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A rigid-motion condition is proposed as a generalization of the well-known Born rigidity

in order to include rotational degrees of freedom. The explicit solution is obtained in the

general case and comparison is made with Born and other conditions. Classical rigidity is

recovered in full in the nonrelativistic limit.

INTRODUCTION

As rigid motions is the topic of this work, let us
state that throughout this paper a congruence of
timelike lines is said to be rigid if the infinitesimal
space distance between lines is conserved along
them. A rigid body would be a body which can only
move in a rigid way.

It is clear that the concept of a rigid body is at
odds with relativity as, if such a material would ex-
ist, it could be used to send signals at an infinite
speed. The concept of rigid motions, however, does
not need that of rigid bodies to be valid; falling
drops of rain or defiling troops provide examples of
rigid motions without recourse to rigid bodies even
in nonrelativistic mechanics. Moreover, the pioneer-
ing work of Born' formulated in a mathematical
way the rigidity condition (as stated above) by as-
signing a precise sense to the notion of "infini-
tesimal space distance" and gave a respectable status
to rigid motions in special relativity.

Nevertheless, there is an argument against Born
rigidity to be considered as a relativistic generaliza-
tion of classical rigidity. Herglotz and Noether
showed that Born rigid motions have, roughly
speaking, three degrees of freedom only, 3 not the six
exhibited by a classical rigid motion. This is reflect-
ed in the fact that in every application considered
other generalizations have been used.

First of all, in classical continuum mechanics the
rigid body is useful to study deformations by com-
parison with it. The concept of incompressible rna-
terial associated with Born rigidity is formulated by
the condition 8 u =0, which implies an infinite
speed of sound. Actually, other incompressibility
conditions are used to make the speed of sound
equal to that of light.

In addition, classical rigidity is used to define no-

ninertial reference frames. The Born motions lead
in this way to Fermi coordinates in Minkowski
case. It is clear that in order to get a generic non-
inertial frame one must generalize the Fermi coordi-
nates in such a way that an arbitrary rotation may
be allowed for.

Also, classical rigid motions are useful in the
modeling of extended bodies as its use may avoid the
need to discuss the details of the internal structure.
The most widely known relativistic substitutes of
this are the Dixon skeletons. This approach allows
also the construction of models for spinning parti-
cles; at this level there are many alternative
methods, as that of Finkelstein, based on group-
theoretical considerations. In any case, Born rigidi-

ty has not been used.
This list, which does not pretend to be exhaustive,

reflects the failure of the Born condition to reach at
the relativistic level the same generality and wide-
ness of applications that the rigid motions have at
the classical one.

In this work an alternative (more general) formu-
lation of the rigidity condition is proposed. The
conceptual framework is associated in an essential
way with the notion of systems of synchronized ob-
servers which is in the basis of the so-called
"3+ I" or evolution formalism of relativity. The
resulting rigidity condition is completely integrated
in the special-relativistic case so that its general
solution is explicitly presented. A careful analysis
of the results shows that both Born and (generalized)
Fermi congruences fit in the proposed framework.
It is also explicitly shown that one recovers the
whole classical formalism when going to the nonrel-
ativistic limiting case. There is no conceptual diff-
icult in extending the proposed framework to gen-
eral relativity, although all the work is done in the
special-relativistic case for the sake of obtaining the
general solution in an explicit way.

27 1243 1983 The American Physical Society



1244 C. BONA 27

I. SYSTEMS OF SYNCHRONIZED OBSERVERS where (1A) follows from

Let us fix some notations. A "system of ob-
servers" will be a timelike vector field /=Pea,
riagpgp&0 [i)=diag( —+ + +)]. The solutions
of the differential equations

=@[X(t)],

corresponding to the initial conditions X(to)=XO,
will be "world lines" of the observers and the
parameter t, which is the standard one correspond-
ing to the local transformations group generated by
g, will be called the "time" associated with g.

The space metric usually associated with g is the
quotient metric g~.

(1.2)

Lg(P)=1, (1.3)

where Lt stands for the Lie derivative along g.
Note that a synchronization orthogonal to the world
lines, that is, the existence of a function P(X) such
that

d 0=m pf (ni4"P) '

is possible if and only if g is irrotational.
The metric on the Minkowski space induces a

inetric structure on every surface of the synchroni-
zation: the "induced metric" gi. This is a three-
dimensional object, as it acts only on vectors in the
tangent space to every hypersurface. Nevertheless,
one can give a covariant four-dimensional expres-
sion of this ob'ect by constructing a projection
operator II (II IIp"=II "), which projects vectors
into tangent vectors and this for every hypersurface
of the family, that is,

Ii.i'a,y=0, L,(11)=O. (1.4)

One expression for II which is suggested by (1.3}

(gg )ap= rjap+ Q a@p,
where u is the unit vector field (riapu u p= —1) cor-
responding to g.

A system of synchronized observers is a system of
observers such that the locus of the'points corre-
sponding to t =to is a given spacelike hypersurface.
The family of hypersurfaces formed by the loci of
points corresponding to the same time t is then
given and it will be called "synchronization. " One
local coordinate expression for that family being
P(X)=t, one has

Lg(de) =0,
which is obtained by taking the I.ie derivative of
(1.3). This gives for the induced metric

(gt)ap=II &lip"rt„„

and for its (spatial) inverse

(gi ') p=g p+n np,

(1.6)

(1.8)

(Xt) p=II "IIp'(B„n„) . (1.9)

II. RIGIDITY CONDITIONS

As pointed out in the Introduction, a congruence
of world lines is said to be rigid if the (infinitesimal)
spatial distances among lines are conserved along
them. It is clear that this requirement depends in an
essential way on the concept of spatial distance. If,
for instance, one defines the spatial distance between
a pair of infinitely near world lines as the distance
along a path orthogonal to one of them, then the
condition of rigidity is

Lg(gg )=0,
which leads to the well-known Born rigidity. '

A different condition is obtained if one defines
the spatial distance as the interval between two
simultaneous (in the sense of the synchronization)
events, that is,

Lt(gt) =0,
which is equivalent to

(2.2)

(2.3)

as it follows easily from (1.8) and (1.4). The expres-
sion for (2.3) in local inertial coordinates is

&aCp+Dpka =n an p+ nan p

where the following notations are used:

a.=—s.~a, , ( } =—pa,(),
6 being the orthogonal projector

6, ~—:5 ~+n n~.

(2.4)

(2.5)

where n is the vector field of unit normals to the
surfaces (rl pn nP= —1}.

In the same way, one obtains for the second fun-
damental form on the surfaces

1s

II.P=5.P—(a.y)gP,

There is in addition a requirement on the synchroni-
zation which may be imposed on physical grounds.
The hypersurfaces must maintain the same form as
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one moves along the world lines. If (2.2) is verified,
this amounts to the demand

L g(xl) =0.
Examples of such hypersurfaces are

~I +gI ~

(2.6)

III. INTEGRABILITY CONDITIONS

The commutators of the differential operators
(2.5) are

[D~,Dp] =(D~d pt' Dph~t')—Dp, (3.1)

where the term in n pBp does not appear because n is
irrotational. That is,

a p= p a =&ap

One has also

(3.2)

where E is a numerical constant that corresponds to
hypersurfaces of constant curvature (hyperplanes are
obtained when K=O).

In the sequel, the Eqs. (2.4) and (2.6) will be stud-
ied in detail. For an analogous study of (2.1) see, for
instance, Ref. 3.

which can be decomposed in two parts

~.~~p~~;(a„n,„a,—n„„)=o,
n "(D~npr Dp—n~r) =0 .

(4.3a)

(4.3b)

D Qp ——S pn —S np, (4.4)

where, taking (4.3b) into account, S p
——Sp„

SapnP=0.
The expression for S may be computed in terms

of the 0 appearing in (3.2} if one takes into account
the definition (4.2) of Q and the integrability condi-
tions (3.3). This gives

Sap —gap+ Qa (Tpp+ Qp oap

where S~znt'=0 due to (4.2), that is

(n') nI'Q—=0
P

(4.5)

(4.6}

At this point, one may impose Eq. (2.6), which
reads

By combining cyclic index permutations of (4.3a),
one gets

h~~b tl' b,r"'dqn p„0, ——

that is,

[D,Pd ]=[D P—(n n~)']i}

=(rt"Di.k»p (3.3)

11.~1lp"L,,(~„,) =O,

where we have used (1.4) and the expression

(4.7)

Laka DpBp kp DaBp (3.4)

where A and B may have additional tensor indices.
In the particular case

D.g =O:--.rr.Pa, =O, (3.5}

where we have taken (2.4} into account.
Therefore, the resulting conditions of integrability

for an equation of the kind D~A =6 ~t'Bz are

Sap ——0 (4.8)

and this implies, as stated in the preceding section,
that Q is an arbitrary function of P(x) and, going to
(4.1),

(X,).p= 11.~lip"~„,

for Xi in terins of cr Asim. pie calculation shows

that (4.5) is equivalent to

the general solution is A =f(P), where f is an arbi-
trary function of P(x).

gP= Q.P(y)X +H(((), (4.9)

IV. INTEGRATION OF
THE RIGIDITY CONDITION (2.4)

Equation (2.4) may be put in the form

D,gp co~p+ n ~n p =h~——Qpp,

where

ap copa& apn P 0

ap=ap+na p n p a

(4.1)

(4.2)

where v is another arbitrary function of P(x).
The expression (4.9) is the general solution of the

rigidity condition (2.4) for any synchronization P(x)
verifying (1.3) and (2.6).

V. COMPUTATION OF THE WORLD LINES

The differential equations (1.1) for the world lines
are written in the case (4.9) as

dxp =Q p(t)X +vp(t), (5.1)

AaPDpQpy ——hpPD Qpy, (4.3)

The necessary integrability conditions (3.4) for g
in (4.1) are

where we have used (1.3). That is, P(X[t])=t. The
freedom in the choice of v can be used to impose
any given timelike curve Ã[t] to be a solution of
(5.1),
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vt'(t)=C '&[t]—Q ~(t)C' [t] .

Then (5.1) reads

—(X[t]—Ã[tj)t'=Q ~(t)(X[t]—4[t])
dt

(5.2)

The structure of (5.2) is very close to that of the
Fermi transport law. The analogous structure of
(4.5} and (4.6) suggests to ourselves the definition of
a derivation operator 5, which will be called "rigid
derivative, " associated to any vector field g of the
form (4 9) I. ts. expression in local inertial coordi-
nates is

5(T ~" „„.. . )=(& ~"—„,. . . )' Qp &~—" „~".
—(all upper indices)

+Q~T p"' P'
+(all lower indices) .

where L is the transposed matrix of L and use has
been made of the identity

LL =L L=I,
valid for Lorentz matrices. Let us consider now the
inverse matrix of e,i'(tp },denoted by e&'(t p),

8a ep =Sa ~ ea ec (~ap 5 b c p p

and construct the Lorentz matrices

L (t) =e '(t, )L.'(t)e„(t, ) .

Then one gets easily from (5.5}

QJt'(t) =L '."(t)L,'~(t)

[L (—t) j'L„t'(t),

Lat'(t) =exp J, Qa~(A, )dl,

(5.6)

(5.7)

which shows that L is just as arbitrary as 0 is.
The integration is completed easily if one substi-

tutes (5.6} into (5.2} to get

5(rt tt)=0, 5(o' tt)=S tt=0,
5(na) =0, [D,5]=0 . (5.3)

This operator preserves the contractions and it also
verifies —[L rt'(t)(X[t] —C[t]) ) =0,

dt

Xt'[t]=S&[t]+L ~(t)(X[to] @[toj)—
which is the general solution of (5.2).

(5.8)

The transport law of the kind (5.2) associated with 5
will be called "rigid transport. "

Let us consider now the unit vector

(X[t]—4[t]) [q„„(X—Ãy'(X —Ã) ] '~',

which is rigidly transported allowing for (5.2) and
(5.3). Let us consider the case in which X[t] ap-
proaches Ã[t] along some path lying over P(X)=t
One gets in the limit a rigidly transported unit vec-
tor in the tangent space at 4[t]. As it can be done
along any path, one can construct an orthonormal
triad in such a tangent space and complete it with
the unit normal n at Ã[t] to get finally an orthonor-
mal tetrad e, (t} [a =0, . . . , 3;eo(t)=n 8 ] rigidly
transported along Ã. It follows that to transport
rigidly a vector along 4' amounts to assigning it
constant components in the moving tetrad frame

a
~o —ea ~a

The moving tetrad e, defines in a natural way a
parameter-dependent I.orentz transformation L

VI. ANALYSIS OF THE RESULTS

The condition of rigidity (2.4}contains as particu-
lar cases the two branches of solutions (Killing and
irrotational vector fields ) of the Born condition
(2.1). The Killing case is recovered when

Q~P=O, v'P=O, (6.1)

the vector field g then being independent of the
synchronization. The irrotational case is recovered
when one demands the synchronization to be
orthogonal to the world lines, that is

n—:u ~D up ——0, (6.2)

which is the Born equation in the irrotational case
(to =0).

On the other hand, if one imposes the unit
tangent vector W to a single world line 4 to be
rigidly transported along the curve

e.(t) —=L.'(t)es(tp),

La'(to) =&a'. (5.4}

—wp=n pe"d
dt

then one can decompose 0 in the neighborhood of
4 in the following way:

e.t'(tp )Q~&(t) =L.'(t)L,"(t)e,&(to ), (5 5)

If one writes now the condition for rigid transport
of e„one gets O~p ——io~p+ W~ 8'g —8'pS'~,

co~p ———cop, co~8'~=0
(6.3)
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and the law of rigid transport (5.2) corresponds to a
law of (generalized) Fermi transport along the sin-

gle integral curve 4. Note that if one demands (6.3)
to be true for all the world lines, then one is left only
with Born motions (6.1) and (6.2).

It is clear from the general solution (5.8) for the
integral curves that a rigid congruence [in the sense
of (2.4)] is determined by a single line Ã and a
Lorentz transforination L. The configuration space
at any surface t=const is then isomorphous to the
Poincare group. If one is allowed to impose invari-
ant conditions on L, one recovers the framework of
homogeneous spaces of the Poincare group which
has been used by Finkelstein to define what he
called rigid structures with a view to describe spin-
ning particles. As the nonrelativistic limit of the
Poincare group is the Galilei group, one would have
in principle a classical nine-dimensional configura-
tion space (there is one degree of freedom which
changes only the paraineter in the world lines) in
contrast with the well-known six-dimensional one of
the classical rigid body. Let us see in detail what
happens.

It is clear that if the forinalism proposed here has
to reduce in the nonrelativisitic limit to the classical
one, the synchronization surfaces must tend in this
limit to the hypersurfaces of constant Newtonian
(absolute) time, that is, by (3.5)

D~X =O(1/c )=--X =f(P)+O(1/c2) .
(6.4)

That is,

5 +n n =O(1/c ),
n'=(i, n/c)+O(1/c ) .

(6.5a)

~,J'—=R; "Rk'= —(R; ")'Rk',

8=4"J—co;~K',

then one gets from (6.5)

xj
=co (t)X'+v/(r),

X'=e'(r),
(6.6)

which is the general expression of the classical rigid
motions.

Let us see what has happened. As the Newtonian
time X is a function of the parameter t only, be-
cause of (6.4), the whole class of (parameter-
dependent) Galilean boosts is contained in the class
of (parameter-dependent) space displacements and,
then, it does not have any effect on the vector
(X —Ã ).

Note that the classical limit (6.6) is not fully
recovered from the Born condition as the corre-
sponding relativistic configuration space does not in-
clude arbitrary (parameter-dependent) rotations. 3

These considerations suggest that Eq. (2.4) pro-
vides the adequate framework to deal with rigid
motions, even if it may be suitable to put some re-
strictions on the arbitrary functions or the synchron-
ization (or both) on the grounds of the physics of the
applications considered, definition of noninertial
frames, modeling of spinning particles, or others.

(6.5b)

where (6.4) has been taken into account and R is the
spatial rotation associated to I.. If one defines

This amounts to saying that the vector field n can
be interpreted as the field of velocities corresponding
to a (irrotational) system of physical observers
whose world lines are orthogonal to the synchroni-
zation. In what follows it will be shown that this in-

terpretative assumption is enough to recover the
right classical limit. To see this, let us consider the
nonrelativistic limit of the expression (5.8) for the
world lines
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