential equations; we conclude this section with a
discussion of a related work. ' Then, in Sec. IV, we
let the scalar field have a self-interaction and find
the generalization of the Hartree liquid model for
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superfluidity, " coupled to (strong} curved space.
Finally, in Sec. V we discuss our results with special
emphasis on the need for strong-gravity theory to
incorporate into the study of the source the beautiful
results from lepton-hadron and hadron-hadron
scattering, which in terms of the quark-parton
model have given us remarkable insight into the
hadron structure. ' '

II. THE SOURCE OF STRONG GRAVITY

A. The scalar field

Y
TOO

Y
T11

YT22=

Y
T33

1 (e" "a,/~a, Q+m e'p"p),

1
(a,/*a„p m—e p~p),

—1
(r e ~a,p'a„p+m r p~p),

(r e a„p a,p+m r p p)sin 8.

B. The electromagnetic field

(10)

(13)

q~p(a"Q*—a&p mp ~p))—, (6)

where g p denotes the Minkowski metric. The cor-
responding strong-gravity energy-momentum tensor
is obtained by replacing the Minkowski metric by
the strong-gravity metric

T.",= ' [a„y~a,y+a.ya, y~

We study the massive scalar field P, which will be
associated with the Yukawa field. First we suppose
that P and its complex conjugate P~ satisfy the field
equations

(a~a„+m')y =(a~a„+m')y~ =0.
In this section, as well as in Sec. III, we have chosen
units so that A=c = 1, with metric signature

(+———).
The minimal coupling of P to the strong-gravity

field is obtained as

(V"Vq+m )P =(V"V„+mi}$»=0,
where we have replaced ordinary derivatives BI' by
covariant derivatives V". We may evaluate the cor-
responding flat-space energy-momentum tensor,

T." = '
~a.q'a~+a. pa~"

We next assign a charge e to the point hadron. In
order to make this paper self-contained, although
the form of our equations is similar to the Reissner-
Nordstrom equations, we replace the strong-gravity
field by that of ordinary gravity. The coupling of
Maxwell equations is obtained through the covariant
derivatives to give

V~F p+ V Fpp+ VpF~„——0 . (15)

Finally, the current density satisfies the conservation
law

VJ"=0 .

The corresponding Tz„ in curved space is

EM 1 ~ & ~pTq„——— (Fq F„~—, fqvF F~P)—.
4m

(16)

(17)

We have raised indices with the f&„metric:
F& f "Fz,. Sinc——e the point hadron is placed at
the origin of the coordinate system, the electromag-
netic field will then correspond to an electrostatic
field in the x i direction, with radial symmetry:

O -10O

FPv P
C

where F"' is the electromagnetic tensor field and j"
denotes the current density. Further,

f„„(a~y a„y— m'y*4)) . — (7) 1 0 0 0
Fpv=E(r) 0 0 0 0

We restrict ourselves to a simple source which has
spherical symmetry due to a point hadron at the ori-
gin of a polar system of coordinates, such that

ae
=

ae
=

ax' '

where the temporal coordinate x =ct. Further,
with this hypothesis, the metric assumes the form

f&„——diag(e", —e, r, —r sin 8) . —

The nonvanishing elements of T~p may be calculat-
ed from Eq. (7):

0 0 0 0

We are now in a position to solve this strong
Reissner-Nordstrom system of equations with a null
current density to obtain

E (r) e (v+i )/2
2

where e is an integration constant, which in the clas-
sical case is identified with the electric charge, using
the Minkowski boundary conditions. We may then
obtain Tz„ from the above equations:
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—diag(e", —ex, r2—, —r2sin2g) .
Sm- r4

(20)

where A and 8 are defined by

2 =Gee lc, 8 =6~/c (24)

C. Derivation of the hadronic energy-momentum tensor

From what has been said above, in subsections A
and 8, we may add Eqs. (7) and (20) in order to
reconstruct our semiclassical model of the hadronic
source. This, in turn, leads us to the problem of
solving the strong Reissner-Nordstrom-scalar-field
differential equations. This will be the topic of the
following section.

III. EXACT ANALYTIC EXPRESSIONS
FOR THE STRONG-GRAVITY POTENTIALS

Under the assumption of spherical symmetry, the
nontrivial field equations (1) are as follows:

T

1 e'—e' —————+A~e"
r2 r2

4e" 2B(—e" B—„P"d,P+m e "P~P),

(21)
v' 1 e —AIe
r r 2

m 2e hype
d d

r' dr dr

(22)

The fourth equation has been omitted, as usual,
since it gives no information beyond that of Eq. (23).
Multiplying Eq. (21) by —e '" ', and (22) by
( —1), adding and integrating the resulting equation,
we obtain

v+A, =4Bfr dr P' P+»&,d ~ d
(25)

F + — Air ————2Bm rP~P F1

r r 3

—+2Br P~ P F=O. (26)
1 d
r dr dr

It is convenient to define the expressions in the
parentheses of Eq. (26) as q(r) and p(r), respective-
ly; for, in this case we may readily identify Eq. (26)
as the well-known Ricatti equation

F'+q(r)F p(r)F =0, — (27)

whose solution is'

[F(r)] '= h +fdr qexp fdr p

where lnQ is the integration constant. We next mul-

tiply Eq. (21) by —re' "+ ' (both sides), and make
the substitution I =e, to obtain

2 4 4 2r
—A)r 2

Xexp —fpdr (28)

P+r'm'P*P
r2 dr dr

(23)

where h is an integration constant. In terms of the
original functions, we find

r

e x= 'h+ fdr — rAy —2Bm rgb ex—p —fd—r —+2Br
r r 3 r dr dr

X exp —fdr +2Br—1

r dr dr
(29)

The integrations in the exponentials of the above equation may be performed partially to yield
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e = —+— r 1 —rA ———28mr ~ exp 28 r rh 1 2 A &2~ d d
r . r f 2 dr dr

Xexp —2Bf rdr d ed
dr dr

(3O)

which inay be considerably simplified by defining the integral

I(r) =2Bf r dr
d
dr dr

so that

(31)

e

e = —+— dr 1 —r A — —2B—m r P~P e
h 1

f
4

(32)

On the other hand, in Eq. (25) we may solve for A, , which, in turn, gives from Eq. (32)

e"= —+— dr 1 —r Af ——2Bm r P—~P e e
h 1 ~ A

r r f (33)

In writing Eq. (33} we have redefined the time
coordinate x =ct, rather as Xo=(Q) 'r2xo, in or-
der to incorporate the overall factor 0, thus retain-
ing the simpler expression given in Eq. (33).

As in the original case of Schwarzschild, we must
be certain to have a mathematically consistent solu-
tion, since Eq. (23}has not been used so far. In Ref.
15, it has been verified that our expressions for e
and e" satisfy Eq. (23}; it is a straightforward, al-
though very tedious, calculation.

We remark that Raut and Sinha solve approxi-
mately the field equations with a source, the exact
form of which has been given in Eq. (7), and were
unable to obtain exact first integrals, since their
metric was asymptotically non-Minkowskian, unlike
the work of this section. Yet, their work together
with ours illustrates the possibilities of strong gravi-
ty, since they succeeded in deducing the strong-
interaction coupling constant g itic, to a reasonable
approximation. We believe that our analytic solu-
tions give a foundation to more accurate work along
these lines.

On the other hand, we also believe that progress
will not occur by ever-increasing mathematical ac-
curacy in the analytic study of hadron sources,
which yield eventually exact type-II solutions to the
strong-gravity potentials. Rather, we should accept
the overwhelming experimental evidence, ' ' and at-
tempt to incorporate sea quarks in the source, to-
gether with a small set of valence quarks. We now
turn our attention to this problem.

IV. A SUPERFLUID HADRON SOURCE

One application of the approach of the previous
two sections is in the problem of hadron structure,
in which the quantum liquid aspects are also taken
into account.

I.et us consider the charged scalar field, but take
the electromagnetic field as being decoupled initial-

ly, for simplicity. The action for the scalar field
may then be written as

S= fd'xW, (34)

where the Lagrangian density has been written in
units Pi= c = 1, and with metric signature
( —+++)

v' f (f""B„p*d„p+g—'Rf
~ P ~

+m2[$ /2), (35)
where g is an arbitrary real number, and m denotes
the mass. From the expression for the energy-
mornentum tensor,

T""(x)= (36)
pv

we find for the charged scalar field, after the varia-
tion, that

T.p= a.y apy+a. yapy

f p(&4'dt 4 —m'0—'0)

+2((f pV„V" Gfp V' Vp)P "$,—(37)—
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T"„=2mzg*g . (40)

In this case, from the field equation (I), with zero
cosmological constant (for simplicity), we find that
R =a T, where a =(Sm /c )G/ and, therefore, that

Ran=2am P~P, (4l)

which, in turn, gives the following scalar field equa-
tion:

Oy+m'y =,'~m') y ('y, (42)

where f"'V&V„den—otes the d'Alembertian. Equa-
tion (42) is the generalization into curved space of
the Hartree liquid model of superfluidity, "which
in the nonrelativistic case may be written as

f U(r r')tl)(r ')dr —' . (43)

In order to explain the notation, and for simplicity,
we suppose that we are dealing with a parton system
for the source of strong gravity, in which there is an
averaged parton-parton peaked interaction

U( r —r ') = U5' '( r —r ') . (44)

Hence, we have the simpler Gross-Pitaevskii equa-
tion

(45)

where A. denotes the chemical potential, U denotes
the strength of the average interaction, and
denotes the condensate macrowave function. We re-
mark that in the context of superfluidity of He?i,
this equation (42) has been used in the context of
(weak) gravity. We should emphasize that the
mathematical difference between the differential
equations (42) and (45) is due to the fact that the
nonrelativistic expression for the energy in the
Schrodinger picture was used in driving Eq. (45),
whereas the special-relativistic result for the energy

where V'~ denotes the covariant derivative. The
field equation is

f"—"VqV„P+(m +gR/)P =0, (38)

which allows us to write the trace of the energy-
momentum tensor

T"„=l2(g ——,)8 (()'B.y —I2(g

I2g(—g , )R—/P—'y . (39)

We study the choice of parameters m@0, /= —'.
This leads to the trace anomaly

in the Schrodinger picture was used in Eq. (42), and
then the Minkowski metric is replaced by the
strong-gravity metric. From a comparison of
equivalent terms in Eqs. (42) and (45) we obtain
m -A, and am /3- U. In other works, we have re-
lated the average condensate interaction strength U
with the confining strong-gravity interaction a,
through

U =i~l /6 . (46)

We notice that an important feature of Eq. (46) is
that we have eliminated the m parameter, which
would be difficult to interpret in the superfluid had-
ron.

From the previous work in the field of hadronic
quantum liquids already referred to, it seems natural
to identify the superfluid with strongly correlated
Cooper or more accurately, BCS quark-antiquark
pairs in the sea. We shall consider this question in
more detail in the last section.

V. DISCUSSION AND CONCLUSION

We have shown in Sec. III how exact first in-
tegrals may be obtained for the strong-interaction
potentials, in the case in which the infinitely heavy
hadron source (Born-Oppenheimer approximation)
produces spherical symmmetry. We then went on to
consider a second, more promising interpretation of
the scalar field. In this second interpretation we
provided self-interactions for the scalar field. By re-
placement of ordinary derivatives with covariant
derivatives, we ensured coupling to the gravitational
field. In this approach the electric charge, which
earlier had been supplied through a generalized
Reissner-Nordstrom mechanism, would now be car-
ried by a few valence quarks: In the context of
spherical symmetry, test particles (our valence
quark s) of fermionic nature can form bound
states 2 through the strong effect of the gravita-
tional field. We envisage hadron structure as a had-
ronic source in a state of superfluidity (identified
with the sea quarks), curving space-time by means
of our strong-gravity field equations; this, in turn,
has the effect of confining a few test particles (the
valence quarks), which then are responsible for car-
rying the quantum numbers of the hadron (for in-
stance, electric charge, baryon number, strangeness,
charm, etc.).

Two further points should be stressed:
(a) We have taken the initiative of masking all the

gluon effects by means of the average Hartree-Fock
potentials Vkk of the underlying pairing theory,
which produces the bosonlike stages P in the simpler
Hartree liquid formalism adopted here [cf. Eq. (42)].
Phonons play a similar role in the theory of super-
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conductivity.
(b} By letting the self-interaction scalar field play

the role of the missing sea, we are able to incorpo-
rate processes in which the sea plays a dominant
role, as in the case of the Drell- Yan process

to make a beginning in understanding its source. In
this work we have made a modest approach in mak-
ing some progress along this particular line of
development.

pp ~p+p +anything, (47}
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